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Motivation Factorization Non-Rigid Motion Occlusion

Problem Definition

Can we understand motion using a single camera?

Given 2D point tracks of landmark points from a single view
point, recover 3D pose and orientation
Assumptions

2D tracks of major landmark points are provided
Scaled-projective/orthographic projection model.
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Rigid Body Geometry and Motion

Object centroid based World Co-ordinate System (WCS)

Motivation Factorization Non-Rigid Motion Occlusion

Rank Theorem

Define x̃ij = xij − x̄i and ỹij = yij − ȳi where the bar notation
refers to the centroid of the points in the i th frame. We have the
measurement matrix

W̄2F×P =


x̃11 · · · x̃1p
y11 · · · y1p
...

...
...

x̃f1 · · · x̃fp
yf1 · · · yfp


The matrix W̄ has rank 3
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Rank Theorem Proof

xij = iTi (Pj − Ti), yij = jTi (Pj − Ti),
1
n

n∑
j=1

Pj = 0

x̃ij = iTi (Pj − Ti)− 1
n

n∑
m=1

iTi (Pm − Ti)

ỹij = jTi (Pj − Ti)− 1
n

n∑
m=1

jTi (Pm − Ti)

x̃ij = iTi Pj ỹij = jTi Pj

W̄ = RS

R =


iT1
jT1
. . .

iTN
jTN

 S =
[

P1 P2 . . . PN
]
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Rigid Body Geometry and Motion

Without noise W is atmost of rank three
Using SVD, W = O1ΣO2 where,
O1, O2 are column orthogonal matrices and Σ is a diagonal
matrix with singular values in non-decreasing order
O1ΣO2 = O′

1Σ
′O′

2 + O′′
1Σ

′′O′′
2 where,

O′
1 has first three columns of O1, O′

2 has first three rows of
O2 and Σ

′
is 3×3 matrix with 3 largest non-singular values.

The second term is completely due to noise and can be
eliminated

R̂ = O′
1

[
Σ

′
]1/2

and Ŝ =
[
Σ

′
]1/2

O′
2
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Rigid Body Geometry and Motion
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Rigid Body Geometry and Motion

Solution is not unique any invertible 3× 3, Q matrix can be
written as R = (R̂Q) and S = (Q−1Ŝ)

R̂ is a linear transformation of R, similarly Ŝ is a linear
transformation of S.
Using the following orthonormality constraints we can find
R and S

îTf QQT îf = 1

ĵTf QQT ĵf = 1

îTf QQT ĵf = 0 (1)
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ĵTf QQT ĵf = 1
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Tomasi Kanade Factorisation (Recap)

. . .
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27 61 · · · 96
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Non-Rigid Motion

Many objects are non-rigid
The parametrisation S3×P is no longer valid.
However, deformable bodies (like human body, face) can
be represented using a linear combination of basis shapes

Smorph =
K∑

i=1

ciSi Smorph,Si ∈ R3×P , ci ∈ R

where Si’s are the bases, and ci are the deformation
weights.
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Morphable Models

But the human body is non-rigid, isn’t it?

• The parametrisation S3×P is no longer valid.
• Deformable bodies (like human body, face) can be represented using a

linear combination of basis shapes5 (morphable model)

Smorph =
KX

i=1

ciSi Smorph, Si ∈ R3×P , ci ∈ R

where Si’s are the bases, and ci are the deformation weights.

5

BREGLER, C., HERTZMANN, A., AND BIERMANN, H.
Recovering non-rigid 3d shape from image streams.
IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2000.

+ + =
︸ ︷︷ ︸

R
Figure 1: A pictorial representation of a morphable model. The right hand side is the actual data seen but can be obtained by modifying
“basis” shapes.

typically noisy and contain missing information due to occlusion. The de-noising and structure
recovering capability of the factorization algorithm is reviewed in this section.

The Basics: A popular representation for image formation (for either non-rigid or articulated
objects) under orthographic or weak projective camera models is to write

W f = R f (
K

∑
i=1

c f iSi)

where W f is the observed 2D feature in frame f (out of F given frames), R f ∈ R2×3 is the
truncated row-orthonormal rotation matrix. K is the number of morph shapes needed to fully
represent the object, Si ∈ R3×P the ith morph shapes (where P refers to the number of feature
points tracked), and c f i, the morph weights corresponding to S in the f th frame. This is pictorially
represented in Fig. 1.

We build an observation matrix W ∈ R2F×P by stacking the position of P landmark points
observed in F frames. The structure of the observation matrix W appears in the left hand side of
Eq. 1. Here (xi j,yi j) refers to the 2D co-ordinates of the point j in frame i.

P =





x11 · · · x1P
y11 · · · y1P
... · · ·

...
xF1 · · · xFP
yF1 · · · yFP




= MS =




cT

1 ⊗R1
...

cT
F ⊗RF





︸ ︷︷ ︸
2F×3K




S1
...

SF





︸ ︷︷ ︸
3K×P

(1)

This factorization can be performed modulo a gauge factor of G ∈ GL(3K,3K) [8](§Sec.2.2)
using SVD, if we assume an isotropic and Gaussian noise model2. But when there are outliers and
missing data, which indeed is the case with most real-life measurements due to tracking failure
and outliers, a straightforward SVD is no longer applicable.

2.1 Data denoising and missing information recovery
The most commonly used approach is to re-write the above problem with some robust ρ-function
where the contribution of each item is weighted according to its fitness to the subspace [13,
14]. The modified factorization problem is now to compute the maximum likely estimator of a
weighted L2 norm cost function.

εmle(M̃, S̃) = ||W$ (P−M̃S̃)||2F (2)

where wi j ≥ 0 is a weighing factor which specifies the uncertainty in pi j and wi j = 0 if pi j is
missing

The literature on factorization with missing data falls into several categories: close-form solu-
tions, imputation methods, EM-akin alteration methods and direct non-linear minimization meth-
ods. An excellent comparative study between these various method can be found in [14].

2Note that though the factorization assumes that temporal dependices in the data are caught by the tracker, the rank
constraint enforces another layer of weak and subtle constraint on the contunity of motion.

One popular generalisation (used for human faces): linear combination of shapes
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Non-Rigid Framework

Assume that there are K shape bases {Bi | i = 1, ...,K}
The 3D coordinate of point p on frame f is given as,

Xfp = (x , y , z)T
fp =

K∑
i=1

cfibip f = 1, ...,F , p = 1, ...N (2)

Image coordinate of Xfp under weak perspective projection
model is,

xfp = (u, v)T
fp = sf (Rf · Xfp + tf) (3)

xfp =
(

cf1Rf . . . cfK Rf
) ·
 b1p

...
bKp

 + tf (4)
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The Specific Problem

!"#$%&'()$*$+,$-./0

!1#$%&'()$*$2344./5367.68./$39$:.";<4.$'3=6;/

!8#$><4$><;5<;

Input/Output:
1 A 3D mesh structure of a deformable object;
2 Location of feature points in a video sequence
3 Recover the object 3D shape for all frames.

Structure from Motion Previous Work Our Approach Future Work

Isometric Deformations

The property we use is that
when an object deforms, its instantaneous deformation (i.e. the
deformation from one frame to the next) is almost isometric.

A deformation is called isometric where the length of every
edge in the mesh is unchanged during the deformation. We call
two shapes isometric to each other, when there exists an
isometric deformation from one shape to the other.
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However ...

Feature points may be partially missing due to occlusions,
specular effects, etc. . . .
Reconstruction under occlusions is very troublesome[6]
and state-of-the-art algorithms are inadequate.
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Intuition and Idea

Intuition
It should be possible to solve for the missing region in a specific
frame, based on the data available in the current, previous and
subsequent frames.

Idea
We assume that the surface is inelastic and deformations
should preserve the length of every edge in the mesh.
We want to find a shape that is consistent with temporal
constraints, the deformation model, and one that minimizes
the reprojection error.
This is formulated as an optimization problem on the
Riemannian Shape Space.
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Shape Spaces

Structure from Motion Previous Work Our Approach Future Work

Shape Space

Used by Kilian et al. in Computer Graphics context

Given a fixed connectivity M, we consider a space G of all
immersions of this connectivity in euclidean 3-space. Such an
immersion will have 3D positions of N points of the object.
Each immersion can be seen as a vector S in R3N .

Every point on this space is a 3D mesh.
A time varying curve in this space corresponds to a
deforming shape.
Technicality: The local distance between two neighbouring
points is given by the difference in edge lengths of the two
meshes.
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Riemannian Metric
Structure from Motion Previous Work Our Approach Future Work

Semi-Riemannian Metric

∀(p,q) ∈ M, ‖Sp − Sq‖2 = const.
∀(p,q) ∈ M, 〈Vp − Vq,Sp − Sq 〉 = 0

Sp

Sq

Vq

Vp

∀ Edge (p,q) ∈ Mesh, ‖Sp − Sq‖2 = const (5)
∀ Edge (p,q) ∈ Mesh, 〈Vp − Vq,Sp − Sq〉 = 0 (6)

where Sp and Sq are the 3D positions and Vp and Vq are the
velocities of vertices p and q respectively.

‖V‖Iso =
∑

(p,q)∈Mesh

〈Vp − Vq,Sp − Sq 〉

A vanishing norm indicates an isometric deformation.
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Introducing Vision: Reprojection Error

The 3D coordinates Fj
i of a feature point j in frame i are

given by:
Fj

i = ajS
j1
i + bjS

j2
i + cjS

j3
i (7)

where aj ,bj , cj are the barycentric coordinates of point j in
triangle formed by vertices Sj1

i , Sj2
i , and Sj3

i .
We have: fj

i = 1
w j

i

.C.Fj
i , with fj

i the 2D location of feature

point j , and C the perspective projection matrix.
We can rewrite this equation using Eq. (7) as:

mj
i .Si = 0

By stacking such equation for all feature points, we get the
linear system:

Mi .Si = 0

Therefore, the desired shape Si belongs to the null space
of Mi .
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Formulation

The goal is to fit a curve {Si} in the shape space for the input
video sequence.

The curve should be a geodesic curve to respect the edge
length constraint;
The points on curve should belong to the null space of the
Mi matrices.
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Computer Vision Approach: Energies

Deformation Error: ED measures the non-isometricity in a
deformation sequence.

EDeform =
F∑

i=1

∑
(Sp,Sq)∈Mesh

< Ṡp − Ṡq,Sp − Sq >
2

Reprojection Error:

EReproj =
F∑

j=1

‖MiSi‖22

Optional Temporal Smoothness Error:

ETemporal =
F−2∑
i=1

∑
Vj

i∈Vertices

||Vj
i + Vj

i+2 − 2Vj
i+1||2
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Formulation

Cumulative Cost Function
We minimize the following non-convex error term:

min
s1···sF

EDeform + λ1EReproj + λ2ETemporal

Many commercial softwares can be used, e.g., ‘fminunc’
function in matlab.
However, due to high dimensionality and non-convex
nature of problem, we require a reasonable initialization
point for the optimization.
Good initialization leads to faster and better convergence.
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Initialization - Stage 1

We first recover the 2D projection of the mesh vertices using
weak perspective projection assumption

Motivation Factorization Non-Rigid Motion Occlusion

Initialization - Stage II

By enforcing mesh length constraints, we recover a
maximum of 4 possible shapes for every mesh triangle1.

1

M. Fischler and R. Bolles. Random Sample Consensus: A Paradigm for
Model Fitting With Applications to Image Analysis and Automated
Cartography. Communications ACM, 24(6):381-395, 1981.
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Picking the right triangle

We pick the solution that is the most consistent with its
neighbours and minimizes the reprojection error.
This can be expressed by the following quadratic program :

min
αi ,βi ,γi ,δi ,sk ,k∈{1···Nv}

λ1.
∑

i∈T (Sj )

 Nv∑
j=1

‖T ∗i (Sj)− Sj‖2
+ λ2.‖M.S‖2

subject to : T ∗i = αiT
(1)
i + βiT

(2)
i + γiT

(3)
i + δiT

(4)
i

αi + βi + γi + δi = 1,with αi , βi , γi , δi ∈ [0,1]

∀ i ∈ {1,Nfacets}

where T (Sj) is the list of facets to which Vertex Sj can belong.
In practice we relax the integer constraints on α, β, γ and δ to a
linear one, and change the equality constraint into an inequality
one: αi , βi , γi , δi ≤ 1
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Picking the right triangle: Example

Set of potential triangles Retrieved (initial) shape
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Overall
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