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Outline of the Talk

• Motivation

• Helly’s Theorem

• Proof of Existence of Centre-point

• Computing Centre-point

• Summary
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Helly’s theorem (1923) and Radon’s theorem

(1921) are equivalent and belong to the most

fundamental among the non-trivial results in

geometry. The concept of centre-point is a

generalisation of the concept of median for the

points. For a set of points, it is a point such

that the partitions of the set defined by it are

reasonably balanced.
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Helly’s theorem is used to prove the existence

of centre-points where as Radon’s theorem is

used to compute the centre-points in plane in

linear time complexity. In three dimensions and

above there exists an algorithm that yields an

approximate centre-point in linear time that

uses Radon’s theorem extensively. There are

analogous results to Helly’s and Radon’s for

generalisations of configurations and arrange-

ments such as circular sequences and pseudo-

line arrangements.

In the talk we shall prove the Helly’s theo-

rem, use it to prove the existence of centre-

point, and present some algorithms to com-

pute centre-points and to check if a point is

centre-point.
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Motivation for Centre Points

• We all have a notion of centre.

• Can we formalise the notion of centre?
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We can think of centre of almost every geo-

metric object. We perceive that there should

be a central localtion for everything.
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Various Notions of Centre

• Like circumcentre of a triangle — minimise

the maximum distance to all points.

• Like orthocentre/in-centre of a triangle —

maximise the minimum distance to the ex-

terior.

Both these generalise badly. We need to

generalise the notion of median of n values.
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Like there is a central place in China which

is farthest from the sea in any direction. Its

distance to Indian Ocean, Pacific Ocean and

Arctic Ocean is same.

In 1-dimension both the notions generalise to

the mid-point of the two exterior point. Hence

these notions are not at all suitable. Even av-

erage of n values captures more information

than these.

By the way, we usually use average because it is

easier to compute, but one or two very extreme

values can have adverse effect on average.
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Property We are Looking for in
Centre

• If possible, equal count/area/volume on all

sides

• Otherwise, balancing these as much as pos-

sible
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1. What do we mean by a side of any point?

It is an ambiguous term.

2. The second point is interesting because as

we will see it is not always possible to find

centre which balances perfectly.

3. We can extend the result to non-euclidean

gemotry too, if a k-flat in k + 1-flat parti-

tions it into two (actually three).

4. The notion of centre that we are looking

for does not make sense in spherical (Rie-

mannian) geometry where points are poles.

All poles are in one side of a line (there

aren’t any sides).
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Median is Centre in 1D

1. We are not interested in distances — But

only in number of points in either side.

So, we do not worry about distance metric.

2. Median partitions the set in two equal sized

halves.

6



The geometers do not like terms 1D, 2D, in-

stead they prefer Ed or Rd to mention the d-

dimensional space.
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Centre of Uniformly Distributed

points in 2D

Here centre is very nicely situated in the mid-

dle.

Is it always possible to find a balanced centre?
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When we say that the centre is nicely situated

in the middle, we actually mean that every line

passing through it roughly divides the set in

half.

The same result will be had if the points are

distributed uniformly in a circle. Anything that

has to do with circle, we hope to have a good

centre.

The word balanced is not a technical term. I

use it very loosely because we will see later

that we will need to stretch the meaning of

this term quite a bit.
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What do We mean by Balanced

Centre

Every line through centre divides the set in

half.

So, is it possible to find a balanced centre in

all cases?
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In 2D it is always possible to find median of n

points that partitions in half. But it is not so

in higher dimensions.
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Worst Case Distribution in 2D

• Median divides points in equal halves.

• But in 2D, the answer is NO.

• Centre point dividing points only in one-

third.
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Here we can only hope to find a centre-point

which guarantees only one-third of points in

either sides.

In fact, here I have pointed out the centre ac-

cording to the formal definition that we will

give later.

What happens in still higher dimensions?
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Worst Case Distribution in 3D

Centre point dividing points only in one-fourth.
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This is another kind of worst case distribution,

but in 3D. The idea is similar, you put a group

of point on each vertex of a simplex and put a

few points somewhere in the middle.

Here, when we say that the centre divides the

set of points in one-forth, what we really mean

is that there exist a plane passing through the

centre which contains only one-fourth of the

points on one side.

Again dividing is taken in a loose sense.
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Definition of a Centre-point

A centre-point of a finite set of points, P , is

a point such that every closed half-space con-

taining it contains at least d n
d+1e points of P .
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Equivalently, every hyper-plane passing through

the centre-point contains at least d n
d+1e points.

Mostly we will be looking at the discrete and

finite set of points. So we will be interested

only in the count. But it is possible to gen-

eralise for other objects, if we try to balance

area, volume, etc.
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Remarks on the Definition of

Centre-point

We will concentrate only in Ed, even though

centre-points exists elsewhere.

What is important is the notion of half-space.

Not all geometrical spaces may have this no-

tion.
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We have already pointed out the case of non-

euclidean spherical geometry case where points

are poles and lines are equatorial chords.

It is required that every hyperplane should cre-

ate two half-spaces. So essentially it divides

the space in three sets, two half-spaces and

third the points in the hyperplane itself.
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Definition of a Centre-point in

Lower Dimensions

1. In 1D — Centre-point is a median point

partitioning set in half.

2. In 2D — Centre-point partitions set in one-

third at least.

3. In 3D — Centre-point partitions set in one-

fourth at least.
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The at least clause in 2D and 3D is important

because there are better cases when centre-

point divides the set more equally.
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Questions We can Raise

• Do centre-points always exist?

• Are they unique?
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Since we have already seen that in higher di-

mensions than 1 there may not exist any point

that divides the set in half by every hyperplane

passing through it; it is natural to ask whether

or not same happens for d n
d+1e.

For the second question, we may safely say

that they may not be unique.
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The Answers

• Do centre-points always exist?

Yes. However, we need to supply a proof.

• Are they unique?

No. The examples above are sufficient to

show that there may be many centre-points,

some better and some worse.
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We know that medians are not unique. And

for a set of even number of points, there are

many points between two middle points which

partition the set in equal halves.

As we pointed out in case of better distributed

point centre-points can do better.
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Task Before Us

How do we prove the existence of centre-point

(at least in Ed) according to the definition

given previously?
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Hopefully, the proof may generalise easily to

other spaces which admit concrete notions of

half-spaces.
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Helly’s Theorem

We need to take help of Helly’s theorem to

prove the existence of centre point.

Helly’s Theorem Let S1, S2, . . ., Sn be n ≥
d + 1 convex sets in Ed. If every d + 1 of the

sets have common intersection than all the sets

have a common intersection.
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That is to say that
⋂n
i=1 Si is non-empty.
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Bound d+ 1 is tight – I

• Counter Example in d = 2 when we guar-

antee only every d sets have common in-

tersection.

18



The convex sets on the outside do not inter-

sect.
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Bound d+ 1 is tight – II

• Same Example with d = 2 but with tight

bound.
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You can check the case in 1 dimension, if every

two intervals of several given intervals intersect

then all of them have a common intersection.
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Bound d+ 1 is tight (Simple

Case) – III

• Case of intervals in 1D.

• Centre is between right-most left end-point

and left-most right end-point.
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It is easy to prove that points that are in the

central region shown in slide are in every in-

terval. Otherwise there will exist two intervals

which do not intersect.
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Proof of Helly’s Theorem

• We need the help of Radon’s Theorem to

prove Helly’s Theorem.

• Actually Radon’s and Helly’s Theorem are

equivalent.
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That is to say that Radon’s theorem can be

used to prove Helly’s theorem and vice-versa.
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Radon’s Theorem

Radon’s Theorem Let P be set of n ≥ d+ 2

points in Ed. There exists a partition of P into

sets P1 and P2 such that convex hulls of P1

and P2 intersect.
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Radon’s theorem is a classic result from geom-

etry.
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What is the Meaning of

Radon’s Theorem

Example Instances of Radon’s Theorem in E2.
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We can give examples in 3D also. But, it is

better to prove the result once for all.
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Sketch of the Proof of Radon’s

Theorem

• n ≥ d+ 2 points are affinely dependent.∑n
i=1 λipi = O,

∑n
i=1 λi = 0, O is origin, not

all λi = 0.

• Let I1 be the set of i for which λi > 0 and
I2 be the set of i for which λi < 0.

• q1 = 1
λ

∑
i∈I1 λipi = −1

λ

∑
i∈I2 λipi = q2 where

λ =
∑
i∈I1 λi = −

∑
i∈I2 λi

• q1 is in the convex hull of points pi, i ∈ I1
and q2 is in the convex hull of points pi, i ∈
I2.

• Hence proved.
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It is enough if we appreciate that we partition

depending on whether λi is positive or not.

56 min 24-1



Explanation of Proof

Case of five points in 2D.

• 1
2p1 + 1

2p2 − 1
3q1 − 1

3q2 − 1
3q3 = 0

• q = 1
2p1 + 1

2p1 = 1
3q1 + 1

3q2 + 1
3q3

• q is the Radon point.
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pi’s are the points with positive λ’s and qi’s are

the points with negative λ’s.
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Proof of Helly’s Theorem

• The proof is by mathematical induction.

• Let S1, S2, . . . , Si−1, Si+1, . . . , SN have a com-

mon point pi (by induction hypothesis).

• Consider P , set of pi’s, which by Radon’s

theorem cab be partitioned in two sets P1

and P2, convex hull of which intersect at

q.

• We can prove q belongs to every Si. If

pi ∈ P1 then since q is also in convex hull

of pj’s in P2, and also since all pj ∈ Si,

therefore q ∈ Si.

• Hence proved.
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Yet another proof, this time for Helly’s Theo-

rem

If pi ∈ P1 then since q is in convex hull of pj’s

in P2 implies pj ∈ Si. Every point in other set

is in Si.
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Explanation of Proof

Case of four sets in 2D.

• p2 and p4 (also p3) are contained in S1.

• q is in the convex hull of p2 and p3.

• q is in S1 because S1 is convex.

• q is the common intersection point.
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Similar to S1 we can prove that q belongs to

all Si.
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Observation One for

Centre-points

• A half-space containing less than d n
d+1e points

will not contain a centre-point.
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We can prove this by contradiction. If it con-

tains a centre-point, we may find a half-space

parallel to the half-space in question which con-

tains even lesser points.

Or otherwise also, it is contained in a half-

space which contains less than d n
d+1 points,

and therfore will not be a centre-point accord-

ing to the definition that we have given.
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Observation two for

Centre-points

• Centre is intersection of all half-spaces con-

taining more than b ndd+1c points.
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Now we can take union of all such half spaces

which do not contain at lease one centre-point.

If we take complement of this set then we get

the set of all centre-points.
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Proof of Centre Point

• Every d+1 half-spaces containing less than

d n
d+1e points will not cover all points.

• The intersection of their complements is

non-empty.

• By Helly’s theorem the intersection of all

such complements is non-empty.

• Any point in this intersection satisfies the

definition of centre-point.
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Centre can be equivalently seen as the inter-

section of all half-spaces containing more than

b dnd+1c points.

71 min 30-1



Computation of Centre-Point

• Centre-point is in the intersection of all

half-spaces containing more than b dnd+1c points.

• Implies an O(nCd ·n) algorithm to compute

a centre-point.

• Can we do better?
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We can do better at least for plane. For higher

dimensions, there is a good chance that there

is a linear time algorithm. But right now, we

cannot do better than O(nd+1).
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Computation of Centre-Point in

Plane

• Centre-point in two dimension can be com-

puted in linear time using Radon’s Theo-

rem cleverly.
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This algorithm is analogous to the algorithm

to find median of a set of points in plane. It

is a modification of prune and search class of

algorithms.
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Computation of Approximation

Centre-Point

• Approximate centre-point in any dimension

can be computed in linear time.
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The algorithm repeatedly substitutes a small

set of few extreme points with their Radon

point.
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Checking Centre-Point

• Problem of checking if a point is a centre-

point in linear time in any dimension other

than 1D is still not solved.

In E3 it can be done in O(n2), in E4 the

fastest algorithm needs O(n4) and for higher

dimensions there is only straight-forward

method of computing all simplices which

is O(nd+1).
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More or less we have to construct every combi-

nation of half-plane passing through the centre-

point in question. Thus the complexity of the

algorithm is similar to the construction of Cen-

tre.
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A Generalisation of Helly’s

Theorem

• Let A of size at least j(d + 1) be a finite
subfamily of Kd

j , the family of all sets of Ed

that are the unions of j or fewer pairwise
disjoint closed convex set, such that the
intersection of every j members of A is also
in Kd

j . If every j(d+1) members of A have
a point in common, then there is a point
common to all the members of A.

35



Bound j(d+ 1) is tight and cannot be further

reduced.

There is no common intersection for set of

two intervals if every three of them intersect

commonly.

We are relaxing the condition that each set

needs to be convex. Instead we say that each

set is disjoint union of j or less number of con-

vex sets.

82 min 35-1



Tverberg’s Theorem — A

Generalisation of Radon’s

Theorem

• Each set of (r − 1)(d + 1) + 1 or more

points in Ed can be partitioned into r sub-

sets whose convex hulls have a point in

common.
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Bound (r − 1)(d + 1) + 1 is tight and cannot

be further reduced.
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Summary

• We saw the Helly’s Theorem

• Next we proved existence of a Centre-point

• Lastly, we sketched the computation of a

Centre-point
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Further Reading

• Jacob E. Goodman and Joseph O’Rourke

(eds.), Handbook of Discrete and Compu-

tational Geometry, 2nd edition, 2004

• Herbert Edelsbrunner, Algorithms in Com-

binatorial Geometry, Springer Verlag, 1987

38



Thank You
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