
Geometric data structures

Sudebkumar Prasant Pal

Department of Computer Science and Engineering

IIT Kharagpur, 721302.

email: spp@cse.iitkgp.ernet.in

March 14-16, 2012 - DAIICT Gandhinagar
Introduction to Graph and Geometric Algorithms

Scope of the lecture

◮ Binary search trees and 2-d range trees
We consider 1-d and 2-d range queries for point sets.

Scope of the lecture

◮ Binary search trees and 2-d range trees
We consider 1-d and 2-d range queries for point sets.

◮ Range searching using Kd-trees
2-d orthogonal range searching with Kd-trees.

Scope of the lecture

◮ Binary search trees and 2-d range trees
We consider 1-d and 2-d range queries for point sets.

◮ Range searching using Kd-trees
2-d orthogonal range searching with Kd-trees.

◮ Interval trees
Interval trees for reporting all (horizontal) intervals containing a
given (vertical) query line or segment.

Scope of the lecture

◮ Binary search trees and 2-d range trees
We consider 1-d and 2-d range queries for point sets.

◮ Range searching using Kd-trees
2-d orthogonal range searching with Kd-trees.

◮ Interval trees
Interval trees for reporting all (horizontal) intervals containing a
given (vertical) query line or segment.

◮ Segment trees
For reporting (portions of) all segments inside a query window.

Scope of the lecture

◮ Binary search trees and 2-d range trees
We consider 1-d and 2-d range queries for point sets.

◮ Range searching using Kd-trees
2-d orthogonal range searching with Kd-trees.

◮ Interval trees
Interval trees for reporting all (horizontal) intervals containing a
given (vertical) query line or segment.

◮ Segment trees
For reporting (portions of) all segments inside a query window.

◮ Planar point location
Using triangulation refinement and monotone subdivisions.

Scope of the lecture

◮ Binary search trees and 2-d range trees
We consider 1-d and 2-d range queries for point sets.

◮ Range searching using Kd-trees
2-d orthogonal range searching with Kd-trees.

◮ Interval trees
Interval trees for reporting all (horizontal) intervals containing a
given (vertical) query line or segment.

◮ Segment trees
For reporting (portions of) all segments inside a query window.

◮ Planar point location
Using triangulation refinement and monotone subdivisions.

◮ Hierarchical representation of a convex
polygon
Detecting the intersection of a convex polygon with a query line..

1-dimensional Range searching

a b

◮ Problem: Given a set P of n points {p1, p2, · · · , pn} on the
real line, report points of P that lie in the range [a, b], a ≤ b.

1-dimensional Range searching

a b

◮ Problem: Given a set P of n points {p1, p2, · · · , pn} on the
real line, report points of P that lie in the range [a, b], a ≤ b.

◮ Using binary search on an array we can answer such a query in
O(log n + k) time where k is the number of points of P in
[a, b].

1-dimensional Range searching

a b

◮ Problem: Given a set P of n points {p1, p2, · · · , pn} on the
real line, report points of P that lie in the range [a, b], a ≤ b.

◮ Using binary search on an array we can answer such a query in
O(log n + k) time where k is the number of points of P in
[a, b].

◮ However, when we permit insertion or deletion of points, we
cannot use an array answering queries so efficiently.

1-dimensional Range searching

2 4 7 13 20 22 26 35

2

20

35
4

2 7

4

26

13

22

Search range [6,25]

7 13 20 22

Report 7,13,20,22

26

◮ We use a binary leaf search tree where leaf nodes store the
points on the line, sorted by x-coordinates.

1-dimensional Range searching

2 4 7 13 20 22 26 35

2

20

35
4

2 7

4

26

13

22

Search range [6,25]

7 13 20 22

Report 7,13,20,22

26

◮ We use a binary leaf search tree where leaf nodes store the
points on the line, sorted by x-coordinates.

◮ Each internal node stores the x-coordinate of the rightmost
point in its left subtree for guiding search.

2-dimensional Range Searching

1

3 4

5

6
7

8

9
11

12

1315
16

17

14

10

2

Q

◮ Problem: Given a set P of n points in the plane, report points
inside a query rectangle Q whose sides are parallel to the axes.

2-dimensional Range Searching

1

3 4

5

6
7

8

9
11

12

1315
16

17

14

10

2

Q

◮ Problem: Given a set P of n points in the plane, report points
inside a query rectangle Q whose sides are parallel to the axes.

◮ Here, the points inside R are 14, 12 and 17.

2-dimensional Range Searching

1

3 4

5

6
7

8

9
11

12

1315
16

17

14

10

2

Q

◮ Using two 1-d range queries, one along each axis, solves the
2-d range query.

2-dimensional Range Searching

1

3 4

5

6
7

8

9
11

12

1315
16

17

14

10

2

Q

◮ Using two 1-d range queries, one along each axis, solves the
2-d range query.

◮ The cost incurred may exceed the actual output size of the
2-d range query.

Range searching with range trees and

Kd-trees

◮ Given a set S of n points in the plane, we can construct a
2d-range tree in O(n log n) time and space, so that rectangle
queries can be executed in O(log2 n + k) time.

Range searching with range trees and

Kd-trees

◮ Given a set S of n points in the plane, we can construct a
2d-range tree in O(n log n) time and space, so that rectangle
queries can be executed in O(log2 n + k) time.

◮ The query time can be improved to O(log n + k) using the
technique of fractional cascading.

Range searching with range trees and

Kd-trees

◮ Given a set S of n points in the plane, we can construct a
2d-range tree in O(n log n) time and space, so that rectangle
queries can be executed in O(log2 n + k) time.

◮ The query time can be improved to O(log n + k) using the
technique of fractional cascading.

◮ Given a set S of n points in the plane, we can construct a
Kd-tree in O(n log n) time and O(n) space, so that rectangle

queries can be executed in O(
√

n + k) time. Here, the
number of points in the query rectangle is k.

Range searching in the plane using range

trees

a b

Given a 2-d rectangle query [a, b]X [c , d], we can identify subtrees
whose leaf nodes are in the range [a, b] along the X-direction.

Only a subset of these leaf nodes lie in the range [c , d] along the
Y-direction.

Range searching in the plane using range

trees

Range searching in the plane using range

trees

assoc(v)

v

T
T

p

p

p

p

T

Tassoc(v) is a binary search tree on y-coordinates for points in the
leaf nodes of the subtree tooted at v in the tree T .

The point p is duplicated in Tassoc(v) for each v on the search path
for p in tree T .

The total space requirement is therefore O(n log n).

Range searching in the plane using range

trees

a b

We perform 1-d range queries with the y-range [c , d] in each of the
subtrees adjacent to the left and right search paths within the
x-range [a, b] in the tree T .

Since the search path is O(log n) in size, and each y-range query
requires O(log n) time, the total cost of searching is O(log2 n).
The reporting cost is O(k) where k points lie in the query
rectangle.

2-range tree searching

�
�
�
�

�
�
�
�

2 4 7 13 20 22 26 35

2

20

35
4

2 7

4

26

13

22

Search range [6,25]

7 13 20 22

Report 7,13,20,22

26

2-range tree searching

�
�
�
�

�
�
�
�

2 4 7 13 20 22 26 35

2

20

35
4

2 7

4

26

13

22

Search range [6,25]

7 13 20 22

Report 7,13,20,22

26

13 7

13 22

22 20

2-range tree searching

�
�
�
�

�
�
�

�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
���

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

2 4 7 13 20 22 26 35

2

20

35
4

2 7

4

26

13

22

Search range [6,25]

7 13 20 22

Report 7,13,20,22

26

13 7

13 22

22 20

Partition by the median of x-coordinates

24

16

17

L R

RU
RD

LU
LD

10

18

19

20

21

22
23

25
26

28

27
29

30

31

32

33

34

35

37

38

40

39

41

36
3

7

9

8

4
6

5
1

15

14

13

12

11

2

u

v

Partition by the median of y-coordinates

24

16

17

L R

RU
RD

LU
LD

10

18

19

20

21

22
23

25
26

28

27
29

30

31

32

33

34

35

37

38

40

39

41

36
3

7

9

8

4
6

5
1

15

14

13

12

11

2

u

v

Partition by the median of x-coordinates

24

16

17

L R

RU
RD

LU
LD

10

18

19

20

21

22
23

25
26

28

27
29

30

31

32

33

34

35

37

38

40

39

41

36
3

7

9

8

4
6

5
1

15

14

13

12

11

2

u

v

‘

Partition by the median of y-coordinates

24

16

17

L R

RU
RD

LU
LD

10

18

19

20

21

22

23

25
26

28

27
29

30

31

32

33

34

35

37

38

40

39

41

36
3

7

9

8

4
6

5

1

15

14

13

12

11

2

u

v

‘

2-dimensional range searching using Kd-trees

1
2

3 4

5

6
7

8

9

10

11

12

1315
16

17

14

L R

RU
RD

LU
LD

8

LU LD RD

RL

S

2 14 6
11

4

16

1 2 3 16 15 14 13 12 5 6 7 8 17 10 11 94

RU

Description of the Kd-tree

1
2

3 4

5

6
7

8

9

10

11

12

1315
16

17

14

L R

RU
RD

LU
LD 8

LU LD RD

RL

S

2 14 6
11

4

16

1 2 3 16 15 14 13 12 5 6 7 8 17 10 11 94

RU

◮ The tree T is a perfectly height-balanced binary search tree
with alternate layers of nodes spitting subsets of points in P

using x- and y- coordinates, respectively as follows.

Description of the Kd-tree

1
2

3 4

5

6
7

8

9

10

11

12

1315
16

17

14

L R

RU
RD

LU
LD 8

LU LD RD

RL

S

2 14 6
11

4

16

1 2 3 16 15 14 13 12 5 6 7 8 17 10 11 94

RU

◮ The tree T is a perfectly height-balanced binary search tree
with alternate layers of nodes spitting subsets of points in P

using x- and y- coordinates, respectively as follows.

◮ The point r stored in the root vertex T splits the set S into
two roughly equal sized sets L and R using the median
x-cooordinate xmedian(S) of points in S , so that all points in
L (R) have abscissae less than or equal to (strictly greater
than) xmedian(S).

Description of the Kd-tree

1
2

3 4

5

6
7

8

9

10

11

12

1315
16

17

14

L R

RU
RD

LU
LD 8

LU LD RD

RL

S

2 14 6
11

4

16

1 2 3 16 15 14 13 12 5 6 7 8 17 10 11 94

RU

◮ The tree T is a perfectly height-balanced binary search tree
with alternate layers of nodes spitting subsets of points in P

using x- and y- coordinates, respectively as follows.

◮ The point r stored in the root vertex T splits the set S into
two roughly equal sized sets L and R using the median
x-cooordinate xmedian(S) of points in S , so that all points in
L (R) have abscissae less than or equal to (strictly greater
than) xmedian(S).

◮ The entire plane is called the region(r).

Answering rectangle queries

24

16

17

L R

RU
RD

LU
LD

10

18

19

20

21

22

23

25
26

28

27
29

30

31

32

33

34

35

37

38

40

39

41

36
3

7

9

8

4
6

5

1

15

14

13

12

11

2

u

v

◮ A query rectangle Q may (i) overlap a region, (ii) completely
contain a region, or (iii) completely miss a region.

Answering rectangle queries

24

16

17

L R

RU
RD

LU
LD

10

18

19

20

21

22

23

25
26

28

27
29

30

31

32

33

34

35

37

38

40

39

41

36
3

7

9

8

4
6

5

1

15

14

13

12

11

2

u

v

◮ A query rectangle Q may (i) overlap a region, (ii) completely
contain a region, or (iii) completely miss a region.

◮ If R contains the entire bounded region(p) of a point p

defining a node N of T then report all points in region(p).

Answering rectangle queries

24

16

17

L R

RU
RD

LU
LD

10

18

19

20

21

22

23

25
26

28

27
29

30

31

32

33

34

35

37

38

40

39

41

36
3

7

9

8

4
6

5

1

15

14

13

12

11

2

u

v

◮ A query rectangle Q may (i) overlap a region, (ii) completely
contain a region, or (iii) completely miss a region.

◮ If R contains the entire bounded region(p) of a point p

defining a node N of T then report all points in region(p).
◮ If R misses the region(p) then we do not treverse the subtree

rooted at this node.

Answering rectangle queries

24

16

17

L R

RU
RD

LU
LD

10

18

19

20

21

22

23

25
26

28

27
29

30

31

32

33

34

35

37

38

40

39

41

36
3

7

9

8

4
6

5

1

15

14

13

12

11

2

u

v

◮ A query rectangle Q may (i) overlap a region, (ii) completely
contain a region, or (iii) completely miss a region.

◮ If R contains the entire bounded region(p) of a point p

defining a node N of T then report all points in region(p).
◮ If R misses the region(p) then we do not treverse the subtree

rooted at this node.
◮ If R overlaps region(p) then we check whether R also overlaps

the two regions of the children of the node N.

2-dimensional Range Searching: Kd-trees

24

16

17

L R

RU
RD

LU
LD

10

18

19

20

21

22

23

25
26

28

27
29

30

31

32

33

34

35

37

38

40

39

41

36
3

7

9

8

4
6

5

1

15

14

13

12

11

2

u

v

◮ The set L (R) is split into two roughly equal sized subsets LU

and LD (RU and RD), using point u (v) that has the median
y -coordinate in the set L (R), and including u in LU (RU).

2-dimensional Range Searching: Kd-trees

24

16

17

L R

RU
RD

LU
LD

10

18

19

20

21

22

23

25
26

28

27
29

30

31

32

33

34

35

37

38

40

39

41

36
3

7

9

8

4
6

5

1

15

14

13

12

11

2

u

v

◮ The set L (R) is split into two roughly equal sized subsets LU

and LD (RU and RD), using point u (v) that has the median
y -coordinate in the set L (R), and including u in LU (RU).

◮ The entire halfplane containing set L (R) is called the
region(u) (region(v)).

Nodes traversed in the Kd-tree

1

3 4

5

6
7

8

9
11

12

1315
16

17

14

L R

RU
RD

LU
LD

10

2

8

LU LD RU RD

RL

S

2 14 6

4

16

1 2 3 16 15 14 13 12 5 6 7 8 17 10 11 94

10

Nodes traversed in the Kd-tree

1

3 4

5

6
7

8

9
11

12

1315
16

17

14

L R

RU
RD

LU
LD

10

2

8

LU LD RD

RL

S

2 14 6
11

4

16

1 2 3 16 15 14 13 12 5 6 7 8 17 10 11 94

*

* *

* *
RU

* *

* * * * * *

Time complexity of output point reporting

◮ Reporting points within R contributes to the output size k for
the query.

Time complexity of output point reporting

◮ Reporting points within R contributes to the output size k for
the query.

◮ No leaf level region in T has more than 2 points.

Time complexity of output point reporting

◮ Reporting points within R contributes to the output size k for
the query.

◮ No leaf level region in T has more than 2 points.

◮ So, the cost of inspecting points outside R but within the
intersection of leaf level regions of T can be charged to the
internal nodes traversed in T .

Time complexity of output point reporting

◮ Reporting points within R contributes to the output size k for
the query.

◮ No leaf level region in T has more than 2 points.

◮ So, the cost of inspecting points outside R but within the
intersection of leaf level regions of T can be charged to the
internal nodes traversed in T .

◮ This cost is borne for all leaf level regions intersected by R .

Worst-case cost of traversal

◮ It is sufficient to determine the upper bound on the number of
(internal) nodes whose regions are intersected by a single
vertical (horizontal) line.

Worst-case cost of traversal

◮ It is sufficient to determine the upper bound on the number of
(internal) nodes whose regions are intersected by a single
vertical (horizontal) line.

◮ Any vertical line intersecting S can intersect either L or R but
not both, but it can meet both RU and RD (LU and LD).

Worst-case cost of traversal

◮ It is sufficient to determine the upper bound on the number of
(internal) nodes whose regions are intersected by a single
vertical (horizontal) line.

◮ Any vertical line intersecting S can intersect either L or R but
not both, but it can meet both RU and RD (LU and LD).

◮ Any horizontal line intersecting R can intersect either RU or
RD but not both, but it can meet both children of RU (RD).

Time complexity of rectangle queries for

Kd-trees
v

lc(v)

R1 R2

◮ Therefore, the time complexity T (n) for an n-vertex Kd-tree
obeys the recurrence relation

T (n) = 2 + 2T (
n

4
)

T (1) = 1

Time complexity of rectangle queries for

Kd-trees
v

lc(v)

R1 R2

◮ Therefore, the time complexity T (n) for an n-vertex Kd-tree
obeys the recurrence relation

T (n) = 2 + 2T (
n

4
)

T (1) = 1

◮ The solution for T (n) = O(
√

(n)).

Time complexity of rectangle queries for

Kd-trees
v

lc(v)

R1 R2

◮ Therefore, the time complexity T (n) for an n-vertex Kd-tree
obeys the recurrence relation

T (n) = 2 + 2T (
n

4
)

T (1) = 1

◮ The solution for T (n) = O(
√

(n)).

◮ The total cost of reporting k points in R is therefore
O(

√

(n) + k).

More general queries

General Queries:

◮ Triangles can be used to simulate polygonal shapes with
straight edges.

More general queries

General Queries:

◮ Triangles can be used to simulate polygonal shapes with
straight edges.

◮ Circles cannot be simulated by triangles either.

Triangle queries

◮ Using O(n2) space and time for preprocessing, triangle queries
can be reported in O(log2 n + k)) time, where k is the
number of points inside the query triangle.

Goswami, Das and Nandy: Comput. Geom. Th. and Appl. 29
(2004) pp. 163-175.

Triangle queries

◮ Using O(n2) space and time for preprocessing, triangle queries
can be reported in O(log2 n + k)) time, where k is the
number of points inside the query triangle.

◮ For counting the number k of points inside a query triangle,
worst-case optimal O(log n) time suffices.

Goswami, Das and Nandy: Comput. Geom. Th. and Appl. 29
(2004) pp. 163-175.

Finding intervals containing a vertical query

line/segment

A

B

C

D

E

F

G

H

xquery

queryx’

y’

y

Simpler queries ask for reporting all intervals intersecting the
vertical line X = xquery .

More difficult queries ask for reporting all intervals intersecting a
vertical segment joining (x ′

query , y) and (x ′

query , y ′).

Constructing the interval tree

1. F

2. F
1. H

2. H

1. G

2. G1. C−D

2. D−C

1. A−E−B

2. B−E−A

A

B

C

D

E

F

G

H

xmid

M

L R

M

L R

I

The set M has intervals intersecting the vertical line X = xmid ,
where xmid is the median of the x-coordinates of the 2n endpoints.

The root node has intervals M sorted in two independent orders (i)
by right end points (B-E-A), and (ii) left end points (A-E-B).

Answering queries using an interval tree

1. F

2. F
1. H

2. H

1. G

2. G1. C−D

2. D−C

1. A−E−B

2. B−E−A

A

B

C

D

E

F

G

H

xmid

M

L R

M

L R

I

The set L and R have at most n endpoints each.

So they have at most n
2 intervals each.

Clearly, the cost of (recursively) building the interval tree is
O(n log n).

The space required is linear.

Answering queries using an interval tree

xmidxquery queryx’

A

B

C

D

E

F

G

H

List 2List 1

(Only A & E) (Only B)

M

A,E,B B,E,A

R
L

For xquery < xmid , we do not traverse subtree for subset R .

For x ′

query > xmid , we do not traverse subtree for subset L.

Clearly, the cost of reporting the k intervals is O(log n + k).

Reporting (portions of) all rectilinear

segments inside a query rectangle

For detecting segments with one (or both) ends inside the
rectangle, it is sufficient to maintain rectangular range query
apparatus for output-sensitive query processing.

Reporting segments with no endpoints inside

the query rectangle

Report all (horizontal) segments that cut across the query
rectangle or include an entire (top/bottom) bounding edge.
Use either the right (or left) edge, and the top (or bottom) edge of
the query rectangle.

Right edges X and X’ of two query

rectangles

X X’

Xmid

A

B

C
D

Use an interval tree of all the horizontal segments and the right
bounding edge of the query rectangle like X or X’.
This helps reporting all segments cutting the right edge of the
query rectangle.
Use the rectangle query for vertical segment X and find points A,
B and C in the rectangle with left edge at minus infinity. For X’,
report B, C and D, similarly.

S1

S2
S3

S5

S4

S7S6

S1

S2
S3

S5

S4

S7S6

S1

S2
S3

S5

S4

S7S6

S1

S2
S3

S5

S4

S7S6

S1

S1

S2 S2

S1, S4

S3, S4 S4

S4

S5

S5

S6

S6

S7

S7

S1

S2
S3

S5

S4

S7S6

S1

S1

S2 S2

S1, S4

S4

S4

S5

S5

S6 S7

S7

S3, S4

q

S6

S1

S2

S3

S4

S5

S6

S1

S2

S3

S4

S5

S6

Computing the visible region in a polygon

with opaque obstacles

B

C
D

E

F

GH

I J

K

L

M

O

P

Q
R

S

Z
12

3
4

6

7

N

5

SQ,SR,DC,1−−>SQ,SR,DE,2−−>DE,3−−>

FG,FE,DE,4−−>NP,NO,FG,FE,DE,5−−>

NP,NO,FG,FE,DE,6−−>LM,MK,NP,NO,FG,7

Z1 ,SQ−−>Z2,SQ−−>Z3,DE−−>

Computing the visible region in a polygon

with opaque obstacles

B

C
D

E

F

GH

I J

K

L
M

O

P

Q
R

S

Z
12

3
4

6

7

N

5

SQ,SR,DC,1−−>SQ,SR,DE,2−−>DE,3−−>

FG,FE,DE,4−−>NP,NO,FG,FE,DE,5−−>

NP,NO,FG,FE,DE,6−−>LM,MK,NP,NO,FG,7

Z4,FG and DE−−>Z5,NP and FG−−>

Z1 ,SQ−−>Z2,SQ−−>Z3,DE−−>

Computing the visible region in a polygon

with opaque obstacles

B

C
D

E

F

GH

I J

K

L
M

O

P

Q
R

S

Z
12

3
4

6

7

N

5

SQ,SR,DC,1−−>SQ,SR,DE,2−−>DE,3−−>

FG,FE,DE,4−−>NP,NO,FG,FE,DE,5−−>

NP,NO,FG,FE,DE,6−−>LM,MK,NP,NO,FG,7

Z4,FG and DE−−>Z5,NP and FG−−>

Z1 ,SQ−−>Z2,SQ−−>Z3,DE−−>

Computing the visible region in a polygon

with opaque obstacles

B

C
D

E

F

GH

I J

K

L
M

O

P

Q
R

S

Z
12

3
4

6

7

N

5

SQ,SR,DC,1−−>SQ,SR,DE,2−−>DE,3−−>

FG,FE,DE,4−−>NP,NO,FG,FE,DE,5−−>

NP,NO,FG,FE,DE,6−−>LM,MK,NP,NO,FG,7

Z4,FG and DE−−>Z5,NP and FG−−>

Z1 ,SQ−−>Z2,SQ−−>Z3,DE−−>

Computing the visible region in a polygon

with opaque obstacles

B

C
D

E

F

GH

I J

K

L
M

O

P

Q
R

S

Z
12

3
4

6

7

N

5

SQ,SR,DC,1−−>SQ,SR,DE,2−−>DE,3−−>

FG,FE,DE,4−−>NP,NO,FG,FE,DE,5−−>

NP,NO,FG,FE,DE,6−−>LM,MK,NP,NO,FG,7

Z4,FG and DE−−>Z5,NP and FG−−>

Z1 ,SQ−−>Z2,SQ−−>Z3,DE−−>

Computing the visible region in a polygon

with opaque obstacles

B

C
D

E

F

GH

I J

K

L

M

O

P

Q
R

S

Z
12

3
4

6

7

N

5

SQ,SR,DC,1−−>SQ,SR,DE,2−−>DE,3−−>

FG,FE,DE,4−−>NP,NO,FG,FE,DE,5−−>

NP,NO,FG,FE,DE,6−−>LM,MK,NP,NO,FG,7

Z1 ,SQ−−>Z2,SQ−−>Z3,DE−−>

Planar point location by triangulation

refinement

8

16

18

17
11

19

20

22

13

21

23
14

Planar point location by triangulation

refinement
8

16

18

17
11

19

20

22

13

21

23
14

8 11
13

14
16

17
18

19 20 21
22 23 24

Planar point location by triangulation

refinement

8

16

18

17
11

19

20

22

13

21

23
14

8

11

13

14

9

7

10

12

15

Planar point location by triangulation

refinement
8

16

18

17
11

19

20

22

13

21

23
14

8 11
13

14
16

17
18

19 20 21
22 23 24

8

11

13

14

9

7

10

12

15

7
9

10
12 15

8

16

18

17
11

19

20

22

13

21

23
14

8

11

13

14

9

7

10

12

15

7
9

10
12 15

7

4

5

6

2

4 2 5
6

Planar point location by triangulation

refinement
8

16

18

17
11

19

20

22

13

21

23
14

8 11
13

14
16

17
18

19 20 21
22 23 24

8

11

13

14

9

7

10

12

15

7
9

10
12 15

7

4

5

6

2

4 2 5
6

Planar point location by triangulation

refinement
8

16

18

17
11

19

20

22

13

21

23
14

8

11

13

14

9

7

10

12

15

7
9

10
12 15

7

4

5

6

2

4 2 5
6

21

3

1 3

Planar point location by triangulation

refinement
8

16

18

17
11

19

20

22

13

21

23
14

8 11
13

14
16

17
18

19 20 21
22 23 24

8

11

13

14

9

7

10

12

15

7
9

10
12 15

7

4

5

6

2

4 2 5
6

21

3

1 3

Planar point location by triangulation

refinement
8

16

18

17
11

19

20

22

13

21

23
14

8

11

13

14

9

7

10

12

15

7
9

10
12 15

7

4

5

6

2

4 2 5
6

21

3

1 3

0

Planar point location by triangulation

refinement
8

16

18

17
11

19

20

22

13

21

23
14

8 11
13

14
16

17
18

19 20 21
22 23 24

8

11

13

14

9

7

10

12

15

7
9

10
12 15

7

4

5

6

2

4 2 5
6

21

3

1 3

0

Planar point location using monotone chains

Planar point location using monotone chains

Planar point location using monotone chains

Planar point location using monotone chains

Planar point location using monotone chains

Planar point location using monotone chains

Planar point location using monotone chains

Planar point location using monotone chains

Planar point location using monotone chains

Planar point location using monotone chains

Representing a convex object layer by layer

1

2

3

4

5 6
8

9

10

11

12

13

14

15161718
19

21

22

1, 2 2, 3 3, 4 4, 5 5, 6 6, 7 7, 8 8, 9 9, 10 10, 11 11, 12 12,13 13,14 14,15
15,16 16,17 17,18 18,19 19,20 20,21 21,22 22,1

20

Second layer

1

2

3

4

5
8

9

10

11

12

13

14

15161718
19

21

22

1, 2 2, 3 3, 4 4, 5 5, 6 6, 7 7, 8 8, 9 9, 10 10, 11 11, 12 12,13 13,14 14,15
15,16 16,17 17,18 18,19 19,20 20,21 21,22 22,1

1,2,3,4 4,5,6 6,7,8 8,9,10 10,11,12,13 13,14,15 15,16,17,18 18,19,20,21,22,1

20

Third layer

1

2

3

4

5 6 7
8

9

10

11

12

13

14

15161718
19

21

22

1, 2 2, 3 3, 4 4, 5 5, 6 6, 7 7, 8 8, 9 9, 10 10, 11 11, 12 12,13 13,14 14,15
15,16 16,17 17,18 18,19 19,20 20,21 21,22 22,1

1,2,3,4 4,5,6 6,7,8 8,9,10 10,11,12,13 13,14,15 15,16,17,18 18,19,20,21,22,1

1,4,6 6,8,10 10,13,15 15,18,1

20

1

2

3

4

5 6 7
8

9

10

11

12

13

14

15161718
19

21

22

1, 2 2, 3 3, 4 4, 5 5, 6 6, 7 7, 8 8, 9 9, 10 10, 11 11, 12 12,13 13,14 14,15
15,16 16,17 17,18 18,19 19,20 20,21 21,22 22,1

1,2,3,4 4,5,6 6,7,8 8,9,10 10,11,12,13 13,14,15 15,16,17,18 18,19,20,21,22,1

1,4,6 6,8,10 10,13,15 15,18,1

1,6,10 10,15,1

20

Point inclusion and Line intersection queries

1

2

3

4

5 6 7
8

9

10

11

12

13

14

15161718
19

21

22

1, 2 2, 3 3, 4 4, 5 5, 6 6, 7 7, 8 8, 9 9, 10 10, 11 11, 12 12,13 13,14 14,15
15,16 16,17 17,18 18,19 19,20 20,21 21,22 22,1

1,2,3,4 4,5,6 6,7,8 8,9,10 10,11,12,13 13,14,15 15,16,17,18 18,19,20,21,22,1

1,4,6 6,8,10 10,13,15 15,18,1

1,6,10 10,15,1

20

1,10,1

Mark de Berg, Otfried Schwarzkopf, Marc van Kreveld and Mark
Overmars, Computational Geometry: Algorithms and Applications,
Springer.

S. K. Ghosh, Visibility Algorithms in the Plane, Cambridge
University Press, Cambridge, UK, 2007.

Kurt Mehlhorn, Data Structures and Algorithms, Vol. 3, Springer.

F. P. Preparata and M. I. Shamos, Computational Geometry: An
Introduction, New York, NY, Springer-Verlag, 1985.

	Scope
	Range searching

