Geometric Graphs

Sathish Govindarajan Indian Institute of Science, Bangalore

Workshop on Introduction to Graph and Geometric Algorithms

Geometric Graph ——

- $\star V = \text{set of geometric objects (point set in the plane)}$
- \star $E = \{(u, v)\}$ based on some geometric condition

Questions on Geometric Graphs —

- **★** Problems on graphs
 - We Independent set, coloring, clique, etc.

- ★ Combinatorial/Structural questions
 - Obtain Bounds
 - Characterization

- ★ Computational questions
 - Efficient Algorithm
 - Approximation

Geometric graphs —

- $\star V$ set of geometric objects
- \star E object i and j satisfy certain geometric condition
- ★ Broad classes of geometric graphs (based on edge condition)
 - Proximity graphs
 - Intersection graphs
 - Distance based graphs

Proximity Graphs –

- \star P point set in plane
- $\star R_{i,j}$ proximity region defined by i and j

- $\star V$ point set P
- ★ $(i,j) \in E$ if $R_{i,j}$ is empty
- ★ Examples Delaunay, Gabriel, Relative Neighborhood Graph
- ★ Applications Graphics, wireless networks, GIS, computer vision, etc.

Delaunay Graph - Classic Example —

 \star P - point set in plane

- $\star V$ point set P
- \bigstar (i, j) ∈ E if \exists some empty circle thro' i and j
- ★ Triangle (i, j, k) if circumcircle(i, j, k) is empty (Equivalent condition)
- * Applications Graphics, mesh generation, computer vision, etc.

Questions on Delaunay Graph ——

- ★ Combinatorial Bounds on
 - Maximum size of edge set?
 - Chromatic number?
 - Maximum independent set?

(Over all possible point sets P)

- **★** Computational
 - Efficient Algorithm

Delaunay Graph - Classic Example ——

 \star P - point set in plane

★ Observations: Planar?

Delaunay Graph - Planar ———

Delaunay Graph - Planar ——

Delaunay Graph - Planar ——

Delaunay Graph - Planar ——

★ Let, if possible, 2 edges cross

★ Circles c'ant intersect like this (why?)

Delaunay Graph - Planar —

- ★ Circles c'ant intersect like this (why?)
- ★ One endpoint of an edge lies within the other circle
 - Contradiction

Delaunay Graph - Formal Proof ——

- \star Consider any circle passing through c and d
- \bigstar Points a and b are outside the circle

 \bigstar What about $\angle cad + \angle cbd$?

Delaunay Graph - Formal Proof ——

- \star Consider any circle passing through c and d
- \bigstar Points a and b are outside the circle

 $\bigstar \angle cad + \angle cbd < 180$

Delaunay Graph - Formal Proof —

- \star Let, if possible, edges ab and cd cross
- \star Consider the quadrilateral acdb

- $\star cd$ is an edge $\implies \angle cad + \angle cbd < 180$
- \star ab is an edge $\implies \angle acb + \angle adb < 180$
- \star $\angle cad + \angle cbd + \angle acb + \angle adb < 360$
 - Contradiction

Questions on Delaunay Graph —

- \star Given any *n*-point set *P* in the plane
 - Delaunay graph is planar
- ★ Maximum size of edge set
 - $\approx \le 3n 6$ (Euler's formula)
- ★ Chromatic number
 - ≥ 4 (Four color theorem)
- **★** Maximum independent set
 - $\geq n/4$ (Chromatic number)

Delaunay Graph ——

 \star P - point set in plane

- $\bigstar V$ point set P
- **★** $(i,j) \in E$ if \exists some empty **circle** thro' i and j

Delaunay Graph - Variants ——

- ★ Edges defined by other objects (instead of circles)
- ★ Objects Square, Halfspace, Ellipse, Rectangle
- **★** $(i,j) \in E$ if \exists some empty rectangle thro' i and j

Delaunay Graph wrt Rectangles —

★ $(i,j) \in E$ if \exists some empty rectangle thro' i and j

- ★ Bounds on the size of maximum independent set?
- * Application: Frequency assignment in wireless networks

Delaunay Graph wrt Rectangles —

★ $(i,j) \in E$ if \exists some empty rectangle thro' i and j

- **★** Graph Properties
 - $\ \ref{eq:can}$ Graph can have $\Omega(n^2)$ edges
 - $\ll K_n, n \geq 5$ is a forbidden subgraph

Theorem: Any Delaunay graph (wrt rectangles) has an independent set of size at least $\sqrt{n}/2$

- **★** Same slope sequence of points
 - * +ve slope sequence (Red)
 - → ve slope sequence (Blue)

- \star Same slope sequence of size 2k

Theorem: Let P be any set of $m^2 + 1$ points in the plane. There exists a same slope sequence (+ve or -ve) of size m + 1.

- ★ Erdos and Szekeres proved it in 1935
- ★ Atleast six different proofs(Monotone subsequence survey by Michael Steele)

- \star Partition the points into lists l_1, l_2, \ldots, l_k
 - We For each point p, find the longest +ve slope sequence ending in p
 - \nearrow Let c be the length of this sequence
 - \red{v} Place p in list l_c

- $\star l_1:1$
- $\bigstar l_2:$
- $\bigstar l_3:$

- \star Partition the points into lists l_1, l_2, \ldots, l_k
 - We For each point p, find the longest +ve slope sequence ending in p
 - \nearrow Let c be the length of this sequence
 - \red{v} Place p in list l_c

- $\star l_1:1$
- $\star l_2:2$
- $\star l_3$:

- \star Partition the points into lists l_1, l_2, \ldots, l_k
 - We For each point p, find the longest +ve slope sequence ending in p
 - \sim Let c be the length of this sequence
 - \red{v} Place p in list l_c

- $\star l_1:1,3$
- $\star l_2:2$
- $\star l_3$:

- \star Partition the points into lists l_1, l_2, \ldots, l_k
 - We For each point p, find the longest +ve slope sequence ending in p
 - \sim Let c be the length of this sequence

- $\star l_1:1,3$
- $\star l_2: 2, 4$
- $\star l_3$:

- \star Partition the points into lists l_1, l_2, \ldots, l_k
 - We For each point p, find the longest +ve slope sequence ending in p

- $\star l_1:1,3$
- $\star l_2: 2, 4, 5$
- $\star l_3$:

- \star Partition the points into lists l_1, l_2, \ldots, l_k
 - We For each point p, find the longest +ve slope sequence ending in p

 - \aleph Place p in list l_c

- $\star l_1:1,3$
- $\star l_2: 2, 4, 5$
- $\star l_3:6$

- \star Partition the points into lists l_1, l_2, \ldots, l_k
 - We For each point p, find the longest +ve slope sequence ending in p

- $\star l_1:1,3$
- $\star l_2: 2, 4, 5, 8$
- $\star l_3: 6, 7, 9, 10$

- $\star l_1:1,3$
- $\star l_2: 2, 4, 5, 8$
- $\star l_3: 6, 7, 9, 10$
- ★ Observation: Sequence of points in a list is -ve slope sequence
 - Proof?

Theorem: Let P be any set of $m^2 + 1$ points in the plane. There exists a same slope sequence (+ve or -ve) of size m + 1.

- \star Partition the points into lists l_1, l_2, \ldots, l_k
- \star If $k \geq m+1$, we are done.

- $\star l_1:1,3$
- $\star l_2: 2, 4, 5, 8$
- $\star l_3: 6, 7, 9, 10$

Theorem: Let P be any set of $m^2 + 1$ points in the plane. There exists a same slope sequence (+ve or -ve) of size m + 1.

- \star Partition the points into lists l_1, l_2, \ldots, l_k
- \bigstar If $k \geq m+1$, we are done.
- \bigstar Otherwise, one of the list has alteast m+1 points
 - We There are $\leq m$ lists and $m^2 + 1$ points
 - Apply Pigeon hole principle
- \star By Observation, there is a -ve slope sequence of size at least m+1

Independent Set - Open Problem —

- ★ Size of maximum independent set Lower bound
 - $\approx \Omega(n^{0.5})$ (Slope sequence)
 - \mathbb{Z} Improved to $\Omega(n^{0.618-\epsilon})$ (Ajwani et al, SPAA '07)
- ★ Size of maximum independent set Upper bound
 - $O(n/\log n)$ (Pach et al '08)
- \star Conjecture: Close to $O(n/\log n)$
- ★ Open problem : Obtain better upper/lower bounds

Intersection Graphs —

 \star S - set of geometric objects $s_i(\text{circles})$

- $\star V$ set of object s_i
- \star $(s_i, s_j) \in E$ if objects s_i and s_j intersect

Intersection Graphs -

 \star S - set of geometric objects $s_i(\text{circles})$

- \star $(s_i, s_j) \in E$ if objects s_i and s_j intersect
- ★ Graph problems Maximum independent set (MIS), Maximum clique, Minimum vertex cover, etc.
- ★ Computing MIS: NP-hard
 - \red{w} In general graphs, cannot approximate better than $n^{1-\epsilon}$
 - \geqslant In intersection graphs, $(1+\epsilon)$ approximations known

Distance based Graphs —

- \star P point set in plane
- ★ Unit distance graph

- \star V point set P
- \bigstar $(i,j) \in E$ if d(i,j) = 1

Unit Distance Graph -

- \star V point set P
- \bigstar $(i,j) \in E$ if d(i,j) = 1
- ★ Maximum number of edges? (Erdos)
 - [⋄] Over all possible n-point set
- \star $O(n^{3/2})$ edges
 - \aleph Forbidden $K_{2,3}$

- \star $O(n^{4/3})$ edges
 - & Crossing Lemma, Cuttings, Arrangement of Circles

Unit Distance Graph —

- **★** Upper bound
 - $\partial O(n^{4/3})$ edges
- ★ Lower bound
 - $\Omega(n^{1+\frac{c}{\log\log n}})$ [Erdos]
- ★ Conjecture: Lower bound is tight

Unit Distance Graph - Convex Point Set ——

★ Convex Point Set

 \bigstar Upper bound: $O(n \log n)$ edges

 \star Lower bound: 2n-7 edges

 \star Conjecture: Lower bound is tight (2n edges)

