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Problem Definition

Non-Rigid Motion

Can we understand motion using a single camera?

Given 2D point tracks of landmark points from a single view
point, recover 3D pose and orientation
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Problem Definition

Can we understand motion using a single camera?

Non-Rigid Motion

point, recover 3D pose and orientation
Assumptions

Given 2D point tracks of landmark points from a single view

@ 2D tracks of major landmark points are provided
@ Scaled-projective/orthographic projection model.

N)
L

Occlusion

000000000



Motivation Factorization Non-Rigid Motion Occlusion Motivation Factorization Non-Rigid Motion Occlusion
o ©0000 000000000¢ O 00000 000000000

Rigid Body Geometry and Motion Rank Theorem

Define Xj = x; — X; and yj; = y;; — ¥; where the bar notation
refers to the centroid of the points in the ith frame. We have the

n?if;:::;p = measurement matrix
e
Y L X110 Xip
1, (" R xﬁ:; Yyitr. - Yip
ject R n . . .
L O i War.p = :
2 e X Xp
X i ;:{j ‘:e:%?: fis Ay yf1 . yfp

@ Object centroid based World Co-ordinate System (WCS)
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Define xj; = x; — X; and yj; = y; — y; where the bar notation
refers to the centroid of the points in the ith frame. We have the

measurement matrix
X11
Y11
War.p = :
Xf1
Y

The matrix W has rank 3

Yip

yfp
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Rank Theorem Proof

i/ (P —Th),

Non-Rigid Motion

yi = ii (P; — Ti),

m=1
)le = iiTPj yl]_i;rpi
W = RS
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Rigid Body Geometry and Motion Rigid Body Geometry and Motion
@ Without noise W is atmost of rank three @ Without noise W is atmost of rank three

@ Using SVD, W = 04X 0, where,
04, O, are column orthogonal matrices and ¥ is a diagonal
matrix with singular values in non-decreasing order
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Rigid Body Geometry and Motion Rigid Body Geometry and Motion

@ Without noise W is atmost of rank three @ Without noise W is atmost of rank three

@ Using SVD, W = O4X0, where, @ Using SVD, W = 04X 0, where,
04, O, are column orthogonal matrices and ¥ is a diagonal 04, O, are column orthogonal matrices and X is a diagonal
matrix with singular values in non-decreasing order matrix with singular values in non-decreasing order

@ 0,30, = 0,0, + 0;3"0, where, @ 0,30, = 0,X'0, + O;X"0, where,
O has first three columns of Oy, O, has first three rows of O; has first three columns of Oy, O, has first three rows of
0, and ¥’ is 3 x 3 matrix with 3 largest non-singular values. 0, and ¥ is 3 x 3 matrix with 3 largest non-singular values.

@ The second term is completely due to noise and can be
eliminated
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Rigid Body Geometry and Motion Rigid Body Geometry and Motion

@ Without noise W is atmost of rank three

@ Using SVD, W = O4X0, where,
04, O, are column orthogonal matrices and ¥ is a diagonal
matrix with singular values in non-decreasing order

1 1

@ 0,30, = 0,0, + 0;3"0, where,
O has first three columns of Oy, O, has first three rows of
0, and ¥’ is 3 x 3 matrix with 3 largest non-singular values.

@ The second term is completely due to noise and can be
eliminated

@ Solution is not unique

e R=0| [Z'} Y2 and § = [Z/} Ve 0,
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Tomasi Kanade Factorisation (Recap)

@ Solution is not unique any invertible 3 x 3, Q matrix can be
written as R = (RQ) and S = (Q~1S)

@ Ris a linear transformation of R, similarly Sis a linear
transformation of S.

@ Using the following orthonormality constraints we can find
Rand S

i’QQTi; = 1
i7QQTj; = 1
ifQQ"j; =0 (1)
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Tomasi Kanade Factorisation (Recap)

maximum rank of 4

Central Observation: This matrix is rank-limited.

If the object motion is rigid the observation matrix (discounting noise) will have a
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R
Central Observation: This matrix is rank-limited.
maximum rank of 4

If the object motion is rigid the observation matrix (discounting noise) will have a
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Orthographic
Camera Model

Single Object in

FOV of camera

rigid motion

All the points are
visible throughout
the sequence

Object undergoes
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Central Observation: This matrix is rank-limited.
maximum rank of 4
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Orthographic
Camera Model

Tomasi Kanade Factorisation (Recap)

Single Object in
FOV of camera

Object undergoes
rigid motion

All the points are
visible throughout

the sequence

If the object motion is rigid the observation matrix (discounting noise) will have a
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Non-Rigid Motion

@ Many objects are non-rigid

@ The parametrisation S3 p is no longer valid.
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Non-Rigid Motion

@ Many objects are non-rigid
@ The parametrisation Ss, p is no longer valid.

@ However, deformable bodies (like human body, face) can
be represented using a linear combination of basis shapes

K
3xP
Smorph = Z CiSi Smorph, Si € R 7, eR
i=1

where S;i’s are the bases, and c; are the deformation
weights.



One popular generalisation (used for human faces): linear combination of shapes

Smorph, Si € RSXP, g eR

[ 2
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Non-Rigid Framework

@ Assume that there are K shape bases {Bj| i=1,...,K}
@ The 3D coordinate of point p on frame f is given as,

Xip = (X, ,2 Zcf, p f=1,..F, p=1,..N (2

@ Image coordinate of Xz, under weak perspective projection
model is,

Xip = (U, v)f, = S¢(Ry - Xgp + 1) (3)

Xip = ( 1Ry cwRe ) - : + % (4)
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The Specific Problem

Non-Rigid Motion Occlusion

(b) INPUT : Correspondences of Feature Points

Input/Output:

@ A 3D mesh structure of a deformable object;
© Location of feature points in a video sequence
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The Specific Problem

(b) INPUT : Correspondences of Feature Points

Input/Output:
@ A 3D mesh structure of a deformable object;
© Location of feature points in a video sequence
© Recover the object 3D shape for all frames.
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(b) Prior Methods

=

Y

(c) Proposed Method

(b) Prior Methods

=

@ Feature points may be partially missing

(c) Proposed Method

@ Feature points may be partially missing due to occlusions,
specular effects, etc. ...

DA

@ Reconstruction under occlusions is very troublesome|[6]
and state-of-the-art algorithms are inadequate.
m} [

DA
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Intuition and Idea Intuition and Idea
Intuition Intuition
It should be possible to solve for the missing region in a specific It should be possible to solve for the missing region in a specific
frame, based on the data available in the current, previous and frame, based on the data available in the current, previous and

subsequent frames. subsequent frames.

ldea

@ We assume that the surface is inelastic and deformations
should preserve the length of every edge in the mesh.

@ We want to find a shape that is consistent with temporal
constraints, the deformation model, and one that minimizes
the reprojection error.

@ This is formulated as an optimization problem on the
Riemannian Shape Space.
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Shape Spaces Shape Spaces

objects in R3 ///\ objects in R3 ///\

@ Every point on this space is a 3D mesh. @ Every point on this space is a 3D mesh.
@ A time varying curve in this space corresponds to a @ A time varying curve in this space corresponds to a
deforming shape. deforming shape.

@ Technicality: The local distance between two neighbouring
points is given by the difference in edge lengths of the two

meshes.
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Riemannian Metric Riemannian Metric
SGY ------ T ny SGV ..... N
N Q ----- v st CZ ----- ﬁ/

V Edge (p,q) € Mesh,  ||Sp — Sql/2 = const (5) V Edge (p,q) € Mesh,  ||Sp — Sql/2 = const (5)

V Edge (p,q) € Mesh, (Vp —Vg,Sp—Sq) =0 (6) V Edge (p,q) € Mesh, (Vp —Vq,Sp —Sq) =0 (6)
where sp and sq are the 3D positions and v, and V4 are the where s, and sq are the 3D positions and v, and V4 are the
velocities of vertices p and g respectively. velocities of vertices p and g respectively.

[V]liso = Z (Vp—Vq,Sp — Sq)
(p,q)EMesh
A vanishing norm indicates an isometric deformation.
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@ The 3D coordinates F/, of a feature point j in frame / are @ The 3D coordinates Ff, of a feature point j in frame i are
given by: . . . . given by: ‘ _ . .
FII = a,-s’,ﬁ + bijI-Z + Cijl-3 (7) F/I = ajsf,ﬁ + bjS/,-2 + Cijl-3 (7)

where a;, b;, ¢; are the barycentric coordinates of point j in
triangle formed by vertices s, s, and s%.

where a;, b, ¢; are the barycentric coordinates of point j in
triangle formed by vertices Sff, Sf,?, and S/,:S.

o We have: f/ = ﬁCF{ with £/ the 2D location of feature
point j, and C the perspective projection matrix.
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Introducing Vision: Reprojection Error Formulation

@ The 3D coordinates F/, of a feature point j in frame i are
given by: ‘ ‘ | . s, =0
/ — .9/ o o
Fi = &Si + bjs? + ¢S} (7)
where a;, b;, ¢; are the barycentric coordinates of point j in
triangle formed by vertices s!', s, and s%.

o We have: / = ﬁCF/, with £/ the 2D location of feature

MyS; =0

point j, and C the perspective projection matrix.
@ We can rewrite this equation using Eq. (7) as:
The goal is to fit a curve {s;} in the shape space for the input
video sequence.

@ The curve should be a geodesic curve to respect the edge
length constraint;

M;.s;=0 .
. @ The points on curve should belong to the null space of the
Therefore, the desired shape s; belongs to the null space M, matrices.

of M;.

m/,..s,-:O

@ By stacking such equation for all feature points, we get the
linear system:
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Computer Vision Approach: Energies Formulation

Deformation Error: Ep measures the non-isometricity in a

deformation sequence.
g Cumulative Cost Function

F . :
: : We minimize the following non-convex error term:
2 .
EDeform - E E < Sp - Sq, Sp - Sq >
=1 (Sp,Sq)EMesh Sm”;' EDeform + >\1EReproj + /\2ETemp0ra1
1o SF

Reprojection Error:
F @ Many commercial softwares can be used, e.g., ‘fminunc’
5 .
EReproj = »_[M;Sj3 function in matlab.
j=1 @ However, due to high dimensionality and non-convex

nature of problem, we require a reasonable initialization

point for the optimization.
F—2 o
_ P P2 @ Good initialization leads to faster and better convergence.
ETemporal - Z Z ||vi + vi—|—2 o 2V/—|—1 H

i=1 : ()
VieVertlces (2)

Optional Temporal Smoothness Error:

v
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Initialization - Stage 1 Initialization - Stage Il

@ By enforcing mesh length constraints, we recover a

maximum of 4 possible shapes for every mesh triangle’.
We first recover the 2D projection of the mesh vertices using P P Y d

weak perspective projection assumption

T o

1

@ M. Fischler and R. Bolles. Random Sample Consensus: A Paradigm for
Model Fitting With Applications to Image Analysis and Automated
Cartography. Communications ACM, 24(6):381-395, 1981.
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Picking the right triangle

We pick the solution that is the most consistent with its
neighbours and minimizes the reprojection error.
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Picking the right triangle

We pick the solution that is the most consistent with its
neighbours and minimizes the reprojection error.
This can be expressed by the following quadratic program :

N,
Ao [ DCITE(S) = silP |+ Az IMs?

i€T(sj) \Jj=1
subjectto : T/ = oz,-T,-(1) + Bi 7',-(2) + i 7',-(3) + i 7',-(4)
aj + Bi+ i+ 0; = 1,with o, 8,7, §; € [0, 1]
Vi€ {1, Neces}

min
a;,Bi,7i,01,Sk,kE{1---Ny }

where 7(s;) is the list of facets to which Vertex s; can belong.
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Picking the right triangle Picking the right triangle: Example

We pick the solution that is the most consistent with its
neighbours and minimizes the reprojection error.
This can be expressed by the following quadratic program :

Ny
min M S ST ) — 52 | 4 AeIMLs 2

aiaﬁi77i75iask7k€{1'”NV} IET(S) _/_1
) =

subjectto : T = a,-T,-(1) + B; 7',-(2) + ;i T,-(s) + 0; 7',-(4)
ai+ Bi+ i+ 6 = 1, with a;, 8,7, 6; € [0, 1] T T

Vi€ {1, Niacers} Set of potential triangles Retrieved (initial) shape

where 7 (s;) is the list of facets to which Vertex s; can belong.

In practice we relax the integer constraints on o, 3,~v and § to a

linear one, and change the equality constraint into an inequality
one: «j, Bi, i, 0; < 1 - -
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l (a) Linear system
—
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—

l (b) Closed form solution
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