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Viewpoint 1: Locate the nearest dentist.
Viewpoint 2: Find the ‘service area’ of potential customers for each dentist.



Voronoi Diagram



Formal Definition

P → A set of n distinct points in the plane.

VD(P) → a subdivision of the plane into n cells such that

• each cell contains exactly one site,
• if a point q lies in a cell containing pi then

d(q, pi ) < d(q, pj ) for all pi ∈ P, j ≠ i.



Computing the Voronoi Diagram
Input: A set of points (sites) 
Output: A partitioning of the plane into regions of equal nearest neighbors



Voronoi Diagram Animations

Java applet animation of the 
Voronoi Diagram by:
Christian Icking, Rolf Klein,
Peter Köllner, Lihong Ma
(FernUniversität Hagen)



Characteristics of the Voronoi Diagram

(1) Voronoi regions (cells) are bounded by line segments.

Special case :

Collinear points

Theorem : Let P be a set of n points (sites) in the plane.
If all the sites are collinear, then Vor(P) consist of n-1 parallel lines and n cells. 
Otherwise, Vor(P) is a connected graph and its edges are either line 
segments or half-lines.

e

pi pj

pk

h(pi,pj)

h(pj,pk)
If pi, pj are not collinear with pk, then
h(pi, pj ) and h(pj, pk ) can not be parallel!



Characteristics of the Voronoi Diagram

Each vertex (corner) of VD(P) has degree 3

The circle through the three points defines  
a vertex of the Voronoi diagram, and it 
does not contain any other point

The locus of the center of a largest            
empty circles passing through                
only a pair of points pi, pj ∈ P             
defines an edge

The locus of the center of largest                        
empty circles passing through                     
only one points in P defines a cell 

The Voronoi region of a point is        
unbounded iff the point is a                
vertex of the convex hull of                       
the point set.

Assumption: No 4 points are co-circular.



Degenerate Case with 
no bounded cells!

Size of the Voronoi Diagram:

V(p) can have O(n) vertices!



Combinatorial Complexity of Voronoi Diagram
Theorem: The number of vertices in the Voronoi diagram of a set 
of n points in the plane is at most 2n-5 and the number of edges 
is at most 3n-6.

epi

Proof:

1. Connect all Half-lines with fictitious      
point ∞

2. 2. Apply Euler`s formula:
v – e + f = 2

For VD(P) + ∞ :

v = number of vertices of VD(P) + 1
e = number of edges of VD(P)
f = number of sites of VD(P) = n



Proof (Continued)

Each edge in VD(P) + ∞ has exactly two vertices and                             
each vertex of VD(P) + ∞ has at least a degree of 3:  

⇒ sum of the degrees of all vertices of Vor(P) + ∞
= 2 · ( # edges of VD(P) )
≥ 3 · ( # vertices of VD(P) + 1 )

Number of vertices of VD(P) = vp

Number of edges of VD(P) = ep

We can apply: (vp + 1) – ep + n = 2

2 ep ≥ 3 (vp + 1) 

2 ep ≥ 3 ( 2 + ep - n)

= 6 + 3ep – 3n

3n – 6 ≥ ep



Voronoi Diagram and Delaunay
Tessellation

Delaunay triangulation DT(S): 

A tessellation obtained by connecting a pair 
of points p.q ∈ S with a line segment if a 
circle C exists that passes through p and q and 
does not contain any other site of S in its 
interior or boundary. 

The edges of DT(S) are called Delaunay
edges.

1. Two points in S are joined by a Delaunay edge if their Voronoi regions are 
adjacent.

2. If no four points of S are cocircular then                                          DT(S) − the 
dual of the Voronoi diagram V(S) − is a triangulation of S DT(S) is called the 
Delaunay triangulation. 

3. Three points of S give rise to a Delaunay triangle if their circumcircle does 
not contain a point of S in its interior.



Construction of Voronoi Diagram
A simple algorithm

Given an algorithm for computing                                
the intersection of halfplanes, one     
can construct the Voronoi region          
of each point separately. 

This needs O(n2 log n) time



Lower bound proof

Proof: Using reduction from ε-closeness

Suppose y1, y2, …,yn be n real numbers
Does there exists i ≠ j such that |yi – yj | < ε

Define points pi = (iε/n, yi), i = 1, 2, … n

1. Compute the Voronoi Diagram

2. In O(n) time, it can be checked that every 
Voronoi region is intersected by the y-axis       
in bottom-up order.

3. If for each pi, its projection onto y-axis lies in its Voronoi region, then the order of 
yi’s in decreasing order is available. Next check the desired condition in O(n)
time.

4. Otherwise there exists a pi whose projection falls in the Voronoi region of some pj
In such a case |yi – yj | < ε holds since

|yi – yj |  < dist((0,yi), pj)  <  dist((0,yi), pi)  < ε

Time Complexity for Computing Voronoi Diagram is Ω(n log n)



Construction of Voronoi Diagram
using divide and conquer

Input: A set of points (sites) 

Output: A partitioning of
the plane into regions of 
equal nearest neighbors.



Divide and conquer: Divide Step

Divide: Divide the point set into two halves



Divide and Conquer: Conquer Step

Conquer: Recursively compute the Voronoi diagrams for the smaller 
point sets.
Abort condition: Voronoi diagram of a single point is the entire plane.



Divide and Conquer: Merge

Merge the diagrams by a (monotone) sequence of edges



The Result
The finished Voronoi Diagram

Running time: With n given points is O(n log n)



Example



Fortune’s line sweep algorithm

It is an incremental construction 
A horizontal line is swept among the sites from top to bottom
It maintains portion of Voronoi diagram which does not 

change due to the appearance of new sites below sweep 
line; 

It keeps track of incremental changes of the Voronoi diagram 
that is caused for the appearance of each site on the 
sweep line.



Construction of Voronoi diagram

What is the invariant we are looking for?

It maintains a representation of the locus of the point q that 
are at the same distance from some site pi above the sweep 
line and the line itself.

e
v

pi

Sweep Line

q



Construction of Voronoi diagram (contd.)

Which points are closer to a site above the sweep line than to the 
sweep line itself?

The set of parabolic arcs form a beach-line that bounds the 
locus of all such points

Break points trace out Voronoi edges

Sweep Line

pi

q

Equidistance



Construction of Voronoi diagram (contd.)

Sweep Line

pi

q

Arcs flatten out as sweep line 
moves down

Eventually, the middle arc disappears

Sweep Line

pi

q



Construction of Voronoi diagram (contd.)
Thus, we have detected a circle that contains no site in P and touches       

3 or more sites.

Sweep Line

pi

q

Voronoi vertex!



Construction of Voronoi diagram (contd.)

When a new site appears on the sweep line, 
a new arc appears on the beach line

Sweep Line

pi

q

Equidistance



Beach Line properties

• Voronoi edges are traced by the break points as the sweep line 
moves down.

Emergence of a new break point (due to the formation of a new arc 
or a fusion of two existing break points) identifies a new edge

• Voronoi vertices are identified when two break points meet (fuse).

Decimation of an old arc identifies new vertex



Data Structures

Current state of the Voronoi diagram

Doubly linked list (D) containing half-edges, edges, vertices and cell 
records

Current state of the beach line (T)

Keeps track of break points, and the arcs currently on beach line

Current state of the sweep line (Event queue)

Priority queue on decreasing y-coordinate 



Doubly-linked list (D)

A simple data structure that allows an algorithm to traverse a 
Voronoi diagram’s vertices, edges and cells

e
v

Cell(pi)

Consider edges as a pair of 
uni-directional half-edges

A chain of counter-clockwise 
half-edges forms a cell

Define a half-edge’s “twin” to 
be its opposite half-edge of 
the same Voronoi edge



Beach Line Data Structure (T)

pi pj pk pl

< pj, pk>

< pi, pj> < pk, pl>
pi

pj
pk

pl

l

It is a balanced binary search tree
Internal nodes represent break points between two arcs

Leaf nodes represent arcs, each arc in turn is represented by the site that 
has generated it

It also contains a pointer to a potential circle event



Event Queue (Q)

Consists of 

Site Events (when the sweep line encounters a new site point) 

Circle Events (when the sweep line encounters the bottom of an empty 
circle touching 3 or more sites).

It is prioritized with respect to the decreasing order of the y-coordinate 
of the events



Site Event

l l

Original arc above the new site is broken into two

⇒ Number of arcs on beach line is O(n)

A new arc appears when a new site appears



Circle Event

Sweep line helps determine that the circle is indeed empty.

Circle Event!
Sweep Line

pi
q

Voronoi vertex!

An arc disappears whenever an empty circle touches three or more
sites and is tangent to the sweep line.



Voronoi diagram: A different Formulation

1. Project each point pi on the surface of a unit paraboloid

2. Compute the lower convex hull of the projected points. 

Result: Given S = {pi|i=1, 2, …n} in the plane (no 4 points co-circular) and given 
3 points p, q, r ∈S, the triangle Δ pqr is a triangle of Delauney triangulation if 
Δ p’q’r’ is a face of the lower convex hull of the projected points S’ 

Conclusion:  The projection of this convex hull gives the Delauney Triangulation          
of the point set.



Voronoi diagram: A different Formulation

1. Project each point pi on the surface of a unit paraboloid

2. Draw tangent planes of the paraboloid at every projected point. 

3. Compute the upper envelope of these planes. 

Result:  The projection of this upper envelope gives the Voronoi diagram 
of the point set.



Voronoi diagram in Laguerre geometry

Define the distance of two points p = (x1, y1, z1) and q = (x2, y2, z2) in R3 is

D2(p,q) = (x1- x2)2 + (y1- y2)2 – (z1- z2)2

In Laguerre geometry

A point (x, y, z) is mapped to a circle in the Euclidean plane with center (x, y) 
and radius |z|

The distance between a pair of points in R3 corresponds to the length of the 
common tangent of the corresponding two circles

The distance of a point p = (x, y) from a circle Ci(Qi, ri) with center Qi = (xi, yi) 
and radius ri
= length of the tangent segment of the circle Ci(Qi, ri) from point p = (x, y)   
= DL

2(Ci,p) = (xi- x)2 + (yi- y)2 – ri
2

DL
2(Ci,p) is negative, zero or positive depending on whether p lies inside, on or 
outside Ci



Voronoi diagram in Laguerre geometry

Radical axis: Locus of the points equidistant 
from two circles Ci and Cj.

Radical center: If the centers of three circles 
are not collinear, then the radical axes of 
(Ci and Cj), (Cj and Ck) and (Ci and Ck) 
meet at a point.



Voronoi diagram in Laguerre geometry
Voronoi Polygon: Suppose n circles Ci(Qi, ri) are given in the plane.                   

Distance of Ci and a point p is defined by DL(Ci,p), 
Then the Voronoi polygon V(Ci) for circle Ci is 

V(Ci) = ∩ {p ∈ R2 | DL
2(Ci,p) < DL

2(Cj,p)}

Voronoi polygons partition the whole plane

V(Ci) is always convex

V(Ci) may be empty if Ci is contained in   
the union of other circles 

A circle whose Voronoi polygon is non-
empty is called substantial circle

A circle whose Voronoi polygon is empty  
is called trivial circle                                
(C3 is a trivial circle)



Voronoi diagram in Laguerre geometry
Voronoi Polygon: Suppose n circles Ci(Qi, ri) are given in the plane.                   

Distance of Ci and a point p is defined by DL(Ci,p), 
Then the Voronoi polygon V(Ci) for circle Ci is 

V(Ci) = ∩ {p ∈ R2 | DL
2(Ci,p) < DL

2(Cj,p)}

A circle that intersects its Voronoi polygon 
is said to be proper; otherwise it is 
improper.

A trivial circle is necessarily improper

If V(Ci) is non-empty and unbounded then 
the center of Ci is at a corner of the 
convex hull of the centers of Ci’s.

A divide and conquer method for constructing V(C) 
is described by Imai, Iri and Murota, 1985. 



Use of Voronoi Diagram

Search for nearest neighbour
Input: A fixed (static) set P of                                                            

n points in the plane, and                                       
a query point p

Output: Nearest neighbour of                                           
p in P

Solution
• Construct the Voronoi diagram                                   

for P in time O(n log n)
• Solve the point location problem                                

in O(log n) time.



Use of Voronoi Diagram (contd.)

Closest pair of points:
Inspect all the edges list of 
Vor(P) and determine 
the minimally separated pair

Largest empty circle:
Each Voronoi vertex represents 
the center of a maximal empty
circle. Find one having maximum 
radius.



Base station placement problem

Problem: Place k base stations of same power in a convex region

Method:

Initial Configuration:
Randomly distribute k points inside the                   
region

Iterative Step:

1. Compute the Voronoi diagram

2. Compute the minimum enclosing circle                      
of each Voronoi polygon

3. Move each point to the center of its        
corresponding circle. 

Termination Condition:

The radius of each circle is almost same.



Furthest Point Voronoi Diagram

V-1(pi) : the set of point of                                         
the plane farther from                                          
pi than from any other                                            
site

Vor-1(P) : the partition of                                         
the plane formed by                                             
the farthest point                                              
Voronoi regions, their                                          
edges, and vertices



Furthest Point Voronoi Region

Construction of V-1(7)

Property
The farthest point Voronoi
regions are convex



Furthest Point Voronoi Region

Property
If the farthest point Voronoi
region of pi is non empty then
pi is a vertex of conv(P)



Furthest Point Voronoi Region

Property
If pi is a vertex of conv(P)
then the farthest point
Voronoi region of pi is
non empty

Property
The farthest point
Voronoi regions are
unbounded

V-1(4)

Corollary
The farthest point
Voronoi edges and
vertices form a tree



Farthest point Voronoi edges and vertices

V-1(1)

V-1(4)

x

V-1(2)

V-1(4)

V-1(7)

edge : set of points equidistant
from 2 sites and closer
to all the other sites     

vertex : point equidistant
from at least 3 sites and
closer to all the other sites     



Application: Smallest enclosing circle

V-1(2)

V-1(4)

V-1(7)



Order-2 Voronoi diagram

V(pi,pj) : the set of points
of the plane closer
to each of pi and pj
than to any other site

Property
The order-2 Voronoi
regions are convex



Construction of V(3,5)



Order-2 Voronoi edges

Question
Which are the regions
on both sides of cp(s,t) ?

=> V(p,s) and V(p,t)

c3(1,2)

V(2,3)

V(1,3)

edge : set of centers of
circles passing through
2 sites s and t and
containing 1 site  p   
=> cp(s,t)



Order-2 Voronoi vertices

=> up(Q) or u∅(Q)

u5(2,3,7)

u∅(3,6,7,5)

vertex : center of a circle
passing through at least 
3 sites and containing
either 1 or 0 site



Order-2 Voronoi vertices

vertex : center of a circle
passing through at least 
3 sites and containing
either 1 or 0 site

=> up(Q)

u5(2,3,7)

or u∅(Q)

Question
Which are the regions
incident to up(Q) ?

=> V(p,q) with q ∈ Q

V(5,2)

V(5,7)
V(5,3)



Order-2 Voronoi vertices

vertex : center of a circle
passing through at least 
3 sites and containing
either 1 or 0 site

=> up(Q) or u∅(Q)
u∅(3,6,7,5)

Question
Which are the regions
incident to up(Q) ?

=> V(p,q) with q ∈ Q

Question
Which are the regions
incident to u∅(Q) ?

=> V(q,q’) with q and q’ consecutive on the circle circumscribed to Q

V(6,7)

V(5,7)

V(3,5)

V(3,6)



Order-k Voronoi Diagram

Theorem
The size of the order-k
diagrams is O(k(n-k))

Theorem
The order-k diagrams
can be constructed from
the order-(k-1) diagrams
in O(k(n-k)) time

Corollary
The order-k diagrams can
be iteratively constructed
in O(n log n + k2(n-k)) time



Voronoi diagram of weighted points

S → Set of points in 2D

w(p) → weight attached with the point p ∈ S

dw(x,p) = de(x,p)/w(p) → weighted distance of a point x from p ∈ S

Weighted Voronoi diagram
WVD(S) → the subdivision of the plane 
such that

region(p) = {x dw(x,p) < dw(x,q) ∀ q ∈ S

If a point x falls in region(p), then p is 
the weighted nearest neighbor of x. 



Voronoi diagram of weighted points

S = {p, q} be two weighted points in 2D with w(p) < w(q).
Then dom(p,q) = the region of influence of p is the closed disk with       
center at (w2(p) p – w2(q) q)/(w2(p) – w2(q)), 
and radius (w(p) w(q) de(p,q))/(w2(p) – w2(q))
dom(q,p) = the region of influence of q is the closed complement of this disk.

For a set S of more than 2 points region(p) = ∩ q ∈S\{p} dom(p,q)

Observations:

Let p, q, r be three weighted points. Then there are at most two points 
common to sep(p,q), sep(q,r) and sep(p,r);

A point common to two of them is common to all of them.

region(p) may not always be connected.

region(p) may be empty for some point p.



Weighted Voronoi diagram:
Combinatorial Complexity

Let S denote the set of n weighted points in the plane. Then WVD(S)
contains Ω(n2) faces, edges and vertices

Let S be a set of n weighted points in the plane. Then a region may 
be bounded by O(n) edges.

Algorithm for constructing weighted Voronoi diagram:

See Aurenhammer and Edelsbrunner, Pattern Recognition, 1985

Application (in mobile communication):

Power of one base station is more than that of others. Now given the 
position of a mobile terminal where from it will get the service. 



Voronoi diagram for line segments
Input: A set of non-intersecting line segments

Output: Voronoi partition of the region

Voronoi edges: These are formed with              
line segments and/or parabolic arcs.

Straight line edges are part of either the 
perpendicular bisector of two segment      
end-points or the angular bisector or two 
segments.

Curve edges consist of points equidistant from 
a segment end-point and a segment’s interior.

Voronoi vertices: Each vertex is equidistant from 3 
objects (segment end-points and segment 

interiors)                                                  These are of two types

Type 2: It’s two objects are a segment and one of its end-points

Type 3: Its three objects are different.



Voronoi diagram for line segments

Moving a disk from  s to t in the presence of barriers


	Voronoi Diagram
	Formal Definition
	Computing the Voronoi Diagram
	Voronoi Diagram Animations
	Characteristics of the Voronoi Diagram
	Characteristics of the Voronoi Diagram
	Degenerate Case with �no bounded cells!
	Combinatorial Complexity of Voronoi Diagram
	Proof (Continued)
	Voronoi Diagram and Delaunay Tessellation
	Construction of Voronoi Diagram�A simple algorithm
	Lower bound proof
	Construction of Voronoi Diagram�using divide and conquer
	Divide and conquer: Divide Step
	Divide and Conquer: Conquer Step
	Divide and Conquer: Merge
	The Result
	Example
	Fortune’s line sweep algorithm
	Construction of Voronoi diagram
	Construction of Voronoi diagram (contd.)
	Construction of Voronoi diagram (contd.)
	Construction of Voronoi diagram (contd.)
	Construction of Voronoi diagram (contd.)
	Beach Line properties
	Data Structures
	Doubly-linked list (D)
	Site Event
	Use of Voronoi Diagram
	Use of Voronoi Diagram (contd.)
	Base station placement problem
	Furthest Point Voronoi Diagram
	Furthest Point Voronoi Region
	Furthest Point Voronoi Region
	Furthest Point Voronoi Region
	Farthest point Voronoi edges and vertices
	Application: Smallest enclosing circle
	Order-2 Voronoi diagram
	Construction of V(3,5)
	Order-2 Voronoi edges
	Order-2 Voronoi vertices
	Order-2 Voronoi vertices
	Order-2 Voronoi vertices
	Order-k Voronoi Diagram
	Voronoi diagram of weighted points
	Voronoi diagram of weighted points
	Weighted Voronoi diagram:�Combinatorial Complexity
	Voronoi diagram for line segments
	Voronoi diagram for line segments

