
Introduction Area Inclusion Line Hull Art Gallery

Introduction to Computational Geometry

Arijit Bishnu
(arijit@isical.ac.in)

(http://www.isical.ac.in/˜arijit)

Advanced Computing and Microelectronics Unit
Indian Statistical Institute

203, B. T. Road, Kolkata - 700108, West Bengal, India.

Introduction Area Inclusion Line Hull Art Gallery

Outline

1 Introduction

2 Area Computation of a Simple Polygon

3 Point Inclusion in a Simple Polygon

4 Line Segment Intersection: An application of plane sweep

5 Convex Hull: An application of an incremental algorithm

6 Art Gallery Problem: A study of combinatorial geometry

Introduction Area Inclusion Line Hull Art Gallery

Introduction

Computational Geometry (CG) involves study of algorithms
for solving geometric problems on a computer. The emphasis
is more on discrete and combinatorial geometry.

There are many fields of computer science like computer
graphics, computer vision and image processing, robotics,
computer-aided designing, geographic information systems,
etc. that give rise to geometric problems.

In CG, the focus is more on discrete nature of geometric
problems as opposed to continuous issues. Simply put, we
would deal more with straight or flat objects (lines, line
segments, polygons) or simple curved objects as circles, than
with high degree algebraic curves.

This branch of study is around thirty years old if one assumes
Michael Ian Shamos’s thesis [1] as the starting point.

Introduction Area Inclusion Line Hull Art Gallery

Introduction

Computational Geometry (CG) involves study of algorithms
for solving geometric problems on a computer. The emphasis
is more on discrete and combinatorial geometry.

There are many fields of computer science like computer
graphics, computer vision and image processing, robotics,
computer-aided designing, geographic information systems,
etc. that give rise to geometric problems.

In CG, the focus is more on discrete nature of geometric
problems as opposed to continuous issues. Simply put, we
would deal more with straight or flat objects (lines, line
segments, polygons) or simple curved objects as circles, than
with high degree algebraic curves.

This branch of study is around thirty years old if one assumes
Michael Ian Shamos’s thesis [1] as the starting point.

Introduction Area Inclusion Line Hull Art Gallery

Introduction

Computational Geometry (CG) involves study of algorithms
for solving geometric problems on a computer. The emphasis
is more on discrete and combinatorial geometry.

There are many fields of computer science like computer
graphics, computer vision and image processing, robotics,
computer-aided designing, geographic information systems,
etc. that give rise to geometric problems.

In CG, the focus is more on discrete nature of geometric
problems as opposed to continuous issues. Simply put, we
would deal more with straight or flat objects (lines, line
segments, polygons) or simple curved objects as circles, than
with high degree algebraic curves.

This branch of study is around thirty years old if one assumes
Michael Ian Shamos’s thesis [1] as the starting point.

Introduction Area Inclusion Line Hull Art Gallery

Introduction

Computational Geometry (CG) involves study of algorithms
for solving geometric problems on a computer. The emphasis
is more on discrete and combinatorial geometry.

There are many fields of computer science like computer
graphics, computer vision and image processing, robotics,
computer-aided designing, geographic information systems,
etc. that give rise to geometric problems.

In CG, the focus is more on discrete nature of geometric
problems as opposed to continuous issues. Simply put, we
would deal more with straight or flat objects (lines, line
segments, polygons) or simple curved objects as circles, than
with high degree algebraic curves.

This branch of study is around thirty years old if one assumes
Michael Ian Shamos’s thesis [1] as the starting point.

Introduction Area Inclusion Line Hull Art Gallery

Introduction

Any problem that is to be solved using a digital computer has
to be discrete in form. It is the same with CG.

For CG to be applied to areas that deal with continuous
issues, discrete approximations to continuous curves or
surfaces are needed.

Programming in CG is also a little difficult. Libraries like
LEDA [5] and CGAL [6] are now available.

CG algorithms suffer from the curse of degeneracies. So, we
would make certain assumptions at times like no three points
are collinear, no four points are cocircular, etc.

Introduction Area Inclusion Line Hull Art Gallery

Introduction

Any problem that is to be solved using a digital computer has
to be discrete in form. It is the same with CG.

For CG to be applied to areas that deal with continuous
issues, discrete approximations to continuous curves or
surfaces are needed.

Programming in CG is also a little difficult. Libraries like
LEDA [5] and CGAL [6] are now available.

CG algorithms suffer from the curse of degeneracies. So, we
would make certain assumptions at times like no three points
are collinear, no four points are cocircular, etc.

Introduction Area Inclusion Line Hull Art Gallery

Introduction

Any problem that is to be solved using a digital computer has
to be discrete in form. It is the same with CG.

For CG to be applied to areas that deal with continuous
issues, discrete approximations to continuous curves or
surfaces are needed.

Programming in CG is also a little difficult. Libraries like
LEDA [5] and CGAL [6] are now available.

CG algorithms suffer from the curse of degeneracies. So, we
would make certain assumptions at times like no three points
are collinear, no four points are cocircular, etc.

Introduction Area Inclusion Line Hull Art Gallery

Introduction

Any problem that is to be solved using a digital computer has
to be discrete in form. It is the same with CG.

For CG to be applied to areas that deal with continuous
issues, discrete approximations to continuous curves or
surfaces are needed.

Programming in CG is also a little difficult. Libraries like
LEDA [5] and CGAL [6] are now available.

CG algorithms suffer from the curse of degeneracies. So, we
would make certain assumptions at times like no three points
are collinear, no four points are cocircular, etc.

Introduction Area Inclusion Line Hull Art Gallery

Outline

1 Introduction

2 Area Computation of a Simple Polygon

3 Point Inclusion in a Simple Polygon

4 Line Segment Intersection: An application of plane sweep

5 Convex Hull: An application of an incremental algorithm

6 Art Gallery Problem: A study of combinatorial geometry

Introduction Area Inclusion Line Hull Art Gallery

Area Computation

Problem

Given a simple polygon P of n
points, compute its area.

Area of a convex polygon

Find a point inside P, draw n
triangles and compute the area.

A better idea for convex polygon

We can triangulate P by
non-crossing diagonals into n − 2
triangles and then find the area.

A better idea for simple polygon

We can do likewise.

p1

p2
pn

pn−1

Introduction Area Inclusion Line Hull Art Gallery

Area Computation

Problem

Given a simple polygon P of n
points, compute its area.

Area of a convex polygon

Find a point inside P, draw n
triangles and compute the area.

A better idea for convex polygon

We can triangulate P by
non-crossing diagonals into n − 2
triangles and then find the area.

A better idea for simple polygon

We can do likewise.

Introduction Area Inclusion Line Hull Art Gallery

Area Computation

Problem

Given a simple polygon P of n
points, compute its area.

Area of a convex polygon

Find a point inside P, draw n
triangles and compute the area.

A better idea for convex polygon

We can triangulate P by
non-crossing diagonals into n − 2
triangles and then find the area.

A better idea for simple polygon

We can do likewise.

(n− 3) diagonals and (n− 2) triangles

Introduction Area Inclusion Line Hull Art Gallery

Area Computation

Problem

Given a simple polygon P of n
points, compute its area.

Area of a convex polygon

Find a point inside P, draw n
triangles and compute the area.

A better idea for convex polygon

We can triangulate P by
non-crossing diagonals into n − 2
triangles and then find the area.

A better idea for simple polygon

We can do likewise.

p1

p2
pn

pn−1

(n− 3) diagonals and (n− 2) triangles

Introduction Area Inclusion Line Hull Art Gallery

Area Computation and Polygon Triangulation

Moral of the story

A simple polygon can be triangulated into (n − 2) triangles by
(n − 3) non-crossing diagonals.

Proof

The proof is by induction on n.

Time complexity

We can triangulate P by a very complicated O(n) algorithm [7]
OR by a more or less simple O(n log n) time algorithm [4].

Introduction Area Inclusion Line Hull Art Gallery

Area Computation and Polygon Triangulation

Moral of the story

A simple polygon can be triangulated into (n − 2) triangles by
(n − 3) non-crossing diagonals.

Proof

The proof is by induction on n.

Time complexity

We can triangulate P by a very complicated O(n) algorithm [7]
OR by a more or less simple O(n log n) time algorithm [4].

Introduction Area Inclusion Line Hull Art Gallery

Area Computation and Polygon Triangulation

Moral of the story

A simple polygon can be triangulated into (n − 2) triangles by
(n − 3) non-crossing diagonals.

Proof

The proof is by induction on n.

Time complexity

We can triangulate P by a very complicated O(n) algorithm [7]
OR by a more or less simple O(n log n) time algorithm [4].

Introduction Area Inclusion Line Hull Art Gallery

Outline

1 Introduction

2 Area Computation of a Simple Polygon

3 Point Inclusion in a Simple Polygon

4 Line Segment Intersection: An application of plane sweep

5 Convex Hull: An application of an incremental algorithm

6 Art Gallery Problem: A study of combinatorial geometry

Introduction Area Inclusion Line Hull Art Gallery

Point Inclusion

Problem

Given a simple polygon P of n
points, and a query point q, is
q ∈ P?

What if P is convex?

Easy in O(n). Takes a little effort
to do it in O(log n).

Another idea for convex polygon

Stand at q and look around
the polygon.

We can show the same
result for a simple polygon
also.

P
q

Introduction Area Inclusion Line Hull Art Gallery

Point Inclusion

Problem

Given a simple polygon P of n
points, and a query point q, is
q ∈ P?

What if P is convex?

Easy in O(n). Takes a little effort
to do it in O(log n).

Another idea for convex polygon

Stand at q and look around
the polygon.

We can show the same
result for a simple polygon
also.

p1 p2

p3

p4

p5

p6

p7

p8

p9

q q

q is always to the left if q ∈ P , else, it varies.

Introduction Area Inclusion Line Hull Art Gallery

Point Inclusion

Problem

Given a simple polygon P of n
points, and a query point q, is
q ∈ P?

What if P is convex?

Easy in O(n). Takes a little effort
to do it in O(log n).

Another idea for convex polygon

Stand at q and look around
the polygon.

We can show the same
result for a simple polygon
also.

p1 p2

p3

p4

p5

p6

p7

p8

p9

q q

Total angular turn aroundq is 2π if q ∈ P, else, 0

Introduction Area Inclusion Line Hull Art Gallery

Point Inclusion

Another technique: Ray Shooting

Shoot a ray and count the
number of crossings with edges
of P. If it is odd, then q ∈ P. If
it is even, then q 6∈ P. Some
degenerate cases need to be
handled. Time taken is O(n).

P

q

q

Introduction Area Inclusion Line Hull Art Gallery

Outline

1 Introduction

2 Area Computation of a Simple Polygon

3 Point Inclusion in a Simple Polygon

4 Line Segment Intersection: An application of plane sweep

5 Convex Hull: An application of an incremental algorithm

6 Art Gallery Problem: A study of combinatorial geometry

Introduction Area Inclusion Line Hull Art Gallery

Line Segment Intersection

Input

A set of line segments L in
general position in the plane.
|L| = n.

Output

Report the intersections.

Output Sensitive Algorithm

Number of intersections might
vary from 0 to

(n
2

)
= O(n2). So,

the lower bound of the problem is
Ω(n2). The idea is now to look
for an output sensitive algorithm.

Introduction Area Inclusion Line Hull Art Gallery

Line Segment Intersection

Input

A set of line segments L in
general position in the plane.
|L| = n.

Output

Report the intersections.

Output Sensitive Algorithm

Number of intersections might
vary from 0 to

(n
2

)
= O(n2). So,

the lower bound of the problem is
Ω(n2). The idea is now to look
for an output sensitive algorithm.

Introduction Area Inclusion Line Hull Art Gallery

Line Segment Intersection

Input

A set of line segments L in
general position in the plane.
|L| = n.

Output

Report the intersections.

Output Sensitive Algorithm

Number of intersections might
vary from 0 to

(n
2

)
= O(n2). So,

the lower bound of the problem is
Ω(n2). The idea is now to look
for an output sensitive algorithm.

Introduction Area Inclusion Line Hull Art Gallery

An Output Sensitive Algorithm

The idea

Avoid testing pairs of segments that are
far apart.

To find such pairs, imagine sweeping a
horizontal line ` downwards from above
all segments.

Keep track of all segments that intersect
`.

` is the sweep line and the algorithm
paradigm is plane sweep.

The status of the sweep line is the line
segments intersecting it.

Only at particular points known as event
points, the status needs to be updated.

Introduction Area Inclusion Line Hull Art Gallery

An Output Sensitive Algorithm

The idea

Avoid testing pairs of segments that are
far apart.

To find such pairs, imagine sweeping a
horizontal line ` downwards from above
all segments.

Keep track of all segments that intersect
`.

` is the sweep line and the algorithm
paradigm is plane sweep.

The status of the sweep line is the line
segments intersecting it.

Only at particular points known as event
points, the status needs to be updated.

Introduction Area Inclusion Line Hull Art Gallery

An Output Sensitive Algorithm

The idea

Avoid testing pairs of segments that are
far apart.

To find such pairs, imagine sweeping a
horizontal line ` downwards from above
all segments.

Keep track of all segments that intersect
`.

` is the sweep line and the algorithm
paradigm is plane sweep.

The status of the sweep line is the line
segments intersecting it.

Only at particular points known as event
points, the status needs to be updated.

Introduction Area Inclusion Line Hull Art Gallery

An Output Sensitive Algorithm

The idea

Avoid testing pairs of segments that are
far apart.

To find such pairs, imagine sweeping a
horizontal line ` downwards from above
all segments.

Keep track of all segments that intersect
`.

` is the sweep line and the algorithm
paradigm is plane sweep.

The status of the sweep line is the line
segments intersecting it.

Only at particular points known as event
points, the status needs to be updated.

Introduction Area Inclusion Line Hull Art Gallery

An Output Sensitive Algorithm

The idea

Avoid testing pairs of segments that are
far apart.

To find such pairs, imagine sweeping a
horizontal line ` downwards from above
all segments.

Keep track of all segments that intersect
`.

` is the sweep line and the algorithm
paradigm is plane sweep.

The status of the sweep line is the line
segments intersecting it.

Only at particular points known as event
points, the status needs to be updated.

Introduction Area Inclusion Line Hull Art Gallery

An Output Sensitive Algorithm

The idea

Avoid testing pairs of segments that are
far apart.

To find such pairs, imagine sweeping a
horizontal line ` downwards from above
all segments.

Keep track of all segments that intersect
`.

` is the sweep line and the algorithm
paradigm is plane sweep.

The status of the sweep line is the line
segments intersecting it.

Only at particular points known as event
points, the status needs to be updated.

Introduction Area Inclusion Line Hull Art Gallery

Event Points and Sweep Line Status

Event Points and the Event Queue

The start and end points of each line
segment. They are static.

The intersection points. They are
dynamic and are generated as the sweep
line ` sweeps down.

The event points are to be arranged in a
data structure in a way in which the
sweep line sees them.

The data structure should support
extracting the minimum y -coordinate,
insertion and deletion.

A heap or a balanced binary search tree
can support these operations in O(log n)
time.

Introduction Area Inclusion Line Hull Art Gallery

Event Points and Sweep Line Status

Event Points and the Event Queue

The start and end points of each line
segment. They are static.

The intersection points. They are
dynamic and are generated as the sweep
line ` sweeps down.

The event points are to be arranged in a
data structure in a way in which the
sweep line sees them.

The data structure should support
extracting the minimum y -coordinate,
insertion and deletion.

A heap or a balanced binary search tree
can support these operations in O(log n)
time.

Introduction Area Inclusion Line Hull Art Gallery

Event Points and Sweep Line Status

Event Points and the Event Queue

The start and end points of each line
segment. They are static.

The intersection points. They are
dynamic and are generated as the sweep
line ` sweeps down.

The event points are to be arranged in a
data structure in a way in which the
sweep line sees them.

The data structure should support
extracting the minimum y -coordinate,
insertion and deletion.

A heap or a balanced binary search tree
can support these operations in O(log n)
time.

Introduction Area Inclusion Line Hull Art Gallery

Event Points and Sweep Line Status

Event Points and the Event Queue

The start and end points of each line
segment. They are static.

The intersection points. They are
dynamic and are generated as the sweep
line ` sweeps down.

The event points are to be arranged in a
data structure in a way in which the
sweep line sees them.

The data structure should support
extracting the minimum y -coordinate,
insertion and deletion.

A heap or a balanced binary search tree
can support these operations in O(log n)
time.

Introduction Area Inclusion Line Hull Art Gallery

Event Points and Sweep Line Status

Event Points and the Event Queue

The start and end points of each line
segment. They are static.

The intersection points. They are
dynamic and are generated as the sweep
line ` sweeps down.

The event points are to be arranged in a
data structure in a way in which the
sweep line sees them.

The data structure should support
extracting the minimum y -coordinate,
insertion and deletion.

A heap or a balanced binary search tree
can support these operations in O(log n)
time.

Introduction Area Inclusion Line Hull Art Gallery

Event Points and Sweep Line Status

Sweep Line Status

We need to store the left to right
order in which the line segments
intersect `. This data structure has
to be dynamic.

A line segment might come in
(insertion) or go off (deletion) the
sweep line. We need to search for
its position.

A balanced binary search tree can
support these operations in
O(log n) time.

Introduction Area Inclusion Line Hull Art Gallery

Event Points and Sweep Line Status

Sweep Line Status

We need to store the left to right
order in which the line segments
intersect `. This data structure has
to be dynamic.

A line segment might come in
(insertion) or go off (deletion) the
sweep line. We need to search for
its position.

A balanced binary search tree can
support these operations in
O(log n) time.

Introduction Area Inclusion Line Hull Art Gallery

Event Points and Sweep Line Status

Sweep Line Status

We need to store the left to right
order in which the line segments
intersect `. This data structure has
to be dynamic.

A line segment might come in
(insertion) or go off (deletion) the
sweep line. We need to search for
its position.

A balanced binary search tree can
support these operations in
O(log n) time.

Introduction Area Inclusion Line Hull Art Gallery

Event Points and Sweep Line Status

Sweep Line Status

The sweep line status changes
during three events: start and end
points and intersection points and
nowhere else.

sk and sl are two segments
intersecting at a point.

There is an event point above the
intersecting point where sk and sl
are adjacent and are tested for
intersection. So, no intersection
point is ever missed.

Introduction Area Inclusion Line Hull Art Gallery

Event Points and Sweep Line Status

Sweep Line Status

The sweep line status changes
during three events: start and end
points and intersection points and
nowhere else.

sk and sl are two segments
intersecting at a point.

There is an event point above the
intersecting point where sk and sl
are adjacent and are tested for
intersection. So, no intersection
point is ever missed.

Introduction Area Inclusion Line Hull Art Gallery

Event Points and Sweep Line Status

Sweep Line Status

The sweep line status changes
during three events: start and end
points and intersection points and
nowhere else.

sk and sl are two segments
intersecting at a point.

There is an event point above the
intersecting point where sk and sl
are adjacent and are tested for
intersection. So, no intersection
point is ever missed.

Introduction Area Inclusion Line Hull Art Gallery

The Algorithm

Algorithm

Create a heap H with the
y -coordinates of end points of L.
Create sweep status data structure
T on x-coordinates of the points.
Initially T is empty.

Keep on extracting points from H
till it is non-empty.

Based on the three cases: segment
top end point, segment bottom
end point and intersection point,
take necessary actions on T .

Introduction Area Inclusion Line Hull Art Gallery

The Algorithm

Algorithm

Create a heap H with the
y -coordinates of end points of L.
Create sweep status data structure
T on x-coordinates of the points.
Initially T is empty.

Keep on extracting points from H
till it is non-empty.

Based on the three cases: segment
top end point, segment bottom
end point and intersection point,
take necessary actions on T .

Introduction Area Inclusion Line Hull Art Gallery

The Algorithm

Algorithm

Create a heap H with the
y -coordinates of end points of L.
Create sweep status data structure
T on x-coordinates of the points.
Initially T is empty.

Keep on extracting points from H
till it is non-empty.

Based on the three cases: segment
top end point, segment bottom
end point and intersection point,
take necessary actions on T .

Introduction Area Inclusion Line Hull Art Gallery

The Algorithm

Algorithm: The three cases

[Top end point] Insert the line segment
into T based on x- coordinates.

Test for intersections with line segments
to the left and right. Insert intersection
point, if any, into H.

[Bottom end point] Delete this line
segment from T . Test for intersections
between preceding and succeeding entries
in T .

[Intersection point] Swap the line
segments’ status in T . Check for
intersections of preceding and succeeding
entries.

Introduction Area Inclusion Line Hull Art Gallery

The Algorithm

Algorithm: The three cases

[Top end point] Insert the line segment
into T based on x- coordinates.

Test for intersections with line segments
to the left and right. Insert intersection
point, if any, into H.

[Bottom end point] Delete this line
segment from T . Test for intersections
between preceding and succeeding entries
in T .

[Intersection point] Swap the line
segments’ status in T . Check for
intersections of preceding and succeeding
entries.

Introduction Area Inclusion Line Hull Art Gallery

The Algorithm

Algorithm: The three cases

[Top end point] Insert the line segment
into T based on x- coordinates.

Test for intersections with line segments
to the left and right. Insert intersection
point, if any, into H.

[Bottom end point] Delete this line
segment from T . Test for intersections
between preceding and succeeding entries
in T .

[Intersection point] Swap the line
segments’ status in T . Check for
intersections of preceding and succeeding
entries.

Introduction Area Inclusion Line Hull Art Gallery

The Algorithm

Algorithm: The three cases

[Top end point] Insert the line segment
into T based on x- coordinates.

Test for intersections with line segments
to the left and right. Insert intersection
point, if any, into H.

[Bottom end point] Delete this line
segment from T . Test for intersections
between preceding and succeeding entries
in T .

[Intersection point] Swap the line
segments’ status in T . Check for
intersections of preceding and succeeding
entries.

Introduction Area Inclusion Line Hull Art Gallery

The Analysis

Analysis

Total number of event points is 2n + I , where I is the number
of intersections.

The heap H grows to a size at most 2n + I . Each operation
takes O(log(2n + I)). As I < n2, so O(log(2n + I)) =
O(log n).

The balanced binary search tree T grows also to a size at
most 2n + I . So, each operation takes O(log n).

So, the total time taken is O((2n + I) log n) =
O(n log n + I log n).

Introduction Area Inclusion Line Hull Art Gallery

The Analysis

Analysis

Total number of event points is 2n + I , where I is the number
of intersections.

The heap H grows to a size at most 2n + I . Each operation
takes O(log(2n + I)). As I < n2, so O(log(2n + I)) =
O(log n).

The balanced binary search tree T grows also to a size at
most 2n + I . So, each operation takes O(log n).

So, the total time taken is O((2n + I) log n) =
O(n log n + I log n).

Introduction Area Inclusion Line Hull Art Gallery

The Analysis

Analysis

Total number of event points is 2n + I , where I is the number
of intersections.

The heap H grows to a size at most 2n + I . Each operation
takes O(log(2n + I)). As I < n2, so O(log(2n + I)) =
O(log n).

The balanced binary search tree T grows also to a size at
most 2n + I . So, each operation takes O(log n).

So, the total time taken is O((2n + I) log n) =
O(n log n + I log n).

Introduction Area Inclusion Line Hull Art Gallery

The Analysis

Analysis

Total number of event points is 2n + I , where I is the number
of intersections.

The heap H grows to a size at most 2n + I . Each operation
takes O(log(2n + I)). As I < n2, so O(log(2n + I)) =
O(log n).

The balanced binary search tree T grows also to a size at
most 2n + I . So, each operation takes O(log n).

So, the total time taken is O((2n + I) log n) =
O(n log n + I log n).

Introduction Area Inclusion Line Hull Art Gallery

Outline

1 Introduction

2 Area Computation of a Simple Polygon

3 Point Inclusion in a Simple Polygon

4 Line Segment Intersection: An application of plane sweep

5 Convex Hull: An application of an incremental algorithm

6 Art Gallery Problem: A study of combinatorial geometry

Introduction Area Inclusion Line Hull Art Gallery

Convex Hull

Definition

A set S ⊂ R2 is convex if for any
two points p, q ∈ S , pq ∈ S .

Definition

Let P be a set of points in R2.
Convex hull of P, denoted by
CH(P), is the smallest convex
set containing P.

Introduction Area Inclusion Line Hull Art Gallery

Convex Hull

Definition

A set S ⊂ R2 is convex if for any
two points p, q ∈ S , pq ∈ S .

Definition

Let P be a set of points in R2.
Convex hull of P, denoted by
CH(P), is the smallest convex
set containing P.

Introduction Area Inclusion Line Hull Art Gallery

Convex Hull Problem

Problem

Given a set of points P in the
plane, compute the convex hull
CH(P) of the set P.

A Naive Algorithm

Consider all line segments
determined by

(n
2

)
= O(n2)

pairs of points.

If a line segment has all the
other n − 2 points on one
side of it, then it is a hull
edge.

We need
(n
2

)
(n − 2) =

O(n3) time.

Introduction Area Inclusion Line Hull Art Gallery

Convex Hull Problem

Problem

Given a set of points P in the
plane, compute the convex hull
CH(P) of the set P.

A Naive Algorithm

Consider all line segments
determined by

(n
2

)
= O(n2)

pairs of points.

If a line segment has all the
other n − 2 points on one
side of it, then it is a hull
edge.

We need
(n
2

)
(n − 2) =

O(n3) time.

Introduction Area Inclusion Line Hull Art Gallery

Convex Hull Problem

Problem

Given a set of points P in the
plane, compute the convex hull
CH(P) of the set P.

A Naive Algorithm

Consider all line segments
determined by

(n
2

)
= O(n2)

pairs of points.

If a line segment has all the
other n − 2 points on one
side of it, then it is a hull
edge.

We need
(n
2

)
(n − 2) =

O(n3) time.

Introduction Area Inclusion Line Hull Art Gallery

Towards a Better Algorithm

Way forward, but how much?

Better characterizations lead to better algorithms.

How much better can we make?

Leads to the notion of lower bound of a problem.

The problem of Convex Hull has a lower bound of Ω(n log n).
This can be shown by a reduction from the problem of sorting
which also has a lower bound of Ω(n log n).

Introduction Area Inclusion Line Hull Art Gallery

Towards a Better Algorithm

Way forward, but how much?

Better characterizations lead to better algorithms.

How much better can we make?

Leads to the notion of lower bound of a problem.

The problem of Convex Hull has a lower bound of Ω(n log n).
This can be shown by a reduction from the problem of sorting
which also has a lower bound of Ω(n log n).

Introduction Area Inclusion Line Hull Art Gallery

Towards a Better Algorithm

Way forward, but how much?

Better characterizations lead to better algorithms.

How much better can we make?

Leads to the notion of lower bound of a problem.

The problem of Convex Hull has a lower bound of Ω(n log n).
This can be shown by a reduction from the problem of sorting
which also has a lower bound of Ω(n log n).

Introduction Area Inclusion Line Hull Art Gallery

Towards a Better Algorithm

Way forward, but how much?

Better characterizations lead to better algorithms.

How much better can we make?

Leads to the notion of lower bound of a problem.

The problem of Convex Hull has a lower bound of Ω(n log n).
This can be shown by a reduction from the problem of sorting
which also has a lower bound of Ω(n log n).

Introduction Area Inclusion Line Hull Art Gallery

Graham’s Scan: An optimal algorithm for Convex Hull

A better characterization

Consider a walk in clockwise direction on
the vertices of a closed polygon.

Only for a convex polygon, we will make a
right turn always.

The incremental paradigm

Insert points in P one by one and update
the solution at each step.

We compute the upper hull first. The
upper hull contains the convex hull edges
that bound the convex hull from above.

Sort the points in P from left to right.

Introduction Area Inclusion Line Hull Art Gallery

Graham’s Scan: An optimal algorithm for Convex Hull

A better characterization

Consider a walk in clockwise direction on
the vertices of a closed polygon.

Only for a convex polygon, we will make a
right turn always.

The incremental paradigm

Insert points in P one by one and update
the solution at each step.

We compute the upper hull first. The
upper hull contains the convex hull edges
that bound the convex hull from above.

Sort the points in P from left to right.

Introduction Area Inclusion Line Hull Art Gallery

Graham’s Scan: An optimal algorithm for Convex Hull

A better characterization

Consider a walk in clockwise direction on
the vertices of a closed polygon.

Only for a convex polygon, we will make a
right turn always.

The incremental paradigm

Insert points in P one by one and update
the solution at each step.

We compute the upper hull first. The
upper hull contains the convex hull edges
that bound the convex hull from above.

Sort the points in P from left to right.

Introduction Area Inclusion Line Hull Art Gallery

Graham’s Scan: An optimal algorithm for Convex Hull

A better characterization

Consider a walk in clockwise direction on
the vertices of a closed polygon.

Only for a convex polygon, we will make a
right turn always.

The incremental paradigm

Insert points in P one by one and update
the solution at each step.

We compute the upper hull first. The
upper hull contains the convex hull edges
that bound the convex hull from above.

Sort the points in P from left to right.

Introduction Area Inclusion Line Hull Art Gallery

Graham’s Scan: An optimal algorithm for Convex Hull

A better characterization

Consider a walk in clockwise direction on
the vertices of a closed polygon.

Only for a convex polygon, we will make a
right turn always.

The incremental paradigm

Insert points in P one by one and update
the solution at each step.

We compute the upper hull first. The
upper hull contains the convex hull edges
that bound the convex hull from above.

Sort the points in P from left to right.

Introduction Area Inclusion Line Hull Art Gallery

Graham’s Scan: An optimal algorithm for Convex Hull

A better characterization

Consider a walk in clockwise direction on
the vertices of a closed polygon.

Only for a convex polygon, we will make a
right turn always.

The incremental paradigm

Insert points in P one by one and update
the solution at each step.

We compute the upper hull first. The
upper hull contains the convex hull edges
that bound the convex hull from above.

Sort the points in P from left to right.

Introduction Area Inclusion Line Hull Art Gallery

Algorithm

Input: A set of points P

Output: Convex Hull of P
Sort P according to x-coordinate to generate

a sequence of points p[1], p[2], ..., p[n];
Put p[1] first and then p[2] in a list L_U;
for i = 3 to n {

Append p[i] to L_U;
while(L_U contains more than two points AND

the last three points in L_U
do not make a right turn) {

Delete the middle of the last
three points from L_U;

}
}

Introduction Area Inclusion Line Hull Art Gallery

Algorithm

Input: A set of points P
Output: Convex Hull of P

Sort P according to x-coordinate to generate
a sequence of points p[1], p[2], ..., p[n];

Put p[1] first and then p[2] in a list L_U;
for i = 3 to n {

Append p[i] to L_U;
while(L_U contains more than two points AND

the last three points in L_U
do not make a right turn) {

Delete the middle of the last
three points from L_U;

}
}

Introduction Area Inclusion Line Hull Art Gallery

Algorithm

Input: A set of points P
Output: Convex Hull of P
Sort P according to x-coordinate to generate

a sequence of points p[1], p[2], ..., p[n];

Put p[1] first and then p[2] in a list L_U;
for i = 3 to n {

Append p[i] to L_U;
while(L_U contains more than two points AND

the last three points in L_U
do not make a right turn) {

Delete the middle of the last
three points from L_U;

}
}

Introduction Area Inclusion Line Hull Art Gallery

Algorithm

Input: A set of points P
Output: Convex Hull of P
Sort P according to x-coordinate to generate

a sequence of points p[1], p[2], ..., p[n];
Put p[1] first and then p[2] in a list L_U;

for i = 3 to n {
Append p[i] to L_U;
while(L_U contains more than two points AND

the last three points in L_U
do not make a right turn) {

Delete the middle of the last
three points from L_U;

}
}

Introduction Area Inclusion Line Hull Art Gallery

Algorithm

Input: A set of points P
Output: Convex Hull of P
Sort P according to x-coordinate to generate

a sequence of points p[1], p[2], ..., p[n];
Put p[1] first and then p[2] in a list L_U;
for i = 3 to n {

Append p[i] to L_U;
while(L_U contains more than two points AND

the last three points in L_U
do not make a right turn) {

Delete the middle of the last
three points from L_U;

}

}

Introduction Area Inclusion Line Hull Art Gallery

Algorithm

Input: A set of points P
Output: Convex Hull of P
Sort P according to x-coordinate to generate

a sequence of points p[1], p[2], ..., p[n];
Put p[1] first and then p[2] in a list L_U;
for i = 3 to n {

Append p[i] to L_U;

while(L_U contains more than two points AND
the last three points in L_U
do not make a right turn) {

Delete the middle of the last
three points from L_U;

}

}

Introduction Area Inclusion Line Hull Art Gallery

Algorithm

Input: A set of points P
Output: Convex Hull of P
Sort P according to x-coordinate to generate

a sequence of points p[1], p[2], ..., p[n];
Put p[1] first and then p[2] in a list L_U;
for i = 3 to n {

Append p[i] to L_U;
while(L_U contains more than two points AND

the last three points in L_U
do not make a right turn) {

Delete the middle of the last
three points from L_U;

}
}

Introduction Area Inclusion Line Hull Art Gallery

Algorithm

Input: A set of points P
Output: Convex Hull of P
Sort P according to x-coordinate to generate

a sequence of points p[1], p[2], ..., p[n];
Put p[1] first and then p[2] in a list L_U;
for i = 3 to n {

Append p[i] to L_U;
while(L_U contains more than two points AND

the last three points in L_U
do not make a right turn) {

Delete the middle of the last
three points from L_U;

}
}

Introduction Area Inclusion Line Hull Art Gallery

The Algorithm in Action

The algorithm in action

Introduction Area Inclusion Line Hull Art Gallery

The Algorithm

Time Complexity

Sorting takes time O(n log n).

The for loop is executed O(n) times.

For each execution of the for loop, the while loop is
encountered once.

For each extra execution of the while loop, a point gets
deleted.

A point once deleted, is never deleted again.

So, the total number of extra executions is bounded by O(n).

Hence, the total time complexity is O(n log n).

Introduction Area Inclusion Line Hull Art Gallery

The Algorithm

Time Complexity

Sorting takes time O(n log n).

The for loop is executed O(n) times.

For each execution of the for loop, the while loop is
encountered once.

For each extra execution of the while loop, a point gets
deleted.

A point once deleted, is never deleted again.

So, the total number of extra executions is bounded by O(n).

Hence, the total time complexity is O(n log n).

Introduction Area Inclusion Line Hull Art Gallery

The Algorithm

Time Complexity

Sorting takes time O(n log n).

The for loop is executed O(n) times.

For each execution of the for loop, the while loop is
encountered once.

For each extra execution of the while loop, a point gets
deleted.

A point once deleted, is never deleted again.

So, the total number of extra executions is bounded by O(n).

Hence, the total time complexity is O(n log n).

Introduction Area Inclusion Line Hull Art Gallery

The Algorithm

Time Complexity

Sorting takes time O(n log n).

The for loop is executed O(n) times.

For each execution of the for loop, the while loop is
encountered once.

For each extra execution of the while loop, a point gets
deleted.

A point once deleted, is never deleted again.

So, the total number of extra executions is bounded by O(n).

Hence, the total time complexity is O(n log n).

Introduction Area Inclusion Line Hull Art Gallery

The Algorithm

Time Complexity

Sorting takes time O(n log n).

The for loop is executed O(n) times.

For each execution of the for loop, the while loop is
encountered once.

For each extra execution of the while loop, a point gets
deleted.

A point once deleted, is never deleted again.

So, the total number of extra executions is bounded by O(n).

Hence, the total time complexity is O(n log n).

Introduction Area Inclusion Line Hull Art Gallery

The Algorithm

Time Complexity

Sorting takes time O(n log n).

The for loop is executed O(n) times.

For each execution of the for loop, the while loop is
encountered once.

For each extra execution of the while loop, a point gets
deleted.

A point once deleted, is never deleted again.

So, the total number of extra executions is bounded by O(n).

Hence, the total time complexity is O(n log n).

Introduction Area Inclusion Line Hull Art Gallery

The Algorithm

Time Complexity

Sorting takes time O(n log n).

The for loop is executed O(n) times.

For each execution of the for loop, the while loop is
encountered once.

For each extra execution of the while loop, a point gets
deleted.

A point once deleted, is never deleted again.

So, the total number of extra executions is bounded by O(n).

Hence, the total time complexity is O(n log n).

Introduction Area Inclusion Line Hull Art Gallery

Proof of Correctness

The Proof of Correctness

Introduction Area Inclusion Line Hull Art Gallery

Outline

1 Introduction

2 Area Computation of a Simple Polygon

3 Point Inclusion in a Simple Polygon

4 Line Segment Intersection: An application of plane sweep

5 Convex Hull: An application of an incremental algorithm

6 Art Gallery Problem: A study of combinatorial geometry

Introduction Area Inclusion Line Hull Art Gallery

Art Gallery Problem

Problem

Given a simple polygon P of n vertices,
find the minimum number of cameras
that can guard P.

Hardness

The above problem is NP-Hard.

Any solution?

Can we find as a function of n the
number of cameras that suffices to
guard P?

Recall P can be triangulated into
n − 2 triangles. Place a guard in
each triangle.

Introduction Area Inclusion Line Hull Art Gallery

Art Gallery Problem

Problem

Given a simple polygon P of n vertices,
find the minimum number of cameras
that can guard P.

Hardness

The above problem is NP-Hard.

Any solution?

Can we find as a function of n the
number of cameras that suffices to
guard P?

Recall P can be triangulated into
n − 2 triangles. Place a guard in
each triangle.

Introduction Area Inclusion Line Hull Art Gallery

Art Gallery Problem

Problem

Given a simple polygon P of n vertices,
find the minimum number of cameras
that can guard P.

Hardness

The above problem is NP-Hard.

Any solution?

Can we find as a function of n the
number of cameras that suffices to
guard P?

Recall P can be triangulated into
n − 2 triangles. Place a guard in
each triangle.

Introduction Area Inclusion Line Hull Art Gallery

Art Gallery Problem

Problem

Given a simple polygon P of n vertices,
find the minimum number of cameras
that can guard P.

Hardness

The above problem is NP-Hard.

Any solution?

Can we find as a function of n the
number of cameras that suffices to
guard P?

Recall P can be triangulated into
n − 2 triangles. Place a guard in
each triangle.

Introduction Area Inclusion Line Hull Art Gallery

Art Gallery Problem

Problem

Given a simple polygon P of n vertices,
find the minimum number of cameras
that can guard P.

Hardness

The above problem is NP-Hard.

Any solution?

Can we find as a function of n the
number of cameras that suffices to
guard P?

Recall P can be triangulated into
n − 2 triangles. Place a guard in
each triangle.

Introduction Area Inclusion Line Hull Art Gallery

Art Gallery Problem

Can we bring the bound down?

Place guards at vertices of the
triangulation T of P.

We do a 3-coloring of the vertices
of T . Each triangle of T has a
black, gray and white vertex.

Choose the smallest color class to
guard P.

Hence, bn3c guards suffice.

But, does a 3-coloring always exist?

Introduction Area Inclusion Line Hull Art Gallery

Art Gallery Problem

Can we bring the bound down?

Place guards at vertices of the
triangulation T of P.

We do a 3-coloring of the vertices
of T . Each triangle of T has a
black, gray and white vertex.

Choose the smallest color class to
guard P.

Hence, bn3c guards suffice.

But, does a 3-coloring always exist?

Introduction Area Inclusion Line Hull Art Gallery

Art Gallery Problem

Can we bring the bound down?

Place guards at vertices of the
triangulation T of P.

We do a 3-coloring of the vertices
of T . Each triangle of T has a
black, gray and white vertex.

Choose the smallest color class to
guard P.

Hence, bn3c guards suffice.

But, does a 3-coloring always exist?

Introduction Area Inclusion Line Hull Art Gallery

Art Gallery Problem

Can we bring the bound down?

Place guards at vertices of the
triangulation T of P.

We do a 3-coloring of the vertices
of T . Each triangle of T has a
black, gray and white vertex.

Choose the smallest color class to
guard P.

Hence, bn3c guards suffice.

But, does a 3-coloring always exist?

Introduction Area Inclusion Line Hull Art Gallery

Art Gallery Problem

Can we bring the bound down?

Place guards at vertices of the
triangulation T of P.

We do a 3-coloring of the vertices
of T . Each triangle of T has a
black, gray and white vertex.

Choose the smallest color class to
guard P.

Hence, bn3c guards suffice.

But, does a 3-coloring always exist?

Introduction Area Inclusion Line Hull Art Gallery

Art Gallery Problem

A 3-coloring always exists

Consider the dual graph GT of T
of P.

GT is a tree as P has no holes.

Do a DFS on GT to obtain the
coloring.

Place guards at those vertices that
have color of the minimum color
class. Hence, bn3c guards are
sufficient to guard P.

Necessity?

Are bn3c guards sometimes necessary?

Introduction Area Inclusion Line Hull Art Gallery

Art Gallery Problem

A 3-coloring always exists

Consider the dual graph GT of T
of P.

GT is a tree as P has no holes.

Do a DFS on GT to obtain the
coloring.

Place guards at those vertices that
have color of the minimum color
class. Hence, bn3c guards are
sufficient to guard P.

Necessity?

Are bn3c guards sometimes necessary?

Introduction Area Inclusion Line Hull Art Gallery

Art Gallery Problem

A 3-coloring always exists

Consider the dual graph GT of T
of P.

GT is a tree as P has no holes.

Do a DFS on GT to obtain the
coloring.

Place guards at those vertices that
have color of the minimum color
class. Hence, bn3c guards are
sufficient to guard P.

Necessity?

Are bn3c guards sometimes necessary?

Introduction Area Inclusion Line Hull Art Gallery

Art Gallery Problem

A 3-coloring always exists

Consider the dual graph GT of T
of P.

GT is a tree as P has no holes.

Do a DFS on GT to obtain the
coloring.

Place guards at those vertices that
have color of the minimum color
class. Hence, bn3c guards are
sufficient to guard P.

Necessity?

Are bn3c guards sometimes necessary?

Introduction Area Inclusion Line Hull Art Gallery

Art Gallery Problem

A 3-coloring always exists

Consider the dual graph GT of T
of P.

GT is a tree as P has no holes.

Do a DFS on GT to obtain the
coloring.

Place guards at those vertices that
have color of the minimum color
class. Hence, bn3c guards are
sufficient to guard P.

Necessity?

Are bn3c guards sometimes necessary?

Introduction Area Inclusion Line Hull Art Gallery

Art Gallery Theorem

The Final Theorem

For a simple polygon with n vertices, bn3c cameras are always
sufficient and occasionally necessary to have every point in the
polygon visible from at least one of the cameras.

Introduction Area Inclusion Line Hull Art Gallery

Bibliography

Michael Ian Shamos, Computational Geometry, PhD thesis,
Yale University, New Haven.

Franco P. Preparata and Michael Ian Shamos, Computational
Geometry: An Introduction, Springer-Verlag, New York, 1985.

Joseph O’Rourke, Computational Geometry in C, Cambridge
University Press, 1998.

Mark de Berg, Marc van Kreveld, Mark Overmars and Otfried
Schwarzkof, Computational Geometry: Algorithms and
Applications, Springer, 1997.

http://www.algorithmic-solutions.com

http://www.cgal.org

B. Chazelle, Triangulating a simple polygon in linear time,
Discrete Comput. Geom., 6:485524, 1991.

	Introduction
	Area Computation of a Simple Polygon
	Point Inclusion in a Simple Polygon
	Line Segment Intersection: An application of plane sweep
	Convex Hull: An application of an incremental algorithm
	Art Gallery Problem: A study of combinatorial geometry

