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The Mathematical Method

Having understood the nature of math-
ematical concepts, we now need to brief-
ly examine the mathematical method. 

What is the method by which we arrive at the truth 
or falsity of mathematical statements? 

In a mathematical system, we have axioms,  
which are facts taken to be obviously true (‘If a 
is less than b, then a is not equal to b’ is one such 
axiom—the axiom of linear order), and some non-
facts (which we shall call non-axioms) by the help 
of which we prove or disprove theorems. Proving 
theorems means deriving them from known axi-
oms. If we are able to deduce a theorem starting 
from these basic axioms, then we say that the theo-
rem is true.

However, proving the falsity of a theorem is dif-
ferent. If we are able to derive a non-axiom from a 
proposition, then that proposition is false—a non-
theorem. So, here we go the other way round—we 
start from the theorem itself, not from non-axioms. 
Hence proving the truth and falsity of theorems are 
not mirror processes.

�e underlying assumption of this method is 
that we cannot derive a non-fact from facts. Such 
a system is called consistent. If a system is inconsist-
ent, it is ‘trivially complete’; that is, every statement, 
true or false, is derivable in an inconsistent system. 
An inconsistent system, therefore, is of little prac-
tical use.

Propositional Logic

In the study of mathematical method we also need 
to study propositional logic. Propositions play an 
important part in mathematical proofs. What is a 
proposition? A proposition is a statement which is 
either true or false. Note that there are certain state-

ments which are neither true nor false. For example, 
interrogatory and exclamatory statements are nei-
ther true nor false. Also there is this classic example 
of a paradoxical self-referential statement, which is 
neither true nor false:

P: �e statement P is false
We have referred to the term theorem. Now is the 
time to de�ne it. What is a theorem? A theorem is 
nothing but a proposition for which there is a for-
mal proof. What then is meant by proof ? A proof 
is simply a sequence of deductive steps governed by 
well-de�ned logical rules that follow from a set of 
axioms. An axiom, of course, is a proposition that is 
given to be unconditionally true. �e following de-
duction illustrates the rule of specialization, which 
is one of the many rules of logic:

All men are mortal.
Socrates is a man.
�erefore, Socrates is mortal
�us, a mathematical system is a set of axioms 

and non-axioms with prede�ned rules of deduc-
tion, which are also referred to as rules of inference. 
�e rules of deduction or rules of inference are noth-
ing but rules that add, remove, modify, and substi-
tute operators and symbols.

Let us try an exercise to understand how the 
rules of inference work. Suppose we have been giv-
en the following rules of addition, removal, and 
substitution of symbols I and U (the other symbol 
M remains there as in the starting axiom). �e start-
ing axiom is MI, and x and y are variables:
(i) xI → xIU (Derive MUUIIIU from MUUIII)
(ii)  Mx → Mxx ( Derive MUUIIIUUIII  

from MUUIII)
(iii) xIIIy → xUy (Derive MUUU from MUUIII)
(iv) xUUy → xy (Derive MIII from MUUIII)
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Now try constructing the theorem MU starting 
only with the axiom MI using the above rules of 
inference. Is it possible to derive MU? 

�e crux of the matter discussed above is that 
in mathematics, as well as in logic, the operators, 
the constants, and the functions can all be viewed, 
as in this example, as symbols which are added, re-
moved, and substituted by prede�ned rules of in-
ference, without ascribing any interpretation to 
them. Gödel exploited this fact beautifully in prov-
ing his famous theorem on incompleteness.

Is Mathematics a Uniquely Human Activity?

Since doing mathematics involves intricate reason-
ing and abstract thinking, it is o�en thought to be 
a very creative process requiring a lot of intuition. 
Kant was of the opinion that since mathematics re-
quires human intuition it cannot possibly be done 
by non-humans. But several later philosophers have 
shown that it really does not require any human in-
tuition to understand a mathematical proof. Find-
ing a proof for an open research problem, though, 
might be an altogether di�erent matter—comput-
ers have failed till date to automatically generate 
proofs for even very simple non-trivial mathemati-
cal problems. �is is not to suggest that proving 
mathematical theorems is a uniquely human activ-
ity incapable of computer simulation—it is simply 
a matter of selective processing power. Comput-
ers cannot distinguish between boring mathemati-
cal truths and interesting mathematical results and 
keep happily churning out one mathematically un-
interesting result a�er another, ad in�nitum.

Mathematical thinking, in fact, is apparently 
not unique to humans. Rudimentary mathemati-
cal understanding is also seen in other animal spe-
cies. And, of course, computers are ‘doing’ math-
ematics all the time. If one is to argue that �nding 
and discovering mathematical truths rather than 
understanding proofs constitutes the test of mathe-
matical intelligence—and computers fail this test—
then it may be pointed out that this will also place 
the majority of humans at par with machine intel-
ligence, because the vast majority of humans do not 

participate in the exciting activity of mathematical 
discovery.

Important Branches of Mathematics

Among the important branches of mathematics, 
number theory, set theory, geometry, and logic are 
historically very old. �e oldest civilizations—the 
Indian, Greek, Chinese, Egyptian, and Babylo-
nian—had all developed these branches, in one 
form or other, for general use. �is is substanti-
ated by the fact that without a fair understanding 
of geometry the remarkable architectural and civil-
 engineering feats for which these civilisations are 
famous would not have been possible. Even such 
elementary constructions as a rectangular wall or a 
�eld, or the more intricate hemispherical dome, re-
quire at least a rudimentary knowledge of geomet-
rical constructions. Incidentally, ancient Greeks 
gave much importance to geometry, whereas In-
dians gave up geometry for abstract mathematics 
during the Buddhist period.

As far as number and set theories are concerned, 
no one really knows when humans developed these. 
Numbers surely came with the need for counting. 
Most civilizations seem to have been formally using 
numbers right from their inception. It was need-
ed for commerce, and in earlier tribal societies to 
quantify one’s possessions. 

Set theory is more fundamental than number 
theory, for it deals with classi�cation rather than 
counting. Formal logic was a later development. 
But its rudiments were probably coeval with the 
development of language—with the need to coher-
ently and intelligently communicate one’s opinions, 
arguments, and deductions to others. In fact, logic 
and language are so interlinked that many consider 
logic to be merely a linguistic construct. Histori-
cally, both Nyaya and Aristotelian philosophy had 
formalized logic for their respective civilizations, 
the Indian and the Greek.

Number Theory

Let us begin with numbers. We may ask: What is 
the nature of numbers? Are numbers real? In the 
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Nyaya and Vaisheshika philosophies, for instance, 
numbers are real entities, belonging to one of the 
seven categories of real entities. However, there 
are conceptual di�culties if we grant numbers an 
objective reality. Consider the following: We have 
two books. So, we have books and we have also 
the number two. Let us add another pair of books 
to our collection. Does it destroy the number two 
and create the number four? Or does the number 
two transform into the number four? Suppose we 
add two notebooks, to distinguish them from the 
original pair of books. �en we have got a pair of 
twos as well as a four. None of the original numbers 
is destroyed or transformed and yet a new number 
is created. �e ancient Buddhists were therefore 
not wrong in pointing out that numbers are in fact 
mental concepts. �ey do not have any existence 
outside the mental world. 

Furthermore, mathematicians say that numbers 
can also be thought of as properties of sets, being 
their sizes (though the Buddhists would not feel 
comfortable with this either). Numbers as proper-
ties of sets were called cardinal numbers by George 
Cantor in contrast to ordinal numbers which repre-
sented positions in a series (�rst, second, and so on). 
Again, these are not to be taken as real properties, 
for there is an equally long-standing debate on sub-
stances and their properties. Essentially, therefore, 
numbers are abstract properties of equally abstract 
sets. Or, with greater ingenuity, the abstract con-
cept of set itself can be thought of as representing 
numbers—not just the properties of sets but the 
sets themselves. �us, we may have:

{ } = 0
{ϕ} = 1
{ϕ, {ϕ}} = 2
{ϕ, {ϕ}, {ϕ,{ϕ}}} = 3, and so forth. 

Does anyone �nd this remarkable example illumi-
nating or fascinating! All the same, this is what we 
meant by our statement that mathematical entities 
are not real but are merely conceptual entities.

Historically, the notion of numbers was for-
malized in the following succession. �e notion 
of natural numbers (1, 2, 3, …) was developed �rst. 

‘God created the natural numbers; everything else 
is man’s handiwork’, the German mathematician 
Leopold Kronecker had famously observed. �e 
incorporation of zero as a number was the great 
contribution of the Indian subcontinent. �e natu-
ral numbers are complete as far as the operations of 
addition and multiplication are concerned—if we 
add or multiply two natural numbers we get an-
other natural number. However, the class of natural 
numbers is not complete with respect to subtrac-
tion (you don’t get a natural number if you subtract 
3 from 2). So if the result is to belong to the set of 
numbers, we need to extend the list of natural num-
bers to include negative numbers. �e result is the 
set of integers. 

 Again, we see that the class of integers is not 
complete with respect to division. So the set of 
numbers is further extended to include ratios—ra-
tional numbers. �e word rational here is derived 
from ‘ratio’ and not ‘reason’. Next we get surds or 
irrational numbers, when we extend the set of num-
bers to include limits, sums of series, square roots, 
trigonometric functions, logarithms, exponential 
functions, and so on. �is gives us real numbers. 
Actually, this gives us only a subset of real numbers 
because these constitute only what are called com-
putable numbers (which can be computed to any 
desired degree of precision by a �nite, terminating 
algorithm). Not all real numbers can be so con-
structed. To be mathematically precise, we need to 
see each real number as a partition which divides 
the set of numbers into two groups A and B. If the 
partition is such that there is a largest element of A 
or a smallest element of B then the (partitioning) 
number is rational. But if there is neither a largest 
number in A nor a smallest number in B then the 
divisive number is irrational. �is is the concept of 
‘cuts’ developed by the celebrated mathematician 
Richard Dedekind.

�e other day I was arguing with a friend that 
every real number can be seen as a decimal expan-
sion which can be computed one digit a�er another 
using a suitable algorithm. I was, however, wrong. 
Alan Turing has proved this mind-boggling truth 
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that not all real numbers are computable. 
People found out very quickly that negative 

numbers could not have real square roots. In order 
to make the set of numbers complete even with 
the operation of determining square roots, the do-
main of real numbers was again extended to that of 
complex numbers, which are nothing but the sum 
of a real number and an imaginary number (i.e. a 
number expressed as a multiple of √−1). �e histor-
ical choice of the names imaginary and complex was, 
however, unfortunate. For this makes one think 
that complex numbers are not numbers at all. One 
could on the other hand look at complex numbers 
as a dyad such that the subset of this dyad with 
the second term as zero is actually the set of real 
numbers. Moreover, all algebraic operations that 
can be carried out using real numbers can also be 
applied to the complex number dyads when these 
are suitably rede�ned. �is interpretation is much 
more appropriate than the one commonly taught 
in schools. It is also worth noting that the class of 
complex numbers is ‘complete’ in the sense that 
if we apply any normal operator or any common 
function to complex numbers we always get a com-
plex number. 

With the introduction of complex numbers, 
one would think that the number system was at 
peace. But that was not to be, for serious trouble 
was brewing with the inclusion of the concept of 
in�nity. �ere is a common misconception that 
there is one and only one mathematical in�nity. 
And the people who seem to be more prone to this 
misconception are people from a Vedantic back-
ground! I wish to point out that here we 
are not merely thinking of +∞ and −∞, 
or even ‘radial in�nites’ in the complex 
plane. It was George Cantor who proved 
that there are numerous in�nities in 
relation to numbers. As a mat-
ter of fact, while the set of 
integers and of rational 
numbers are countably in�nite, 
the set of real numbers is uncount-
ably in�nite. (Countability or denu-

merability refers to being able to be counted by 
one-to-one correspondence with the in�nite set of 
all positive integers.) More remarkably, Cantor was 
able to prove that even uncountably in�nite sets 
have di�erent cardinalities: that if E0 is an in�nite 
set then there exists a set (E1) which can be proved 
to be larger than this set, and this process can be 
extended to obtain in�nites with still greater car-
dinality. Cantor’s treatment of in�nities, however, 
was abstract rather than constructive. And this cost 
him an appointment at Berlin University—though 
his work was mathematically sound—as Kroneck-
er, a �rm believer in constructions, opposed him. 
Mathematicians, a�er all, are also human!

Zeno’s Paradox

Besides the problem of in�nity, mathematicians 
working with numbers had also to tackle the prob-
lems of limits and series. To appreciate the prob-
lem with series, we consider one of Zeno’s para-
doxes—a set of problems devised by Zeno of Elea 
to support Parmenides’s doctrine that ‘all is one’. 
�is doctrine asserts that, contrary to the evidence 
of our senses, the belief in plurality and change is 
mistaken, and, in particular, motion is nothing but 
an illusion. �is is much like the Buddhist doctrine 
of kṣaṇikavāda.

‘Achilles and the Tortoise’ is the most famous 
of these paradoxes. Fleet-footed Achilles, of Bat-
tle-of-Troy fame (in Homer’s Iliad), and a tortoise 
are participating in a race. Achilles is reputed to be 
the fastest runner on earth; and the tortoise is one 
of the slowest of living beings. However, according 
to Zeno, Achilles can never win the race if the tor-

toise is given but a little head start. �is is how 
it happens: Suppose the tortoise is, say, ten 
feet ahead of Achilles. In an instant Achil-
les covers the distance of ten feet. But dur-

Zeno’s Paradox: Given a head start,  

the tortoise is always the winnerCH
AN
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ing that instant the tortoise has already advanced 
a short distance. Again in another bound Achilles 
covers that small distance, but to his dismay, dur-
ing that time the tortoise has advanced still more, 
and so on. �us, Achilles can never possibly catch 
up with the tortoise. 

But this clearly is nonsense. In reality, things 
never happen like that. �is is actually a graphic 
description of the problem of the sum of an in�nite 
series of decreasing terms which yields a �nite value. 
Of course, not every such series will yield a �nite 
value. �e harmonic series (1 + ½ + ⅓ + ¼ + …) is 
one such.

Set Theory

Now that we are on paradoxes, let us start our dis-
cussion of set theory with Russell’s paradox. In set 
theory, we have �nite sets as well as in�nite sets. For 
in�nite sets it is possible that a set contains itself. {ϕ, 
{ϕ}, {ϕ,{ϕ}}, {ϕ,{ϕ},{ϕ,{ϕ}}}, …} is one such set. Keen 
observers would have noted that this is the number 
‘in�nity’ in the ‘illuminating’ example of a previous 
section. Now call a set abnormal if it contains itself. 
De�ne a set R of all ‘normal’ sets: ‘the set of all sets 
that do not contain themselves as members’. Now 
ask the question: Is R normal or abnormal? We see 
that this question cannot be answered in either the 
a�rmative or the negative.

�e ‘axiomatic set theory’ was developed to ad-
dress such paradoxes by incorporating an ‘axiom of 
choice’ within the theory. But this goes beyond the 
scope of our discussion, although it may be men-
tioned in passing that a surprising corollary to this 
theory is the fact that a universal set—the hypo-
thetical set containing all possible elements—does 
not exist.

In practice, sets are normally related to groups 
and collections of objects in the external world. 
Here too, a similar question, as with numbers, aris-
es: are sets real? In Indian philosophical thought 
too, the same question appears repeatedly. �e 
Buddhists, for instance, argue that the axe which is 
a combination of the handle and the blade does not 
exist ‘in itself ’. It is absurd, they say, to call an axe a 

family heirloom of great value if its blade is changed 
just �ve times and its handle just fourteen times.

�is question of absurdity, however, does not 
arise in mathematics because sets as well as their 
constituent members are all hypothetical entities—
conceptual objects which are granted no intrinsic 
reality.

Geometry

In contrast to sets and numbers, it is easy for us to 
see that geometrical objects are conceptual. But it 
was not so for the Greeks—they took their geom-
etry seriously exactly for the opposite reason: they 
thought geometry was real. 

Take, for instance, the case of a point and a 
line in a plane. What is a point? A point, as every 
schoolchild knows, is a geometrical object that 
does not have any length or breadth (all its dimen-
sions are zero). And what is a line? A line is a geo-
metrical object that has only length but no breadth. 
�ese very de�nitions make it obvious that true 
points and lines cannot exist in the real world dis-
tinct from our mental constructions.

Credit goes to Euclid for formalizing the �eld 
of geometry into a body of axioms and theorems. 
�ough his treatment of the subject was fully con-
ceptual, it took a really long time—two thousand 
years—for people to see that these concepts do not 
quite match the real world. All this time everyone 
had been mistakenly assuming that the world is 
Euclidean. Geometrical results seemed to �t our 
experiential world so very nicely that people failed 
to see that they could be unreal. Nevertheless, with 
the advent of Einstein’s theories of relativity—both 
special and general—the realization dawned that 
the world is in fact non-Euclidean; it is more ac-
curately described in terms of several Riemannian 
(or elliptic) geometries.

Another point to note is that, in formalizing ge-
ometry, we try to arrive at proofs which do not ap-
peal to our intuition or visual sense but are logically 
correct. For though original mathematical insights 
are o�en derived through intuition, these ‘insights’ 
also run the risk of being proved wrong. Even the 
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great Euclid—though he was well aware of this and 
therefore tried very hard to avoid intuitive judge-
ments—himself committed a few mistakes in his 
proofs, because these proofs relied on the way he 
drew the illustrations. All the same, this does not 
take away any of the credit due to him in recogniz-
ing what is correct mathematical procedure. And 
certainly the momentous task of formalizing the 
great body of geometry already known at his time 
was not an easy task by any standard.

Logic

Mathematical logic is the �nal edi�ce of mathe-
matics. And every logical system has to deal with 
the question of completeness and consistency. Com-
pleteness means that every true statement must be 
veri�able, must have a proof. Consistency is slightly 
di�erent: it means that we should not be able to 
‘prove’ false statements as true, that is, false state-
ments must not have valid proofs in the theory in 
question.

At the beginning of the twentieth century, Dav-
id Hilbert posed the ultimate problem of logic 
to mathematicians—to prove the consistency of 
mathematics as a system. �is challenge came to 
be fondly called the Hilbert programme. Hilbert 
observed: 

When we are engaged in investigating the foun-
dations of a science, we must set up a system of 
axioms which contains an exact and complete de-
scription of the relations subsisting between the 
elementary ideas of that science. �e axioms so set 
up are at the same time the de�nitions of those ele-
mentary ideas; and no statement within the realm 
of the science whose foundation we are testing is 
held to be correct unless it can be derived from 
those axioms by means of a �nite number of logi-
cal steps. Upon closer consideration the question 
arises: Whether, in any way, certain statements 
of single axioms depend upon one another, and 
whether the axioms may not therefore contain 
certain parts in common, which must be isolated 
if one wishes to arrive at a system of axioms that 
shall be altogether independent of one another.

But above all I wish to designate the following 
as the most important among the numerous ques-

tions which can be asked with regard to axioms: 
To prove that they are not contradictory, that is, a 
de�nite number of logical steps based on them can 
never lead to contradictory results.

�e questions of consistency and completeness 
are important because if mathematics as a system 
were both complete and consistent, then it could 
well yield an easy path to new discoveries by way of 
a method to automatically discover mathematical 
theorems, what with superfast computers with su-
per-memory and super processing power as tools.

Kurt Gödel, however, proved that mathemat-
ics is in fact incomplete. He further showed that 
the consistency of mathematics cannot be proven 
from within the �eld of mathematics itself, or to be 
precise, from within Peano’s axiomatization of the 
number theory. So with this dual stroke he deliv-
ered a terrible blow to the human quest for ‘know-
ing everything’. 

In brief, Gödel’s theorems have the following 
twin consequences: First, there exist true state-
ments which do not have any proof, and second, 
even if we have a proof for such a statement, we 
do not also know (by means of a valid proof ) that 
its converse is not true. �e wording and formula-
tion of the second part is important as it makes a 
distinction between the truth of a statement and 
having a proof thereof.

A question may naturally arise at this juncture: 
Is Gödel’s incompleteness theorem applicable to 
every logical system? Turing is credited with ex-
tending the results of Gödel’s theorem to the �eld 
of computation. He has shown the non-existence 
of several kinds of computational procedures that 
could have helped us circumvent the implications 
of Gödel’s theorem, enabling us to �nd the truth 
and falsity of statements in a circuitous way. �us, 
he was able to draw our attention to the far-reach-
ing consequences of Gödel’s incompleteness theo-
rem. In short, this theorem brings under its pur-
view every kind of logical system—ancient or mod-
ern or postmodern—that is powerful enough to 
deduce facts. It only leaves out trivial theories like 
those based on �rst-order predicate calculus (logic). 
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So it would not be correct to say that Gödel’s in-
completeness theorem applies only to formal logic 
or axiomatic mathematics, and not to the Nyaya 
or Buddhist logical systems, because these sys-
tems also involve predicates and possess deductive 
(anumāna) power.

Mathematics, Mind, and Maya

Let me conclude with some personal re�ections:
First, mathematics has to constantly �ght o� 

utilitarians who accuse it of a lack of concern with 
reality—at least pure mathematics does not con-
cern itself with applications. In fact, many pure 
mathematicians think that applied mathematics—
being more interested in the results than in the 
process—is a degradation, and hence no mathemat-
ics at all.

It is a mundane fact that less-advanced disci-
plines further their cause with the assistance of 
more advanced ones. �e latter, however, can keep 
advancing only by keeping intact their pristine pu-
rity. �us even though others may use mathematics, 
mathematics stands to lose if it starts catering to 
the demands of other disciplines: the only way for 
mathematics to advance is by concentrating on its 
lo�y aims. �us it should be le� to other disciplines 
to �nd the applications for and uses of mathematics, 
so that pure mathematics remains pure.

Second, Gödel was able to prove that there ex-
ist true theorems for which there is no proof. Some 
take this as proof of the superiority of the human 
intellect—a�er all, we know indirectly about the 
truth of these theorems even though they cannot 
be proved. �is is not correct. Gödel only showed 
that both the theorems and their 
converse have no proof, and so 
if a system is consistent, one 
of them is bound to be true. 
�us we have, by inference, 

a true theorem which does not have a proof. But 
we do not know speci�cally which of the two (the 
theorem or its converse) is true. A further corollary 
to his theorem is that only inconsistent systems are 
trivially complete. And our hopes of omniscience 
are further dampened when we remember that the 
consistency of a system is impossible to prove from 
within the system itself.

�ird, Vedanta as a system of philosophy is an 
empirical system. However, the only empirical facts 
that it sticks to with heart and soul are the reality 
of Brahman, the unreality of samsara, and the one-
ness of Atman, the individual soul, and Brahman, 
the supreme Reality. �ese are empirical truths ac-
cording to Vedanta because Vedanta �rmly holds 
that Atman, Brahman, and maya are mere state-
ments of facts—a posteriori truths, truths that 
need to be experienced or realized. However, as 
the world is granted only a conceptual reality—as 
a construct of the cosmic mind (hiranyagarbha)—
Vedanta remains within the purview of empirical 
sciences only very loosely. Strictly speaking, then, 
Vedanta as a system with a single composite em-
pirical fact—brahma satyaṁ jaganmithyā jiva brah-
maiva nāparaḥ; Brahman is real, the world unreal, 
and the individual soul is no di�erent from Brah-
man—which is not provable by sensory percep-
tions, becomes a system independent of physics 
and mathematics alike. Nevertheless, care should 
be taken, when we talk (as Vedantists) either about 
the world that is a product of maya or when we use 
a deductive process to infer the unity of existence 
and the unreality of the world, for then there is no 
escape from the sciences, both empirical and for-

mal—physics and mathematics. 
Within the realm of maya, 

Vedanta cannot go against 
the findings of physics 
and mathematics. P

‘Vedanta cannot go against 

the �ndings of physics and 

mathematics!’

‘Only in the realm of maya!’


