
Geometric data structures

Sudebkumar Prasant Pal,

Department of Computer Science and Engineering,

IIT Kharagpur, 721302.

email: spp@cse.iitkgp.ernet.in

January 27, 2010

Scope of the lecture

◮ Binary search trees and 2-d range trees

We consider 1-d and 2-d range queries for point sets.

Scope of the lecture

◮ Binary search trees and 2-d range trees

We consider 1-d and 2-d range queries for point sets.

◮ Range searching using Kd-trees

2-d orthogonal range searching with range trees.

Scope of the lecture

◮ Binary search trees and 2-d range trees

We consider 1-d and 2-d range queries for point sets.

◮ Range searching using Kd-trees

2-d orthogonal range searching with range trees.

◮ Interval trees

Interval trees for reporting all intervals on a line containing a given
query point on the line.

Scope of the lecture

◮ Binary search trees and 2-d range trees

We consider 1-d and 2-d range queries for point sets.

◮ Range searching using Kd-trees

2-d orthogonal range searching with range trees.

◮ Interval trees

Interval trees for reporting all intervals on a line containing a given
query point on the line.

◮ Segment trees

For reporting all intervals in a line containing a given query point
on the line.

Scope of the lecture

◮ Binary search trees and 2-d range trees

We consider 1-d and 2-d range queries for point sets.

◮ Range searching using Kd-trees

2-d orthogonal range searching with range trees.

◮ Interval trees

Interval trees for reporting all intervals on a line containing a given
query point on the line.

◮ Segment trees

For reporting all intervals in a line containing a given query point
on the line.

◮ Paradigm of Sweep algorithms

For reporting intersections of line segments, and for computihg
visible regions.

1-dimensional Range searching

a b

◮ Problem: Given a set P of n points {p1, p2, · · · , pn} on the
real line, report points of P that lie in the range [a, b], a ≤ b.

1-dimensional Range searching

a b

◮ Problem: Given a set P of n points {p1, p2, · · · , pn} on the
real line, report points of P that lie in the range [a, b], a ≤ b.

◮ Using binary search on an array we can answer such a query in
O(log n + k) time where k is the number of points of P in
[a, b].

1-dimensional Range searching

a b

◮ Problem: Given a set P of n points {p1, p2, · · · , pn} on the
real line, report points of P that lie in the range [a, b], a ≤ b.

◮ Using binary search on an array we can answer such a query in
O(log n + k) time where k is the number of points of P in
[a, b].

◮ However, when we permit insertion or deletion of points, we
cannot use an array answering queries so efficiently.

1-dimensional Range searching

2 4 7 13 20 22 26 35

2

20

35
4

2 7

4

26

13

22

Search range [6,25]

7 13 20 22

Report 7,13,20,22

26

◮ We use a binary leaf search tree where leaf nodes store the
points on the line, sorted by x-coordinates.

1-dimensional Range searching

2 4 7 13 20 22 26 35

2

20

35
4

2 7

4

26

13

22

Search range [6,25]

7 13 20 22

Report 7,13,20,22

26

◮ We use a binary leaf search tree where leaf nodes store the
points on the line, sorted by x-coordinates.

◮ Each internal node stores the x-coordinate of the rightmost
point in its left subtree for guiding search.

2-dimensional Range Searching

1

3 4

5

6
7

8

9
11

12

1315
16

17

14

10

2

Q

◮ Problem: Given a set P of n points in the plane, report points
inside a query rectangle Q whose sides are parallel to the axes.

2-dimensional Range Searching

1

3 4

5

6
7

8

9
11

12

1315
16

17

14

10

2

Q

◮ Problem: Given a set P of n points in the plane, report points
inside a query rectangle Q whose sides are parallel to the axes.

◮ Here, the points inside R are 14, 12 and 17.

2-dimensional Range Searching

1

3 4

5

6
7

8

9
11

12

1315
16

17

14

10

2

Q

◮ Using two 1-d range queries, one along each axis, solves the
2-d range query.

2-dimensional Range Searching

1

3 4

5

6
7

8

9
11

12

1315
16

17

14

10

2

Q

◮ Using two 1-d range queries, one along each axis, solves the
2-d range query.

◮ The cost incurred may exceed the actual output size of the
2-d range query.

Range searching with range trees and

Kd-trees

◮ Given a set S of n points in the plane, we can construct a
2d-range tree in O(n log n) time and space, so that rectangle
queries can be executed in O(log2 n + k) time.

Range searching with range trees and

Kd-trees

◮ Given a set S of n points in the plane, we can construct a
2d-range tree in O(n log n) time and space, so that rectangle
queries can be executed in O(log2 n + k) time.

◮ The query time can be improved to O(log n + k) using the
technique of fractional cascading.

Range searching with range trees and

Kd-trees

◮ Given a set S of n points in the plane, we can construct a
2d-range tree in O(n log n) time and space, so that rectangle
queries can be executed in O(log2 n + k) time.

◮ The query time can be improved to O(log n + k) using the
technique of fractional cascading.

◮ Given a set S of n points in the plane, we can construct a
Kd-tree in O(n log n) time and O(n) space, so that rectangle

queries can be executed in O(
√

n + k) time. Here, the
number of points in the query rectangle is k.

Range searching in the plane using range

trees

a b

Given a 2-d rectangle query [a, b]X [c , d], we can identify subtrees
whose leaf nodes are in the range [a, b] along the X-direction.

Only a subset of these leaf nodes lie in the range [c , d] along the
Y-direction.

Range searching in the plane using range

trees

assoc(v)

v

T
T

p

p

p

p

T

Tassoc(v) is a binary search tree on y-coordinates for points in the
leaf nodes of the subtree tooted at v in the tree T .

The point p is duplicated in Tassoc(v) for each v on the search path
for p in tree T .

The total space requirement is therefore O(n log n).

Range searching in the plane using range

trees

a b

We perform 1-d range queries with the y-range [c , d] in each of the
subtrees adjacent to the left and right search paths within the
x-range [a, b] in the tree T .

Since the search path is O(log n) in size, and each y-range query
requires O(log n) time, the total cost of searching is O(log2 n).
The reporting cost is O(k) where k points lie in the query
rectangle.

2-range tree searching

�
�
�
�

�
�
�
�

2 4 7 13 20 22 26 35

2

20

35
4

2 7

4

26

13

22

Search range [6,25]

7 13 20 22

Report 7,13,20,22

26

2-range tree searching

�
�
�
�

�
�
�
�

2 4 7 13 20 22 26 35

2

20

35
4

2 7

4

26

13

22

Search range [6,25]

7 13 20 22

Report 7,13,20,22

26

13 7

13 22

22 20

2-range tree searching

�
�
�
�

�
�
�

�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
���

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

2 4 7 13 20 22 26 35

2

20

35
4

2 7

4

26

13

22

Search range [6,25]

7 13 20 22

Report 7,13,20,22

26

13 7

13 22

22 20

Partition by the median of x-coordinates

24

16

17

L R

RU
RD

LU
LD

10

18

19

20

21

22
23

25
26

28

27
29

30

31

32

33

34

35

37

38

40

39

41

36
3

7

9

8

4
6

5
1

15

14

13

12

11

2

u

v

Partition by the median of y-coordinates

24

16

17

L R

RU
RD

LU
LD

10

18

19

20

21

22
23

25
26

28

27
29

30

31

32

33

34

35

37

38

40

39

41

36
3

7

9

8

4
6

5
1

15

14

13

12

11

2

u

v

Partition by the median of x-coordinates

24

16

17

L R

RU
RD

LU
LD

10

18

19

20

21

22
23

25
26

28

27
29

30

31

32

33

34

35

37

38

40

39

41

36
3

7

9

8

4
6

5
1

15

14

13

12

11

2

u

v

‘

Partition by the median of y-coordinates

24

16

17

L R

RU
RD

LU
LD

10

18

19

20

21

22

23

25
26

28

27
29

30

31

32

33

34

35

37

38

40

39

41

36
3

7

9

8

4
6

5

1

15

14

13

12

11

2

u

v

‘

2-dimensional range searching using Kd-trees

1
2

3 4

5

6
7

8

9

10

11

12

1315
16

17

14

L R

RU
RD

LU
LD

8

LU LD RD

RL

S

2 14 6
11

4

16

1 2 3 16 15 14 13 12 5 6 7 8 17 10 11 94

RU

Description of the Kd-tree

1
2

3 4

5

6
7

8

9

10

11

12

1315
16

17

14

L R

RU
RD

LU
LD 8

LU LD RD

RL

S

2 14 6
11

4

16

1 2 3 16 15 14 13 12 5 6 7 8 17 10 11 94

RU

◮ The tree T is a perfectly height-balanced binary search tree
with alternate layers of nodes spitting subsets of points in P

using x- and y- coordinates, respectively as follows.

Description of the Kd-tree

1
2

3 4

5

6
7

8

9

10

11

12

1315
16

17

14

L R

RU
RD

LU
LD 8

LU LD RD

RL

S

2 14 6
11

4

16

1 2 3 16 15 14 13 12 5 6 7 8 17 10 11 94

RU

◮ The tree T is a perfectly height-balanced binary search tree
with alternate layers of nodes spitting subsets of points in P

using x- and y- coordinates, respectively as follows.

◮ The point r stored in the root vertex T splits the set S into
two roughly equal sized sets L and R using the median
x-cooordinate xmedian(S) of points in S , so that all points in
L (R) have abscissae less than or equal to (strictly greater
than) xmedian(S).

Description of the Kd-tree

1
2

3 4

5

6
7

8

9

10

11

12

1315
16

17

14

L R

RU
RD

LU
LD 8

LU LD RD

RL

S

2 14 6
11

4

16

1 2 3 16 15 14 13 12 5 6 7 8 17 10 11 94

RU

◮ The tree T is a perfectly height-balanced binary search tree
with alternate layers of nodes spitting subsets of points in P

using x- and y- coordinates, respectively as follows.

◮ The point r stored in the root vertex T splits the set S into
two roughly equal sized sets L and R using the median
x-cooordinate xmedian(S) of points in S , so that all points in
L (R) have abscissae less than or equal to (strictly greater
than) xmedian(S).

◮ The entire plane is called the region(r).

Answering rectangle queries

24

16

17

L R

RU
RD

LU
LD

10

18

19

20

21

22

23

25
26

28

27
29

30

31

32

33

34

35

37

38

40

39

41

36
3

7

9

8

4
6

5

1

15

14

13

12

11

2

u

v

◮ A query rectangle Q may (i) overlap a region, (ii) completely
contain a region, or (iii) completely miss a region.

Answering rectangle queries

24

16

17

L R

RU
RD

LU
LD

10

18

19

20

21

22

23

25
26

28

27
29

30

31

32

33

34

35

37

38

40

39

41

36
3

7

9

8

4
6

5

1

15

14

13

12

11

2

u

v

◮ A query rectangle Q may (i) overlap a region, (ii) completely
contain a region, or (iii) completely miss a region.

◮ If R contains the entire bounded region(p) of a point p

defining a node N of T then report all points in region(p).

Answering rectangle queries

24

16

17

L R

RU
RD

LU
LD

10

18

19

20

21

22

23

25
26

28

27
29

30

31

32

33

34

35

37

38

40

39

41

36
3

7

9

8

4
6

5

1

15

14

13

12

11

2

u

v

◮ A query rectangle Q may (i) overlap a region, (ii) completely
contain a region, or (iii) completely miss a region.

◮ If R contains the entire bounded region(p) of a point p

defining a node N of T then report all points in region(p).
◮ If R misses the region(p) then we do not treverse the subtree

rooted at this node.

Answering rectangle queries

24

16

17

L R

RU
RD

LU
LD

10

18

19

20

21

22

23

25
26

28

27
29

30

31

32

33

34

35

37

38

40

39

41

36
3

7

9

8

4
6

5

1

15

14

13

12

11

2

u

v

◮ A query rectangle Q may (i) overlap a region, (ii) completely
contain a region, or (iii) completely miss a region.

◮ If R contains the entire bounded region(p) of a point p

defining a node N of T then report all points in region(p).
◮ If R misses the region(p) then we do not treverse the subtree

rooted at this node.
◮ If R overlaps region(p) then we check whether R also overlaps

the two regions of the children of the node N.

2-dimensional Range Searching: Kd-trees

24

16

17

L R

RU
RD

LU
LD

10

18

19

20

21

22

23

25
26

28

27
29

30

31

32

33

34

35

37

38

40

39

41

36
3

7

9

8

4
6

5

1

15

14

13

12

11

2

u

v

◮ The set L (R) is split into two roughly equal sized subsets LU

and LD (RU and RD), using point u (v) that has the median
y -coordinate in the set L (R), and including u in LU (RU).

2-dimensional Range Searching: Kd-trees

24

16

17

L R

RU
RD

LU
LD

10

18

19

20

21

22

23

25
26

28

27
29

30

31

32

33

34

35

37

38

40

39

41

36
3

7

9

8

4
6

5

1

15

14

13

12

11

2

u

v

◮ The set L (R) is split into two roughly equal sized subsets LU

and LD (RU and RD), using point u (v) that has the median
y -coordinate in the set L (R), and including u in LU (RU).

◮ The entire halfplane containing set L (R) is called the
region(u) (region(v)).

Nodes traversed in the Kd-tree

1

3 4

5

6
7

8

9
11

12

1315
16

17

14

L R

RU
RD

LU
LD

10

2

8

LU LD RU RD

RL

S

2 14 6

4

16

1 2 3 16 15 14 13 12 5 6 7 8 17 10 11 94

10

Nodes traversed in the Kd-tree

1

3 4

5

6
7

8

9
11

12

1315
16

17

14

L R

RU
RD

LU
LD

10

2

8

LU LD RD

RL

S

2 14 6
11

4

16

1 2 3 16 15 14 13 12 5 6 7 8 17 10 11 94

*

* *

* *
RU

* *

* * * * * *

Time complexity of output point reporting

◮ Reporting points within R contributes to the output size k for
the query.

Time complexity of output point reporting

◮ Reporting points within R contributes to the output size k for
the query.

◮ No leaf level region in T has more than 2 points.

Time complexity of output point reporting

◮ Reporting points within R contributes to the output size k for
the query.

◮ No leaf level region in T has more than 2 points.

◮ So, the cost of inspecting points outside R but within the
intersection of leaf level regions of T can be charged to the
internal nodes traversed in T .

Time complexity of output point reporting

◮ Reporting points within R contributes to the output size k for
the query.

◮ No leaf level region in T has more than 2 points.

◮ So, the cost of inspecting points outside R but within the
intersection of leaf level regions of T can be charged to the
internal nodes traversed in T .

◮ This cost is borne for all leaf level regions intersected by R .

Worst-case cost of traversal

◮ It is sufficient to determine the upper bound on the number of
(internal) nodes whose regions are intersected by a single
vertical (horizontal) line.

Worst-case cost of traversal

◮ It is sufficient to determine the upper bound on the number of
(internal) nodes whose regions are intersected by a single
vertical (horizontal) line.

◮ Any vertical line intersecting S can intersect either L or R but
not both, but it can meet both RU and RD (LU and LD).

Worst-case cost of traversal

◮ It is sufficient to determine the upper bound on the number of
(internal) nodes whose regions are intersected by a single
vertical (horizontal) line.

◮ Any vertical line intersecting S can intersect either L or R but
not both, but it can meet both RU and RD (LU and LD).

◮ Any horizontal line intersecting R can intersect either RU or
RD but not both, but it can meet both children of RU (RD).

Time complexity of rectangle queries for

Kd-trees

v

lc(v)

R1 R2

◮ Therefore, the time complexity T (n) for an n-vertex Kd-tree
obeys the recurrence relation

T (n) = 2 + 2T (
n

4
)

T (1) = 1

Time complexity of rectangle queries for

Kd-trees

v

lc(v)

R1 R2

◮ Therefore, the time complexity T (n) for an n-vertex Kd-tree
obeys the recurrence relation

T (n) = 2 + 2T (
n

4
)

T (1) = 1

◮ The solution for T (n) = O(
√

(n)).

Time complexity of rectangle queries for

Kd-trees

v

lc(v)

R1 R2

◮ Therefore, the time complexity T (n) for an n-vertex Kd-tree
obeys the recurrence relation

T (n) = 2 + 2T (
n

4
)

T (1) = 1

◮ The solution for T (n) = O(
√

(n)).

◮ The total cost of reporting k points in R is therefore
O(

√

(n) + k).

More general queries

General Queries:

◮ Triangles can be used to simulate polygonal shapes with
straight edges.

More general queries

General Queries:

◮ Triangles can be used to simulate polygonal shapes with
straight edges.

◮ Circles cannot be simulated by triangles either.

Triangle queries

◮ Using O(n2) space and time for preprocessing, triangle queries
can be reported in O(log2 n + k)) time, where k is the
number of points inside the query triangle.

Goswami, Das and Nandy: Comput. Geom. Th. and Appl. 29
(2004) pp. 163-175.

Triangle queries

◮ Using O(n2) space and time for preprocessing, triangle queries
can be reported in O(log2 n + k)) time, where k is the
number of points inside the query triangle.

◮ For counting the number k of points inside a query triangle,
worst-case optimal O(log n) time suffices.

Goswami, Das and Nandy: Comput. Geom. Th. and Appl. 29
(2004) pp. 163-175.

Finding intervals containing a query point

A

B

C

D

E

F

G

H

xquery

queryx’

y’

y

Simpler queries ask for reporting all intervals intersecting the
vertical line X = xquery .

More difficult queries ask for reporting all intervals intersecting a
vertical segment joining (x ′

query , y) and (x ′

query , y ′).

Computing the interval tree

1. F

2. F
1. H

2. H

1. G

2. G1. C−D

2. D−C

1. A−E−B

2. B−E−A

A

B

C

D

E

F

G

H

xmid

M

L R

M

L R

I

The set M has intervals intersecting the vertical line X = xmid ,
where xmid is the median of the x-coordinates of the 2n endpoints.

The root node has intervals M sorted in two independent orders (i)
by right end points (B-E-A), and (ii) left end points (A-E-B).

Answering queries using an interval tree

1. F

2. F
1. H

2. H

1. G

2. G1. C−D

2. D−C

1. A−E−B

2. B−E−A

A

B

C

D

E

F

G

H

xmid

M

L R

M

L R

I

The set L and R have at most n endpoints each.

So they have at most n
2 intervals each.

Clearly, the cost of (recursively) building the interval tree is
O(n log n).

The space required is linear.

Answering queries using an interval tree

xmidxquery queryx’

A

B

C

D

E

F

G

H

List 2List 1

(Only A & E) (Only B)

M

A,E,B B,E,A

R
L

For xquery < xmid , we do not traverse subtree for subset R .

For x ′

query > xmid , we do not traverse subtree for subset L.

Clearly, the cost of reporting the k intervals is O(log n + k).

The problem is to report all (horizontal) segments that cut across
the query rectangle or include an entire (top/bottom) bounding
edge.

X X’

Xmid

A

B

C
D

Use an interval tree of all the horizontal segments and the right
bounding edge of the query rectangle like X or X’.

Use the rectangle query for vertical segment X and find points A,
B and C in the rectangle with left edge at minus infinity. For X’,
report B, C and D, similarly.

Introducing the segment tree

A

B
C

D

B B C

D
C

CD
A

A

For an interval which spans the entire range inv(v), we mark only
internal node v in the segment tree, and not any descendant of v .

We never mark any ancestor of a marked node.

Representing intervals in the segment tree

A

B
C

D

B B C

D
C

CD
A

A

E

E
E

At each level, at most two internal nodes are marked for any given
interval.

Along a root to leaf path an interval is stored only once.

The space requirement is therefore O(n log n).

Reporting intervals containing a given query

point

A

B
C

D

B B C

D
C

CD
A

A

E

E
E

X1
X2 X3

◮ Search the path in the tree reaching the leaf for the given
query point.

Reporting intervals containing a given query

point

A

B
C

D

B B C

D
C

CD
A

A

E

E
E

X1
X2 X3

◮ Search the path in the tree reaching the leaf for the given
query point.

◮ Report all intervals that appear stored on the search path.

Reporting intervals containing a given query

point

A

B
C

D

B B C

D
C

CD
A

A

E

E
E

X1
X2 X3

◮ Search the path in the tree reaching the leaf for the given
query point.

◮ Report all intervals that appear stored on the search path.

◮ If k intervals contain the query point then the cost incurred is
O(log n + k).

Halfplanar range queries

Halfplanar range queries

Halfplanar range queries using simulataneous

bisectors

T (n) ≤ 3T (n/4) + c log n

OR
T (n) ≤ T (n/2) + T (n/4) + c log n

Halfplanar range queries

◮ Using O(n log n) time for preprocessing, halfplanar range
queries can be reported in O(n0.695 + k) time, where k is the
number of points inside the query triangle.

Edelsbrunner and Welzl: Info. Proc. Lett. 23 (1986) pp. 289-293.

Reporting segments intersections

A

B

C

D

E

F

G

HI

J

K

L

M

N

1
2

3 4

5

0

Problem: Given a set S of n line segments in the plane, report all
intersections between the segments.

◮ Check all pairs in O(n2) time.

Reporting segments intersections

A

B

C

D

E

F

G

HI

J

K

L

M

N

1
2

3 4

5

0

Problem: Given a set S of n line segments in the plane, report all
intersections between the segments.

◮ Check all pairs in O(n2) time.
◮ A vertical line just before any intersection meets intersecting

segments in an empty, intersection free segment.

Reporting segments intersections

A

B

C

D

E

F

G

HI

J

K

L

M

N

1
2

3 4

5

0

Problem: Given a set S of n line segments in the plane, report all
intersections between the segments.

◮ Check all pairs in O(n2) time.
◮ A vertical line just before any intersection meets intersecting

segments in an empty, intersection free segment.
◮ Detect intersections by checking consecutive pairs of segments

along a vertical line.

Reporting segments intersections

A

B

C

D

E

F

G

HI

J

K

L

M

N

1
2

3 4

5

0

Problem: Given a set S of n line segments in the plane, report all
intersections between the segments.

◮ Check all pairs in O(n2) time.
◮ A vertical line just before any intersection meets intersecting

segments in an empty, intersection free segment.
◮ Detect intersections by checking consecutive pairs of segments

along a vertical line.
◮ This way, each intersection point can be detected.

Sweeping steps: Endpoints and intersection

points

A

B

C

D

E

F

G

HI

J

K

L

M

N

CD,GH,EF−>CD,EF−>EF,CD
AB−>AB,EF−>CD,AB,EF−>CD,EF−>CD,IJ,EF−>CD,IJ,GH,EF−>CD,GH,IJ,EF

A

B

C
D

E

F

GH

I J

K

L

M

O

P

Q
R

S

Z
12

3
4

6

7

N

5

SQ,SR,DC,1−−>SQ,SR,DE,2−−>DE,3−−>

FG,FE,DE,4−−>NP,NO,FG,FE,DE,5−−>

NP,NO,FG,FE,DE,6−−>LM,MK,NP,NO,FG,7

Z6,NP−−>Z7, NP and LM

Z4,FG and DE−−>Z5,NP and FG−−>

Z1 ,SQ−−>Z2,SQ−−>Z3,DE−−>

A

B

C
D

E

F

GH

I J

K

L
M

O

P

Q
R

S

Z
12

3
4

6

7

N

5

SQ,SR,DC,1−−>SQ,SR,DE,2−−>DE,3−−>

FG,FE,DE,4−−>NP,NO,FG,FE,DE,5−−>

NP,NO,FG,FE,DE,6−−>LM,MK,NP,NO,FG,7

Z6,NP−−>Z7, NP and LM

Z4,FG and DE−−>Z5,NP and FG−−>

Z1 ,SQ−−>Z2,SQ−−>Z3,DE−−>

A

B

C
D

E

F

GH

I J

K

L
M

O

P

Q
R

S

Z
12

3
4

6

7

N

5

SQ,SR,DC,1−−>SQ,SR,DE,2−−>DE,3−−>

FG,FE,DE,4−−>NP,NO,FG,FE,DE,5−−>

NP,NO,FG,FE,DE,6−−>LM,MK,NP,NO,FG,7

Z6,NP−−>Z7, NP and LM

Z4,FG and DE−−>Z5,NP and FG−−>

Z1 ,SQ−−>Z2,SQ−−>Z3,DE−−>

A

B

C
D

E

F

GH

I J

K

L
M

O

P

Q
R

S

Z
12

3
4

6

7

N

5

SQ,SR,DC,1−−>SQ,SR,DE,2−−>DE,3−−>

FG,FE,DE,4−−>NP,NO,FG,FE,DE,5−−>

NP,NO,FG,FE,DE,6−−>LM,MK,NP,NO,FG,7

Z6,NP−−>Z7, NP and LM

Z4,FG and DE−−>Z5,NP and FG−−>

Z1 ,SQ−−>Z2,SQ−−>Z3,DE−−>

A

B

C
D

E

F

GH

I J

K

L
M

O

P

Q
R

S

Z
12

3
4

6

7

N

5

SQ,SR,DC,1−−>SQ,SR,DE,2−−>DE,3−−>

FG,FE,DE,4−−>NP,NO,FG,FE,DE,5−−>

NP,NO,FG,FE,DE,6−−>LM,MK,NP,NO,FG,7

Z6,NP−−>Z7, NP and LM

Z4,FG and DE−−>Z5,NP and FG−−>

Z1 ,SQ−−>Z2,SQ−−>Z3,DE−−>

A

B

C
D

E

F

GH

I J

K

L

M

O

P

Q
R

S

Z
12

3
4

6

7

N

5

SQ,SR,DC,1−−>SQ,SR,DE,2−−>DE,3−−>

FG,FE,DE,4−−>NP,NO,FG,FE,DE,5−−>

NP,NO,FG,FE,DE,6−−>LM,MK,NP,NO,FG,7

Z6,NP−−>Z7, NP and LM

Z4,FG and DE−−>Z5,NP and FG−−>

Z1 ,SQ−−>Z2,SQ−−>Z3,DE−−>

Mark de Berg, Otfried Schwarzkopf, Marc van Kreveld and Mark
Overmars, Computational Geometry: Algorithms and Applications,
Springer.

S. K. Ghosh, Visibility Algorithms in the Plane, Cambridge
University Press, Cambridge, UK, 2007.

F. P. Preparata and M. I. Shamos, Computational Geometry: An
Introduction, New York, NY, Springer-Verlag, 1985.

	Scope
	Range searching

