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» SEGMENT TREES
For reporting all intervals in a line containing a given query point
on the line.

» PARADIGM OF SWEEP ALGORITHMS
For reporting intersections of line segments, and for computihg
visible regions.
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» Problem: Given a set P of n points {p1, p2, -+, pn} on the
real line, report points of P that lie in the range [a, b], a < b.

» Using binary search on an array we can answer such a query in
O(log n + k) time where k is the number of points of P in
[a, b].

» However, when we permit insertion or deletion of points, we
cannot use an array answering queries so efficiently.
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» We use a binary leaf search tree where leaf nodes store the
points on the line, sorted by x-coordinates.



1-DIMENSIONAL RANGE SEARCHING
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Lads.

Search range [6,25] Report 7,13,20,22

» We use a binary leaf search tree where leaf nodes store the

points on the line, sorted by x-coordinates.

» Each internal node stores the x-coordinate of the rightmost

point in its left subtree for guiding search.
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2-DIMENSIONAL RANGE SEARCHING
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» Problem: Given a set P of n points in the plane, report points
inside a query rectangle Q whose sides are parallel to the axes.
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» Problem: Given a set P of n points in the plane, report points
inside a query rectangle Q whose sides are parallel to the axes.

» Here, the points inside R are 14, 12 and 17.
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» Using two 1-d range queries, one along each axis, solves the
2-d range query.
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» Using two 1-d range queries, one along each axis, solves the
2-d range query.

» The cost incurred may exceed the actual output size of the
2-d range query.
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RANGE SEARCHING WITH RANGE TREES AND
KD-TREES

» Given a set S of n points in the plane, we can construct a
2d-range tree in O(nlog n) time and space, so that rectangle
queries can be executed in O(log? n + k) time.

» The query time can be improved to O(log n+ k) using the
technique of fractional cascading.

» Given a set S of n points in the plane, we can construct a
Kd-tree in O(nlog n) time and O(n) space, so that rectangle
queries can be executed in O(y/n + k) time. Here, the
number of points in the query rectangle is k.



RANGE SEARCHING IN THE PLANE USING RANGE
TREES

Given a 2-d rectangle query [a, b]X[c, d], we can identify subtrees
whose leaf nodes are in the range [a, b] along the X-direction.

Only a subset of these leaf nodes lie in the range [c, d] along the
Y-direction.



RANGE SEARCHING IN THE PLANE USING RANGE
TREES

T

assoc(v

Tassoc(v) is @ binary search tree on y-coordinates for points in the
leaf nodes of the subtree tooted at v in the tree T.

The point p is duplicated in T,s0(,) for each v on the search path
for pin tree T.

The total space requirement is therefore O(nlog n).



RANGE SEARCHING IN THE PLANE USING RANGE
TREES

We perform 1-d range queries with the y-range [c, d] in each of the
subtrees adjacent to the left and right search paths within the
x-range [a, b] in the tree T.

Since the search path is O(log n) in size, and each y-range query
requires O(log n) time, the total cost of searching is O(log? n).
The reporting cost is O(k) where k points lie in the query
rectangle.
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2 4 7 13 20 22 26

’ '\ I )

e E R ER

Search range [6,25] Report 7,13,20,22



2-RANGE TREE SEARCHING

2 4 7 13

20 22 26

Search range [6,25] Report 7,13,20,22

@fx@@



2-RANGE TREE SEARCHING

20 22 26

Search range [6,25] Report 7,13,20,22

@fx@@



PARTITION BY THE MEDIAN OF X-COORDINATES
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PARTITION BY THE MEDIAN OF Y-COORDINATES
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PARTITION BY THE MEDIAN OF X-COORDINATES
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PARTITION BY THE MEDIAN OF Y-COORDINATES
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2-DIMENSIONAL RANGE SEARCHING USING KD-TREES




DESCRIPTION OF THE KD-TREE

» The tree T is a perfectly height-balanced binary search tree
with alternate layers of nodes spitting subsets of points in P
using x- and y- coordinates, respectively as follows.
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» The tree T is a perfectly height-balanced binary search tree
with alternate layers of nodes spitting subsets of points in P
using x- and y- coordinates, respectively as follows.

» The point r stored in the root vertex T splits the set S into
two roughly equal sized sets L and R using the median
x-cooordinate xmedian(S) of points in S, so that all points in
L (R) have abscissae less than or equal to (strictly greater
than) xmedian(S).
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» The tree T is a perfectly height-balanced binary search tree
with alternate layers of nodes spitting subsets of points in P
using x- and y- coordinates, respectively as follows.

» The point r stored in the root vertex T splits the set S into
two roughly equal sized sets L and R using the median
x-cooordinate xmedian(S) of points in S, so that all points in
L (R) have abscissae less than or equal to (strictly greater
than) xmedian(S).

» The entire plane is called the region(r).



ANSWERING RECTANGLE QUERIES

» A query rectangle @ may (i) overlap a region, (ii) completely
contain a region, or (iii) completely miss a region.



ANSWERING RECTANGLE QUERIES
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» A query rectangle @ may (i) overlap a region, (ii) completely
contain a region, or (iii) completely miss a region.

» If R contains the entire bounded region(p) of a point p
defining a node N of T then report all points in region(p).
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» A query rectangle @ may (i) overlap a region, (ii) completely
contain a region, or (iii) completely miss a region.

» If R contains the entire bounded region(p) of a point p
defining a node N of T then report all points in region(p).

» If R misses the region(p) then we do not treverse the subtree

rooted at this node.



ANSWERING RECTANGLE QUERIES
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» A query rectangle @ may (i) overlap a region, (ii) completely
contain a region, or (iii) completely miss a region.

» If R contains the entire bounded region(p) of a point p
defining a node N of T then report all points in region(p).

» If R misses the region(p) then we do not treverse the subtree
rooted at this node.

> If R overlaps region(p) then we check whether R also overlaps
the two regions of the children of the node N.



2-DIMENSIONAL RANGE SEARCHING: KD-TREES
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» The set L (R) is split into two roughly equal sized subsets LU
and LD (RU and RD), using point u (v) that has the median
y-coordinate in the set L (R), and including v in LU (RU).
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» The set L (R) is split into two roughly equal sized subsets LU
and LD (RU and RD), using point u (v) that has the median
y-coordinate in the set L (R), and including v in LU (RU).

» The entire halfplane containing set L (R) is called the
region(u) (region(v)).



NODES TRAVERSED IN THE KD-TREE
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NODES TRAVERSED IN THE KD-TREE
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TIME COMPLEXITY OF OUTPUT POINT REPORTING

» Reporting points within R contributes to the output size k for
the query.
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internal nodes traversed in T.



TIME

COMPLEXITY OF OUTPUT POINT REPORTING

Reporting points within R contributes to the output size k for
the query.

No leaf level region in T has more than 2 points.

» So, the cost of inspecting points outside R but within the

intersection of leaf level regions of T can be charged to the
internal nodes traversed in T.

This cost is borne for all leaf level regions intersected by R.
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(internal) nodes whose regions are intersected by a single
vertical (horizontal) line.
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WORST-CASE COST OF TRAVERSAL

» It is sufficient to determine the upper bound on the number of
(internal) nodes whose regions are intersected by a single
vertical (horizontal) line.

» Any vertical line intersecting S can intersect either L or R but
not both, but it can meet both RU and RD (LU and LD).

» Any horizontal line intersecting R can intersect either RU or
RD but not both, but it can meet both children of RU (RD).



TIME COMPLEXITY OF RECTANGLE QUERIES FOR
KD-TREES

lc(v)

R R2 i\

» Therefore, the time complexity T(n) for an n-vertex Kd-tree
obeys the recurrence relation

T(n)=2+2T(3)

T(1) =1
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TIME COMPLEXITY OF RECTANGLE QUERIES FOR
KD-TREES
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» Therefore, the time complexity T(n) for an n-vertex Kd-tree
obeys the recurrence relation

T(n)=2+2T(3)

T(1)=1
> The solution for T(n) = O(/(n)).
» The total cost of reporting k points in R is therefore

O(/(n) + k).
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General Queries:

» Triangles can be used to simulate polygonal shapes with
straight edges.



MORE GENERAL QUERIES

General Queries:

» Triangles can be used to simulate polygonal shapes with
straight edges.

» Circles cannot be simulated by triangles either.



TRIANGLE QUERIES

» Using O(n?) space and time for preprocessing, triangle queries
can be reported in O(log? n + k)) time, where k is the
number of points inside the query triangle.

Goswami, Das and Nandy: Comput. Geom. Th. and Appl. 29
(2004) pp. 163-175.



TRIANGLE QUERIES

» Using O(n?) space and time for preprocessing, triangle queries
can be reported in O(log? n + k)) time, where k is the
number of points inside the query triangle.

» For counting the number k of points inside a query triangle,
worst-case optimal O(log n) time suffices.

Goswami, Das and Nandy: Comput. Geom. Th. and Appl. 29
(2004) pp. 163-175.



FINDING INTERVALS CONTAINING A QUERY POINT
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Simpler queries ask for reporting all intervals intersecting the
vertical line X = Xguery -

More difficult queries ask for reporting all intervals intersecting a
vertical segment joining (Xguery,Y) and (Xguery s ¥')-



COMPUTING THE INTERVAL TREE
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The set M has intervals intersecting the vertical line X = xpiq,
where x,iq is the median of the x-coordinates of the 2n endpoints.

The root node has intervals M sorted in two independent orders (i)
by right end points (B-E-A), and (ii) left end points (A-E-B).



ANSWERING QUERIES USING AN INTERVAL TREE

The set L and R have at most n endpoints each.
So they have at most 7 intervals each.

Clearly, the cost of (recursively) building the interval tree is
O(nlog n).

The space required is linear.



ANSWERING QUERIES USING AN INTERVAL TREE
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For Xquery < Xmid, we do not traverse subtree for subset R.

For Xguery > Xmid, We do not traverse subtree for subset L.

Clearly, the cost of reporting the k intervals is O(log n + k).
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The problem is to report all (horizontal) segments that cut across
edge.

the query rectangle or include an entire (top/bottom) bounding

DA



Use an interval tree of all the horizontal segments and the right
bounding edge of the query rectangle like X or X'.

Use the rectangle query for vertical segment X and find points A,
B and C in the rectangle with left edge at minus infinity. For X',
report B, C and D, similarly.



INTRODUCING THE SEGMENT TREE

For an interval which spans the entire range inv(v), we mark only
internal node v in the segment tree, and not any descendant of v.

We never mark any ancestor of a marked node.



REPRESENTING INTERVALS IN THE SEGMENT TREE

At each level, at most two internal nodes are marked for any given
interval.

Along a root to leaf path an interval is stored only once.

The space requirement is therefore O(nlog n).



REPORTING INTERVALS CONTAINING A GIVEN QUERY
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query point.
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REPORTING INTERVALS CONTAINING A GIVEN QUERY
POINT
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» Search the path in the tree reaching the leaf for the given
query point.

» Report all intervals that appear stored on the search path.

» If k intervals contain the query point then the cost incurred is
O(log n + k).



HALFPLANAR RANGE QUERIES
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HALFPLANAR RANGE QUERIES USING SIMULATANEOUS
BISECTORS

T(n) <3T(n/4)+clogn
OR
T(n) < T(n/2)+ T(n/4) 4+ clogn



HALFPLANAR RANGE QUERIES

» Using O(nlog n) time for preprocessing, halfplanar range
queries can be reported in O(n%%% + k) time, where k is the
number of points inside the query triangle.

Edelsbrunner and Welzl: Info. Proc. Lett. 23 (1986) pp. 289-293.
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Problem: Given a set S of n line segments in the plane, report all
intersections between the segments.

» Check all pairs in O(n?) time.
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segments in an empty, intersection free segment.
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» A vertical line just before any intersection meets intersecting
segments in an empty, intersection free segment.

» Detect intersections by checking consecutive pairs of segments
along a vertical line.



REPORTING SEGMENTS INTERSECTIONS

Problem: Given a set S of n line segments in the plane, report all
intersections between the segments.

» Check all pairs in O(n?) time.

» A vertical line just before any intersection meets intersecting
segments in an empty, intersection free segment.

» Detect intersections by checking consecutive pairs of segments
along a vertical line.

» This way, each intersection point can be detected.



SWEEPING STEPS: ENDPOINTS AND INTERSECTION
POINTS

AB- >AB EF->CD,AB; EF >CD, EF >C[D 1J,EF- >CD 1J,GH,EF->CD,GH,1J,t
CD,GH,EF->CD,EF- >EFCD S ! |



SQ,SR,DC,1-—>SQ,SR,DE,2——>DE,
FG,FE,DE,4——>NP,NO,FG,FE,DE,5——>
NP,NO,FG,FE,DE,6——>LM,MK,NP,NO,FG,7
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H G

Z1 ,SQ——>Z2,SQ——>Z3,DE—1>
Z4,FG and DE——>Z5,NP and FG—>

Z6,NP——>Z7, NP and LM A
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[ F.P. Preparata and M. I. Shamos, Computational Geometry: An
Introduction, New York, NY, Springer-Verlag, 1985.
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