GEOMETRIC DATA STRUCTURES

Sudebkumar Prasant Pal,
Department of Computer Science and Engineering,
IIT Kharagpur, 721302.
email: spp@cse.iitkgp.ernet.in

January 27, 2010

SCOPE OF THE LECTURE

» BINARY SEARCH TREES AND 2-D RANGE TREES
We consider 1-d and 2-d range queries for point sets.

SCOPE OF THE LECTURE

» BINARY SEARCH TREES AND 2-D RANGE TREES
We consider 1-d and 2-d range queries for point sets.

» RANGE SEARCHING USING KD-TREES
2-d orthogonal range searching with range trees.

SCOPE OF THE LECTURE

» BINARY SEARCH TREES AND 2-D RANGE TREES
We consider 1-d and 2-d range queries for point sets.

» RANGE SEARCHING USING KD-TREES
2-d orthogonal range searching with range trees.

» INTERVAL TREES
Interval trees for reporting all intervals on a line containing a given
query point on the line.

SCOPE OF THE LECTURE

» BINARY SEARCH TREES AND 2-D RANGE TREES
We consider 1-d and 2-d range queries for point sets.

» RANGE SEARCHING USING KD-TREES
2-d orthogonal range searching with range trees.

» INTERVAL TREES
Interval trees for reporting all intervals on a line containing a given
query point on the line.

» SEGMENT TREES
For reporting all intervals in a line containing a given query point
on the line.

SCOPE OF THE LECTURE

» BINARY SEARCH TREES AND 2-D RANGE TREES
We consider 1-d and 2-d range queries for point sets.

» RANGE SEARCHING USING KD-TREES
2-d orthogonal range searching with range trees.

» INTERVAL TREES
Interval trees for reporting all intervals on a line containing a given
query point on the line.

» SEGMENT TREES
For reporting all intervals in a line containing a given query point
on the line.

» PARADIGM OF SWEEP ALGORITHMS
For reporting intersections of line segments, and for computihg
visible regions.

1-DIMENSIONAL RANGE SEARCHING

» Problem: Given a set P of n points {p1, p2, -+, pn} on the
real line, report points of P that lie in the range [a, b], a < b.

1-DIMENSIONAL RANGE SEARCHING

» Problem: Given a set P of n points {p1, p2, -+, pn} on the
real line, report points of P that lie in the range [a, b], a < b.
» Using binary search on an array we can answer such a query in

O(log n + k) time where k is the number of points of P in
[a, b].

1-DIMENSIONAL RANGE SEARCHING

» Problem: Given a set P of n points {p1, p2, -+, pn} on the
real line, report points of P that lie in the range [a, b], a < b.

» Using binary search on an array we can answer such a query in
O(log n + k) time where k is the number of points of P in
[a, b].

» However, when we permit insertion or deletion of points, we
cannot use an array answering queries so efficiently.

1-DIMENSIONAL RANGE SEARCHING

2 4 7 13 20 22 26

Sds.

2l 1 g 13 20
Search range [6,25] Report 7,13,20,22

» We use a binary leaf search tree where leaf nodes store the
points on the line, sorted by x-coordinates.

1-DIMENSIONAL RANGE SEARCHING

2 4 7 13 20 22 26

Lads.

Search range [6,25] Report 7,13,20,22

» We use a binary leaf search tree where leaf nodes store the

points on the line, sorted by x-coordinates.

» Each internal node stores the x-coordinate of the rightmost

point in its left subtree for guiding search.

35

2-DIMENSIONAL RANGE SEARCHING

5
1 e2 d
[] ° 6
3 o4 .’
[]
6
s 13 8
L 4 °
‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ ®10
P :
Caa : 9
: 1l e e
: L
Qi 17

» Problem: Given a set P of n points in the plane, report points
inside a query rectangle Q whose sides are parallel to the axes.

2-DIMENSIONAL RANGE SEARCHING

5
1 e2 d
[] ° 6
3 o4 .’
[]
6
s 13 8
L 4 °
‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ ®10
P :
Caa : 9
: 1l e e
: L
Qi 17

» Problem: Given a set P of n points in the plane, report points
inside a query rectangle Q whose sides are parallel to the axes.

» Here, the points inside R are 14, 12 and 17.

2-DIMENSIONAL RANGE SEARCHING

1 e2 ®:
® : o6
3 .4; .7
: L] :
s
s 13 : 8
L) L J
@10
Q: e 12 :
©o14 : 9
: 11l e)
°:
... T

» Using two 1-d range queries, one along each axis, solves the
2-d range query.

2-DIMENSIONAL RANGE SEARCHING

: 5
1 e?2 ®:
e © o6
: : 7
E 3 o4 .
B L B
s
s 13 : 8
: o : o
L.®10......
Qi o 12 :
©o14 : 9
: 11l e)
o
... Y RN RN

» Using two 1-d range queries, one along each axis, solves the
2-d range query.

» The cost incurred may exceed the actual output size of the
2-d range query.

RANGE SEARCHING WITH RANGE TREES AND
KD-TREES

» Given a set S of n points in the plane, we can construct a
2d-range tree in O(nlog n) time and space, so that rectangle
queries can be executed in O(log? n + k) time.

RANGE SEARCHING WITH RANGE TREES AND
KD-TREES

» Given a set S of n points in the plane, we can construct a
2d-range tree in O(nlog n) time and space, so that rectangle
queries can be executed in O(log? n + k) time.

» The query time can be improved to O(log n+ k) using the
technique of fractional cascading.

RANGE SEARCHING WITH RANGE TREES AND
KD-TREES

» Given a set S of n points in the plane, we can construct a
2d-range tree in O(nlog n) time and space, so that rectangle
queries can be executed in O(log? n + k) time.

» The query time can be improved to O(log n+ k) using the
technique of fractional cascading.

» Given a set S of n points in the plane, we can construct a
Kd-tree in O(nlog n) time and O(n) space, so that rectangle
queries can be executed in O(y/n + k) time. Here, the
number of points in the query rectangle is k.

RANGE SEARCHING IN THE PLANE USING RANGE
TREES

Given a 2-d rectangle query [a, b]X[c, d], we can identify subtrees
whose leaf nodes are in the range [a, b] along the X-direction.

Only a subset of these leaf nodes lie in the range [c, d] along the
Y-direction.

RANGE SEARCHING IN THE PLANE USING RANGE
TREES

T

assoc(v

Tassoc(v) is @ binary search tree on y-coordinates for points in the
leaf nodes of the subtree tooted at v in the tree T.

The point p is duplicated in T,s0(,) for each v on the search path
for pin tree T.

The total space requirement is therefore O(nlog n).

RANGE SEARCHING IN THE PLANE USING RANGE
TREES

We perform 1-d range queries with the y-range [c, d] in each of the
subtrees adjacent to the left and right search paths within the
x-range [a, b] in the tree T.

Since the search path is O(log n) in size, and each y-range query
requires O(log n) time, the total cost of searching is O(log? n).
The reporting cost is O(k) where k points lie in the query
rectangle.

2-RANGE TREE SEARCHING

2 4 7 13 20 22 26

’ '\ I)

e E R ER

Search range [6,25] Report 7,13,20,22

2-RANGE TREE SEARCHING

2 4 7 13

20 22 26

Search range [6,25] Report 7,13,20,22

@fx@@

2-RANGE TREE SEARCHING

20 22 26

Search range [6,25] Report 7,13,20,22

@fx@@

PARTITION BY THE MEDIAN OF X-COORDINATES

38 LR
39
o2 | :’5 ,,,,,,,,,,,,,,,,,, 19
o1 i 1 i
®41 1 °6 i
%0 o3 R - *7
e 36 ! 23
| 37 i : *21 o !
= Y !
LD s ol | 6 20 e18
L) .13 ! 08 : RU
20w T UL I RD
12 ' .
. 14 %0 1+ %g 25
35 . ! 11 9 24
33 , @ -
117 %0

PARTITION BY THE MEDIAN OF Y-COORDINATES

L
38 %29 1 R
o2 | :’5 ,,,,,,,,,,,,,,,,,, 19
el : 1 3
a1 °6 |
40 o3 4 22 7
e 36 ! 23
11 |37 il : *21 o !
O ; .
LD -, | Lh? ®20 e18
() .13 Limim i - _‘__RU
¥ % 1 leer0 Vo RD
12 1 o
. 14 %0 1 %g 25
35 ° : 11 o9 24
33 , @ -
17 29

PARTITION BY THE MEDIAN OF X-COORDINATES

g | L'R
: 39
¥ = S 019
®1 ! 1 |
. a1 !4 *6 .7 3
40 | 1 3 . 1 22 i
! 3 ! 23
Ly 37 bl : 21 o
| LU !
LD e - § Li'ff 20! e18
. 15 . 31| | Lo __.& _____RU
20 %4 7, le 10 Y RD
p 12 | e ! ! L)
. 14 30 1 %¢ 25 .
35 I lel1 9 24
33 ' o | -
117 29

PARTITION BY THE MEDIAN OF Y-COORDINATES

| 1 .
%8 | . LIR
| 39 | o5 I
I ®2 - e el9 .
e e D L |
% . | oes | a7
1 36 ! 23
1 37 . b : .211”________.‘_3‘_‘__
|) | | |
Uy P U PP PPy P P RFP S | |
LD . o 3 lh?: ©20 ! e18! RU
! : ! 8 |
| | B o
-8p--—@=e—a 13 ; i
SV SRR 2T R S— RD
o 12 | e Lg. e
14 30 g 25 .
35 I e 1 sepr-eQimn 2
33 I o -
W7 %
27!

2-DIMENSIONAL RANGE SEARCHING USING KD-TREES

DESCRIPTION OF THE KD-TREE

» The tree T is a perfectly height-balanced binary search tree
with alternate layers of nodes spitting subsets of points in P
using x- and y- coordinates, respectively as follows.

DESCRIPTION OF THE KD-TREE

: LR
P 1.
= : | i 7
i ES .3
TiDR T (T[T o RU
i TG TTTTTTTTT RD L
4 2 \
13 L
; - ~ 3%5 2z

» The tree T is a perfectly height-balanced binary search tree
with alternate layers of nodes spitting subsets of points in P
using x- and y- coordinates, respectively as follows.

» The point r stored in the root vertex T splits the set S into
two roughly equal sized sets L and R using the median
x-cooordinate xmedian(S) of points in S, so that all points in
L (R) have abscissae less than or equal to (strictly greater
than) xmedian(S).

DESCRIPTION OF THE KD-TREE

: LR
P 1.
ER e ;
i ES .3
TiDR T (T[T o RU
i TG TTTTTTTTT RD L
4 2 \
13 L
; - ~ 3%5 2z

» The tree T is a perfectly height-balanced binary search tree
with alternate layers of nodes spitting subsets of points in P
using x- and y- coordinates, respectively as follows.

» The point r stored in the root vertex T splits the set S into
two roughly equal sized sets L and R using the median
x-cooordinate xmedian(S) of points in S, so that all points in
L (R) have abscissae less than or equal to (strictly greater
than) xmedian(S).

» The entire plane is called the region(r).

ANSWERING RECTANGLE QUERIES

» A query rectangle @ may (i) overlap a region, (ii) completely
contain a region, or (iii) completely miss a region.

ANSWERING RECTANGLE QUERIES

| ')
38 | % L 'R !
| 1 T
62 o5 | 19
,,,,,,, .177‘7”***7.47177—: o
b/ ; 4 / e7
4 o o3 % * e
! ! 23
e il ® [E e —— oio
| T :
LD : Ih*. e20! .18
15 e 31 ' | 8 RU
et 13 o @
S 'e #10 Y RD
N RS W
12 e L
o ®14 30 % 25
35 o ' depl- e ---24
33 e .
17 29
27"

» A query rectangle @ may (i) overlap a region, (ii) completely
contain a region, or (iii) completely miss a region.

» If R contains the entire bounded region(p) of a point p
defining a node N of T then report all points in region(p).

ANSWERING RECTANGLE QUERIES

| ')
38 | o L 'R !
! 39 les |
o2 : : 019
,,,,,,, .177‘7”’***.4717 7: o
B | 1 s ¢4 22 o7
; 36 ! 2B
LT M A —— P
(=) i T ;
LD s, | o, LR e18
B emim j.13 :-”-‘-m-“- - .8- ——— RU
sa T, 'e #10 Y RD
PN W S LN
y 12 Tl e
14 %0 % 25
.35 | ° ! RPN R T - RS SH-
3 ; 17 °
1o 17! 29
27"

» A query rectangle @ may (i) overlap a region, (ii) completely
contain a region, or (iii) completely miss a region.

» If R contains the entire bounded region(p) of a point p
defining a node N of T then report all points in region(p).

» If R misses the region(p) then we do not treverse the subtree

rooted at this node.

ANSWERING RECTANGLE QUERIES

| ')
38 | % L 'R !
| 1 T
62 o5 | 19
,,,,,,, .177‘7”***7.47177—: o
b/ ; 4 / e7
4 o o3 % * e
! ! 23
e il ® [E e —— oio
| T :
LD : Ih*. e20! .18
15 e 31 ' | 8 RU
et 13 o @
S 'e #10 Y RD
N RS W
12 e L
o ®14 30 % 25
35 o ' depl- e ---24
33 e .
17 29
27"

» A query rectangle @ may (i) overlap a region, (ii) completely
contain a region, or (iii) completely miss a region.

» If R contains the entire bounded region(p) of a point p
defining a node N of T then report all points in region(p).

» If R misses the region(p) then we do not treverse the subtree
rooted at this node.

> If R overlaps region(p) then we check whether R also overlaps
the two regions of the children of the node N.

2-DIMENSIONAL RANGE SEARCHING: KD-TREES

l 1 ‘
%38 ! . LR
‘ 39 log |
2 . e ®l19 . .
e N I SO | ®s 3
! 41 ‘4 ' o7 |
40 o3 ‘ T— _.e22 ‘
36 ! 23
| 37 bl : .211”________.‘_3‘_‘__
e w ‘
g O SRS LI ¥ A | ‘
LD e 3 e l%a ®20 e18
15 1, 31 bt B RU
SR @mima 13 T
L T, et Y RD
9 12 Lell %
. 14 30 Za 5 e
35 I e Lt o S
! 33 I o -
Wi %
27

» The set L (R) is split into two roughly equal sized subsets LU
and LD (RU and RD), using point u (v) that has the median
y-coordinate in the set L (R), and including v in LU (RU).

2-DIMENSIONAL RANGE SEARCHING: KD-TREES

| | |
%8 ! . LIR
| 39 les |
2 . e ®l19 . .
! 41 ‘4 ' o7 |
40 o3 ‘ T— _.e22 ‘
36 ! 23
| 37 bl : .211”________.‘_3‘_‘__
|) | |
Uy U U PP PPy PP P PP S | |
LD e, -, lhf: 20 e18
o - 1%13 A T -i-RU
L T, et Y RD
9 12 Lell %
. 14 30 23 5 e
35 I e L T R
! 33 I o | -
Wi %o
27 |

» The set L (R) is split into two roughly equal sized subsets LU
and LD (RU and RD), using point u (v) that has the median
y-coordinate in the set L (R), and including v in LU (RU).

» The entire halfplane containing set L (R) is called the
region(u) (region(v)).

NODES TRAVERSED IN THE KD-TREE

8 RU

L4810 RD

Iio .

LaN
e

L D

|’
1/2 3%6 15 14 43\12

RD
R 10

¢

NODES TRAVERSED IN THE KD-TREE

3 L'R
! ' 5
1 e2 | L. e
© . 1 6 -
! 3 s 4 i -
Y [|
1
1 L J
L S -r
LD | e
I Cdeoef __LRU
N A A V%10) RD
o ®12 \ |
14! 1 1 9
I 1 1l e -
| 1 e !
1

TIME COMPLEXITY OF OUTPUT POINT REPORTING

» Reporting points within R contributes to the output size k for
the query.

TIME COMPLEXITY OF OUTPUT POINT REPORTING

» Reporting points within R contributes to the output size k for
the query.

» No leaf level region in T has more than 2 points.

TIME COMPLEXITY OF OUTPUT POINT REPORTING

» Reporting points within R contributes to the output size k for
the query.

> No leaf level region in T has more than 2 points.

» So, the cost of inspecting points outside R but within the
intersection of leaf level regions of T can be charged to the
internal nodes traversed in T.

TIME

COMPLEXITY OF OUTPUT POINT REPORTING

Reporting points within R contributes to the output size k for
the query.

No leaf level region in T has more than 2 points.

» So, the cost of inspecting points outside R but within the

intersection of leaf level regions of T can be charged to the
internal nodes traversed in T.

This cost is borne for all leaf level regions intersected by R.

WORST-CASE COST OF TRAVERSAL

» It is sufficient to determine the upper bound on the number of
(internal) nodes whose regions are intersected by a single
vertical (horizontal) line.

WORST-CASE COST OF TRAVERSAL

» It is sufficient to determine the upper bound on the number of
(internal) nodes whose regions are intersected by a single
vertical (horizontal) line.

» Any vertical line intersecting S can intersect either L or R but
not both, but it can meet both RU and RD (LU and LD).

WORST-CASE COST OF TRAVERSAL

» It is sufficient to determine the upper bound on the number of
(internal) nodes whose regions are intersected by a single
vertical (horizontal) line.

» Any vertical line intersecting S can intersect either L or R but
not both, but it can meet both RU and RD (LU and LD).

» Any horizontal line intersecting R can intersect either RU or
RD but not both, but it can meet both children of RU (RD).

TIME COMPLEXITY OF RECTANGLE QUERIES FOR
KD-TREES

lc(v)

R R2 i\

» Therefore, the time complexity T(n) for an n-vertex Kd-tree
obeys the recurrence relation

T(n)=2+2T(3)

T(1) =1

TIME COMPLEXITY OF RECTANGLE QUERIES FOR
KD-TREES

lc(v)

R R2 i\

» Therefore, the time complexity T(n) for an n-vertex Kd-tree
obeys the recurrence relation

T(n)=2+2T(3)

T(1)=1
> The solution for T(n) = O(/(n)).

TIME COMPLEXITY OF RECTANGLE QUERIES FOR
KD-TREES

lc(v)

R R2 i\

» Therefore, the time complexity T(n) for an n-vertex Kd-tree
obeys the recurrence relation

T(n)=2+2T(3)

T(1)=1
> The solution for T(n) = O(/(n)).
» The total cost of reporting k points in R is therefore

O(/(n) + k).

MORE GENERAL QUERIES

General Queries:

» Triangles can be used to simulate polygonal shapes with
straight edges.

MORE GENERAL QUERIES

General Queries:

» Triangles can be used to simulate polygonal shapes with
straight edges.

» Circles cannot be simulated by triangles either.

TRIANGLE QUERIES

» Using O(n?) space and time for preprocessing, triangle queries
can be reported in O(log? n + k)) time, where k is the
number of points inside the query triangle.

Goswami, Das and Nandy: Comput. Geom. Th. and Appl. 29
(2004) pp. 163-175.

TRIANGLE QUERIES

» Using O(n?) space and time for preprocessing, triangle queries
can be reported in O(log? n + k)) time, where k is the
number of points inside the query triangle.

» For counting the number k of points inside a query triangle,
worst-case optimal O(log n) time suffices.

Goswami, Das and Nandy: Comput. Geom. Th. and Appl. 29
(2004) pp. 163-175.

FINDING INTERVALS CONTAINING A QUERY POINT

A :
——o |
. B
—
c i
— o ' ?y'
D | ! H
————— o | 1 ————o
E ' G
— < —
F
—— oy
i Xiquery
Xquery

Simpler queries ask for reporting all intervals intersecting the
vertical line X = Xguery -

More difficult queries ask for reporting all intervals intersecting a
vertical segment joining (Xguery,Y) and (Xguery s ¥')-

COMPUTING THE INTERVAL TREE

M oA N
I
e i B \
L-"¢ R
—— " o T
D ! ;T y
——— !
S c
R
}]I—.
Xm\d

The set M has intervals intersecting the vertical line X = xpiq,
where x,iq is the median of the x-coordinates of the 2n endpoints.

The root node has intervals M sorted in two independent orders (i)
by right end points (B-E-A), and (ii) left end points (A-E-B).

ANSWERING QUERIES USING AN INTERVAL TREE

The set L and R have at most n endpoints each.
So they have at most 7 intervals each.

Clearly, the cost of (recursively) building the interval tree is
O(nlog n).

The space required is linear.

ANSWERING QUERIES USING AN INTERVAL TREE

sty BB T BRAG

(ONly A& E)xpuy Xns Xuwn(ONly B)

For Xquery < Xmid, we do not traverse subtree for subset R.

For Xguery > Xmid, We do not traverse subtree for subset L.

Clearly, the cost of reporting the k intervals is O(log n + k).

Hac

The problem is to report all (horizontal) segments that cut across
edge.

the query rectangle or include an entire (top/bottom) bounding

DA

Use an interval tree of all the horizontal segments and the right
bounding edge of the query rectangle like X or X'.

Use the rectangle query for vertical segment X and find points A,
B and C in the rectangle with left edge at minus infinity. For X',
report B, C and D, similarly.

INTRODUCING THE SEGMENT TREE

For an interval which spans the entire range inv(v), we mark only
internal node v in the segment tree, and not any descendant of v.

We never mark any ancestor of a marked node.

REPRESENTING INTERVALS IN THE SEGMENT TREE

At each level, at most two internal nodes are marked for any given
interval.

Along a root to leaf path an interval is stored only once.

The space requirement is therefore O(nlog n).

REPORTING INTERVALS CONTAINING A GIVEN QUERY
POINT

D
C
A
ol c

» Search the path in the tree reaching the leaf for the given
query point.

REPORTING INTERVALS CONTAINING A GIVEN QUERY
POINT

D
C
A
ol c

» Search the path in the tree reaching the leaf for the given
query point.

» Report all intervals that appear stored on the search path.

REPORTING INTERVALS CONTAINING A GIVEN QUERY
POINT

D
C
A
ol c

» Search the path in the tree reaching the leaf for the given
query point.

» Report all intervals that appear stored on the search path.

» If k intervals contain the query point then the cost incurred is
O(log n + k).

HALFPLANAR RANGE QUERIES

HALFPLANAR RANGE QUERIES

HALFPLANAR RANGE QUERIES USING SIMULATANEOUS
BISECTORS

T(n) <3T(n/4)+clogn
OR
T(n) < T(n/2)+ T(n/4) 4+ clogn

HALFPLANAR RANGE QUERIES

» Using O(nlog n) time for preprocessing, halfplanar range
queries can be reported in O(n%%% + k) time, where k is the
number of points inside the query triangle.

Edelsbrunner and Welzl: Info. Proc. Lett. 23 (1986) pp. 289-293.

REPORTING SEGMENTS INTERSECTIONS

Problem: Given a set S of n line segments in the plane, report all
intersections between the segments.

» Check all pairs in O(n?) time.

REPORTING SEGMENTS INTERSECTIONS

Problem: Given a set S of n line segments in the plane, report all
intersections between the segments.
» Check all pairs in O(n?) time.
» A vertical line just before any intersection meets intersecting
segments in an empty, intersection free segment.

REPORTING SEGMENTS INTERSECTIONS

Problem: Given a set S of n line segments in the plane, report all
intersections between the segments.

» Check all pairs in O(n?) time.

» A vertical line just before any intersection meets intersecting
segments in an empty, intersection free segment.

» Detect intersections by checking consecutive pairs of segments
along a vertical line.

REPORTING SEGMENTS INTERSECTIONS

Problem: Given a set S of n line segments in the plane, report all
intersections between the segments.

» Check all pairs in O(n?) time.

» A vertical line just before any intersection meets intersecting
segments in an empty, intersection free segment.

» Detect intersections by checking consecutive pairs of segments
along a vertical line.

» This way, each intersection point can be detected.

SWEEPING STEPS: ENDPOINTS AND INTERSECTION
POINTS

AB- >AB EF->CD,AB; EF >CD, EF >C[D 1J,EF- >CD 1J,GH,EF->CD,GH,1J,t
CD,GH,EF->CD,EF- >EFCD S ! |

SQ,SR,DC,1-—>SQ,SR,DE,2——>DE,
FG,FE,DE,4——>NP,NO,FG,FE,DE,5——>
NP,NO,FG,FE,DE,6——>LM,MK,NP,NO,FG,7

H G

Z1 ,SQ——>Z2,SQ——>Z3,DE—1>
Z4,FG and DE——>Z5,NP and FG—>

Z6,NP——>Z7, NP and LM A

SQ,SR,DC,1-->SQ,SR,DE,2-—>D
FG,FE,DE,4-->NP,NO,FG,FE,DE,5——>
NP,NO,FG,FE,DE,6——>LM,MK,NP,NO,FG,

Z4,FG and DE——>Z5,NP and FG—

Z6,NP——>Z7, NP and LM

SQ,SR,DC,1-->SQ,SR,DE,2-—>D
FG,FE,DE,4-->NP,NO,FG,FE,DE,5——>
NP,NO,FG,FE,DE,6——>LM,MK,NP,NO,FG,

Z4,FG and DE——>Z5,NP and FG—

Z6,NP——>Z7, NP and LM

SQ,SR,DC,1-->SQ,SR,DE,2-—>D
FG,FE,DE,4-->NP,NO,FG,FE,DE,5——>
NP,NO,FG,FE,DE,6——>LM,MK,NP,NO,FG,

Z1 ,SQ-->22;8Q-—>Z3,DE——>
Z4,FG and DE-->Z5,NP and F

Z6,NP——>Z7, NP and LMA

SQ,SR,DC,1-->SQ,SR,DE,2-—>D
FG,FE,DE,4-->NP,NO,FG,FE,DE,5——>
NP,NO,FG,FE,DE,6——>LM,MK,NP,NO,FG,

Z1 ,SQ-->22;8Q-—>Z3,DE——>
Z4,FG and DE-->Z5,NP and F

Z6,NP——>Z7, NP and LMA

SQ,SR,DC,1-—>SQ,SR,DE,2——>DE,
FG,FE,DE,4——>NP,NO,FG,FE,DE,5——>
NP,NO,FG,FE,DE,6——>LM,MK,NP,NO,FG,7

H G

Z1 ,SQ——>Z2,SQ——>Z3,DE—1>
Z4,FG and DE——>Z5,NP and FG—>

Z6,NP——>Z7, NP and LM A

@ Mark de Berg, Otfried Schwarzkopf, Marc van Kreveld and Mark
Overmars, Computational Geometry: Algorithms and Applications,
Springer.

[@ S. K. Ghosh, Visibility Algorithms in the Plane, Cambridge
University Press, Cambridge, UK, 2007.

[F.P. Preparata and M. I. Shamos, Computational Geometry: An
Introduction, New York, NY, Springer-Verlag, 1985.

	Scope
	Range searching

