Visibility Map for Global Illumination in Point Clouds

http://www.cse.iitb.ac.in/~sharat Acknowledgments: Joint work with Rhushabh Goradia. Thanks to ViGIL, CSE dept, and IIT Bombay (Based on ACM Siggraph Graphite (2007) paper)

Overview

1 Introduction

2 Visibility Map

- What is a V-map?
- Construction of a V-map

3 Results

4 Conclusion and Future Work

Overview

1 Introduction

- Visibility Map
 What is a V-map?
 Construction of a V-map
- 3 Results
- 4 Conclusion and Future Work

TIFF	R-CR	CE	2008	
------	------	----	------	--

What are Point Models?

- Model surfaces as points
- Each point has attributes: [coordinates, normal, reflectance, emmisivity]
- Immediate question: Why not triangles, why points? And how do we get these points?

TIFF	R-CR	CE	2008	
------	------	----	------	--

What are Point Models?

- Model surfaces as points
- Each point has attributes: [coordinates, normal, reflectance, emmisivity]
- Immediate question: Why not triangles, why points? And how do we get these points?

ТΙ	F	R	Н	С	R	C	Е	2	0	0	8	
				~		-	_	-	v	•	•	

Polygons v/s points: The data

Laser range scanners produce 3D data

- Creating a consistent polygon mesh is expensive
- Maintaining a consistent polygon mesh is expensive: Dynamic shapes (e.g., fluttering flag)

ТΙ	F	R	Н	С	R	C	Е	2	0	0	8	
				~		-	_	-	v	•	•	

Polygons v/s points: The data

Laser range scanners produce 3D data

- Creating a consistent polygon mesh is expensive
- Maintaining a consistent polygon mesh is expensive: Dynamic shapes (e.g., fluttering flag)

ТΙ	F	R	Н	С	R	C	Е	2	0	0	8	
				~		-	_	-	v	•	•	

Polygons v/s points: The data

Laser range scanners produce 3D data

- Creating a consistent polygon mesh is expensive
- Maintaining a consistent polygon mesh is expensive: Dynamic shapes (e.g., fluttering flag)

Polygons v/s points: The Illusion

Polygons good for large, flat, or subtly curved regions
 Points better for models with details everywhere.

ViGIL, IIT Bombay

A ►

Polygons v/s points: The Illusion

Polygons good for large, flat, or subtly curved regions Points better for models with details everywhere.

ТΙ	F	R	Н	С	R	C	Е	2	0	0	8	
				~		-	_	-	v	•	•	

Polygons v/s points: Scan Conversion

Smaller polygons lead to higher rasterization costs

тι	F	R	-0	2F	20	F	2	n	n	8	
			- •		10	-	-	v	v	U	

Polygons v/s points: LOD

Level of Detail (LOD) based hierarchy is simpler in point based models

Points Summary

Although the triangle is the defacto standard in representing objects, points are good things to have.

So why have points not been used all this while? Incidentally, images are now a third representation in computer graphics

Points Summary

Although the triangle is the defacto standard in representing objects, points are good things to have.

So why have points not been used all this while? Incidentally, images are now a third representation in computer graphics

TIFR	-CR	CE	2008	
------	-----	----	------	--

Visibility Between Point Pairs

Point representation implies holes

VISIBILITY IN POINT MODELS

What are Global Illumination Algorithms?

- Gl is "obviously" needed: we see it all the time
- GI is expensive: The appearance at a point depends on receiving illumination from all other points, which in turn depends on other points

What are Global Illumination Algorithms?

- GI is "obviously" needed: we see it all the time
- GI is expensive: The appearance at a point depends on receiving illumination from all other points, which in turn depends on other points

What are Global Illumination Algorithms?

- GI is "obviously" needed: we see it all the time
- GI is expensive: The appearance at a point depends on receiving illumination from all other points, which in turn depends on other points

What are Global Illumination Algorithms?

- GI is "obviously" needed: we see it all the time
- GI is expensive: The appearance at a point depends on receiving illumination from all other points, which in turn depends on other points

Examples showing GI Effects

Application Domains

Visibility Between Point Pairs

View Independent Visibility calculation between point pairs is essential to give **correct** GI results as a point receives energy from other point only if it is **visible**

TIFR-	CRCE	2008
-------	------	------

Visibility Between Point Pairs

VISIBILITY IN POLYGONAL MODELS

VISIBILITY IN POINT MODELS

- View dependent visibility versus view independent visibility
- Although view dependent visibility based point based rendering solutions exist, we present the first global illumination solution for point models based on the view independent paradigm

TIFR	-CR	CE	2008	
------	-----	----	------	--

Visibility Between Point Pairs

VISIBILITY IN POLYGONAL MODELS

VISIBILITY IN POINT MODELS

- View dependent visibility versus view independent visibility
- Although view dependent visibility based point based rendering solutions exist, we present the first global illumination solution for point models based on the view independent paradigm

TIFR	-CR	CE	2008	
------	-----	----	------	--

Visibility Between Point Pairs

VISIBILITY IN POLYGONAL MODELS

VISIBILITY IN POINT MODELS

- View dependent visibility versus view independent visibility
- Although view dependent visibility based point based rendering solutions exist, we present the first global illumination solution for point models based on the view independent paradigm

TIFR	-CR	CE	2008	
------	-----	----	------	--

Visibility Between Point Pairs

VISIBILITY IN POLYGONAL MODELS

VISIBILITY IN POINT MODELS

- View dependent visibility versus view independent visibility
- Although view dependent visibility based point based rendering solutions exist, we present the first global illumination solution for point models based on the view independent paradigm

Hierarchical Visibility

Hierarchical Visibility enables *quick* answers to visibility queries, thus enabling a faster GI solution

Hierarchical Visibility

Key Notion: We define a **Visibility Map (V-map)** for the resulting tree to enable *quick* answers to visibility queries.

TΙ	-	D.	0	D	2		2	n	n	Q
		n.	5	n	S	-	~	υ	U	U

Visibility Map

Overview

1 Introduction

Visibility Map What is a V-map? Construction of a V-map

3 Results

4 Conclusion and Future Work

Visibility Map

What is a V-map?

What is a Visibility Map (V-map)?

- The visibility map for a tree is a collection of visibility links for every node in the tree
- The *visibility link* for any node *N* is a set *L* of nodes
- Every point in any node in L is guaranteed to be visible from every point in N

Visibility Map

What is a V-map?

What is a Visibility Map (V-map)?

- The visibility map for a tree is a collection of visibility links for every node in the tree
- The *visibility link* for any node *N* is a set *L* of nodes
- Every point in any node in L is guaranteed to be visible from every point in N

Visibility Map

What is a V-map?

What is a Visibility Map (V-map)?

--- PARTIALLY VISIBLE

-- COMPLETELY INVISIBLE -- COMPLETELY VISIBLE

Visibility Map

What is a V-map?

What is a Visibility Map (V-Map)?

Visibility Map

What is a V-map?

What is a Visibility Map (V-Map)?

Visibility Map

What is a V-map?

Visibility Map Queries?

Visibility map entertain efficient answers:

- **1** Is point x visible from point y?
- 2 What is the visibility status of *u* points around *x* with respect to *v* points around *y*?
 - Repeat a "primitive" point-point visibility query uv times
 - V-map gives the answer with *O*(1) point-point visibility queries.
- **3** Given a point x and a ray R, determine the first object of intersection.
- Is point x in the shadow (umbra) of a light source?

All queries answered with a simple octree traversal

・ コ ト ・ 一戸 ト ・ 日 ト ・

Visibility Map

What is a V-map?

Visibility Map Queries?

Visibility map entertain efficient answers:

- **1** Is point x visible from point y?
- 2 What is the visibility status of *u* points around *x* with respect to *v* points around *y*?
 - Repeat a "primitive" point-point visibility query uv times
 - V-map gives the answer with *O*(1) point-point visibility queries.
- 3 Given a point x and a ray R, determine the first object of intersection.
- Is point x in the shadow (umbra) of a light source?

All queries answered with a simple octree traversal

< □ > < 同 > < 回 >
Visibility Map

What is a V-map?

Visibility Map Queries?

Visibility map entertain efficient answers:

- **1** Is point x visible from point y?
- 2 What is the visibility status of *u* points around *x* with respect to *v* points around *y*?
 - Repeat a "primitive" point-point visibility query uv times
 - V-map gives the answer with *O*(1) point-point visibility queries.
- **3** Given a point x and a ray R, determine the first object of intersection.
- Is point x in the shadow (umbra) of a light source?

All queries answered with a simple octree traversal

< □ > < 同 > < 回 >

Visibility Map

What is a V-map?

Visibility Map Queries?

Visibility map entertain efficient answers:

- **1** Is point x visible from point y?
- 2 What is the visibility status of *u* points around *x* with respect to *v* points around *y*?
 - Repeat a "primitive" point-point visibility query uv times
 - V-map gives the answer with *O*(1) point-point visibility queries.
- **3** Given a point x and a ray R, determine the first object of intersection.
- 4 Is point x in the shadow (umbra) of a light source?

All queries answered with a simple octree traversal

< □ > < 同 > < 三

Construction of a V-map

- Visibility problem provides answer to pairwise queries, and visibility is not a transitive phenomenon.
- Our algorithm, results in an overall linear time algorithm w.r.t. N the number of such pairs,
- This is the best possible for any algorithm that builds the V-Map
- The overall algorithm consumes a small amount of extra overhead memory

Construction of a V-map

- Visibility problem provides answer to pairwise queries, and visibility is not a transitive phenomenon.
- Our algorithm, results in an overall linear time algorithm w.r.t. N the number of such pairs,
- This is the best possible for any algorithm that builds the V-Map
- The overall algorithm consumes a small amount of extra overhead memory

Construction of a V-map

- Visibility problem provides answer to pairwise queries, and visibility is not a transitive phenomenon.
- Our algorithm, results in an overall linear time algorithm w.r.t. N the number of such pairs,
- This is the best possible for any algorithm that builds the V-Map
- The overall algorithm consumes a small amount of extra overhead memory

Construction of a V-map

- Visibility problem provides answer to pairwise queries, and visibility is not a transitive phenomenon.
- Our algorithm, results in an overall linear time algorithm w.r.t. N the number of such pairs,
- This is the best possible for any algorithm that builds the V-Map
- The overall algorithm consumes a small amount of extra overhead memory

Visibility Map

Construction of a V-map

V-map Construction Algorithm

Initialize the old interaction list (o-IL) of every node to be its seven siblings

Visibility Map

Construction of a V-map

V-map Construction Algorithm

procedure OctreeVisibility(Node A)

for each node B in old interaction list (o-IL) of A do
 if NodetoNodeVisibility(A,B) == VISIBLE then
 add B in new interaction list (n-IL) of A
 add A in new interaction list (n-IL) of B
end if

remove A from old interaction list (o-IL) of B

end for

for each C in children(A) do

OctreeVisibility(C)

end for

- V-map constructed by calling initially for the root, which sets up the relevant visibility links in n-IL
- NodetoNodeVisibility(A,B)
 - Constructs the visibility links for all descendants of A w.r.t all descendant
 - of B (and vice-versa) at the best (i.e. highest) possible leve

ViGIL, IIT Bombay

< □ > < 同 > < 回

Visibility Map

Construction of a V-map

V-map Construction Algorithm

procedure OctreeVisibility(Node A)

for each node B in old interaction list (o-IL) of A do if NodetoNodeVisibility(A,B) == VISIBLE then add B in new interaction list (n-IL) of A add A in new interaction list (n-IL) of B

end if

remove A from old interaction list (o-IL) of B

end for

for each C in children(A) do

OctreeVisibility(C)

end for

- V-map constructed by calling initially for the root, which sets up the relevant visibility links in n-IL
- NodetoNodeVisibility(A,B)
 - Constructs the visibility links for all descendants of A w.r.t all descendants of B (and vice-versa) at the best (i.e. highest) possible level.
 - This ensures an optimal structure for hierarchical radiosity as well as reduces redundant computations

Visibility Map

Construction of a V-map

V-map Construction Algorithm

procedure OctreeVisibility(Node A)

for each node B in old interaction list (o-IL) of A do if NodetoNodeVisibility(A,B) == VISIBLE then add B in new interaction list (n-IL) of A add A in new interaction list (n-IL) of B

end if

remove A from old interaction list (o-IL) of B

end for

for each C in children(A) do

OctreeVisibility(C)

end for

- V-map constructed by calling initially for the root, which sets up the relevant visibility links in n-IL
- NodetoNodeVisibility(A,B)
 - Constructs the visibility links for all descendants of A w.r.t all descendants of B (and vice-versa) at the best (i.e. highest) possible level.

This ensures an optimal structure for hierarchical radiosity as well as reduces redundant computations

(日)

Visibility Map

Construction of a V-map

V-map Construction Algorithm

procedure OctreeVisibility(Node A)

for each node B in old interaction list (o-IL) of A do if NodetoNodeVisibility(A,B) == VISIBLE then add B in new interaction list (n-IL) of A add A in new interaction list (n-IL) of B

end if

remove A from old interaction list (o-IL) of B

end for

for each C in children(A) do

OctreeVisibility(C)

end for

- V-map constructed by calling initially for the root, which sets up the relevant visibility links in n-IL
- NodetoNodeVisibility(A,B)
 - Constructs the visibility links for all descendants of A w.r.t all descendants of B (and vice-versa) at the best (i.e. highest) possible level.
 - This ensures an optimal structure for hierarchical radiosity as well as reduces redundant computations

Construction of a V-map

V-map Construction Algorithm

ViGIL, IIT Bombay

문 🕨 🖈 문

< □ > < 同 > <

Construction of a V-map

V-map Construction Algorithm

ViGIL, IIT Bombay

Э

Image: A matrix

Construction of a V-map

V-map Construction Algorithm

Visibility Map

Construction of a V-map

V-map Construction Algorithm

Visibility Map

Construction of a V-map

V-map Construction Algorithm

Construction of a V-map

Leaf-Leaf Visibility Algorithm

Consider centroid and NOT leaf center

ViGIL, IIT Bombay

< 口 > < 同

Visibility Map

Construction of a V-map

Leaf Pair Visibility

Finding Potential Occluders using the Bresenham algorithm

Approximate visibility revisited

ViGIL, IIT Bombay

< □ > < 同 >

Visibility Map

Construction of a V-map

Leaf-Leaf Visibility Algorithm

Construction of a V-map

Leaf-Leaf Visibility Algorithm

- Distance R is unique for each leaf and depends on distribution of points and **not** the size of leaf.
- R is not a user-input
- The strict visibility condition balances the leniency introduced
- Faster, as we exit on finding the first potential occluder
- Dense point models help in achieving better results

NOTE: We perform this visibility computation (with help of averaged normals) only for the leaves. There are no average normals defined for internal nodes of the tree.

< □ > < □ > < □ > < □ > < □ > < □

Construction of a V-map

Leaf-Leaf Visibility Algorithm

Distance R is unique for each leaf and depends on distribution of points and **not** the size of leaf.

R is not a user-input

- The strict visibility condition balances the leniency introduced
- Faster, as we exit on finding the first potential occluder
- Dense point models help in achieving better results

NOTE: We perform this visibility computation (with help of averaged normals) only for the leaves. There are no average normals defined for internal nodes of the tree.

(日)

Construction of a V-map

Leaf-Leaf Visibility Algorithm

- Distance R is unique for each leaf and depends on distribution of points and **not** the size of leaf.
- R is not a user-input
- The strict visibility condition balances the leniency introduced
- Faster, as we exit on finding the first potential occluder
- Dense point models help in achieving better results

NOTE: We perform this visibility computation (with help of averaged normals) only for the leaves. There are no average normals defined for internal nodes of the tree.

э

・ロト ・ 同ト ・ ヨト ・

Construction of a V-map

Leaf-Leaf Visibility Algorithm

- Distance R is unique for each leaf and depends on distribution of points and **not** the size of leaf.
- R is not a user-input
- The strict visibility condition balances the leniency introduced
- **Faster**, as we exit on finding the first potential occluder
- Dense point models help in achieving better results

NOTE: We perform this visibility computation (with help of **averaged normals**) only for the leaves. There are no **average normals** defined for internal nodes of the tree.

< □ > < 同 > < 回 > <

Construction of a V-map

Leaf-Leaf Visibility Algorithm

- Distance R is unique for each leaf and depends on distribution of points and **not** the size of leaf.
- R is not a user-input
- The strict visibility condition balances the leniency introduced
- **Faster**, as we exit on finding the first potential occluder
- Dense point models help in achieving better results

NOTE: We perform this visibility computation (with help of **averaged normals**) only for the leaves. There are no **average normals** defined for internal nodes of the tree.

< □ > < 同 > < 回 > .

Construction of a V-map

Leaf-Leaf Visibility Algorithm

- Distance R is unique for each leaf and depends on distribution of points and **not** the size of leaf.
- R is not a user-input
- The strict visibility condition balances the leniency introduced
- **Faster**, as we exit on finding the first potential occluder
- Dense point models help in achieving better results

NOTE: We perform this visibility computation (with help of **averaged normals**) only for the leaves. There are no **average normals** defined for internal nodes of the tree.

< 口 > < 同 >

Construction of a V-map

Extending to Adaptive Octrees

Cornell room (160,000 points) with the Buddha model (534000 points)

Potential Occluders using the Bresenham algorithm

Construction of a V-map

Ray-Sphere Intersection Algorithm

Figure: Ray-Sphere intersection algorithm to determine point-point visibility

- If node is not a leaf and \overline{pq} intersects the node then traverse its children
- If node is a leaf then check whether tangent plane of that node intersects pq within radius R then node p and q are invisible otherwise declare p and q visible

тι	F	R	-C	B	CI	F	2	n	n	8	
			-0			-	~	v	v	U	

Overview

1 Introduction

Visibility Map
What is a V-map?
Construction of a V-map

3 Results

4 Conclusion and Future Work

TIFF	R-CR	CE	20	08
------	------	----	----	----

Qualitative Results: Visibility Correctness

TIFF	R-CR	CE	20	08
------	------	----	----	----

Qualitative Results: Visibility Correctness

Qualitative Results: Visibility Correctness

TIFR-	CRCE	2008
-------	------	------

Qualitative Results: Visibility Correctness

TIFR-	CRCE	2008
-------	------	------

Qualitative Results: Visibility Correctness

TIFR-	CRCE	2008
-------	------	------

Qualitative Results: Visibility Correctness

Qualitative Results: Comparisions

Qualitative Results: Comparisions

Qualitative Results: Comparisions

тι	F	R	-C	B	CI	F	2	n	n	8	
			-0			-	~	v	v	U	

Qualitative Results: Global Illumination

TIFR-	CRO	CE 2	2008
-------	-----	------	------

Qualitative Results: Global Illumination

TΙ	-	D.	0	D	2		2	n	n	Q
		n.	5	n	S	-	~	υ	U	U

Qualitative Results: Global Illumination

TΙ	-	D.	0	D	2		2	n	n	Q
		n.	5	n	S	-	~	υ	U	U

Qualitative Results: Global Illumination

Quantitative Results

Model	Points (millions)	N ² links (millions)	V-Map Links (millions)	% Decrease	Memory(MB) N ² links	Memory(MB) V-Map links	Build V-Map Time(secs)
ECR	0.1	1.4	0.27	79.5%	5.35	1.09	20.6
PCR	0.14	3.85	0.67	82.62%	15.43	2.68	23.8
BUN	0.15	1.53	0.38	74.64%	6.09	1.5	21.7
DRA	0.55	2.75	0.43	84.54%	11.0	1.7	23.5
BUD	0.67	1.58	0.39	74.75%	6.33	1.6	23.9
GAN	0.15	1.56	0.38	75.64%	6.2	1.55	22.0
GOD	0.17	1.62	0.4	75.31%	6.4	1.63	22.9

- ECR Empty Cornell room
- PCR Packed Cornell room
- BUN Bunny in Cornell room
- DRA Dragon in Cornell room
- BUD Buddha in Cornell room
- GAN Indian God Ganesha in a Cornell room
- GOD Indian Goddess Satyavati in a Cornell room

Image: A matched black

э

Quantitative Results

Model	Points (millions)	N ² links (millions)	V-Map Links (millions)	% Decrease	$\underset{N^2 \text{ links}}{\text{Memory(MB)}}$	Memory(MB) V-Map links	Build V-Map Time(secs)
ECR	0.1	1.4	0.27	79.5%	5.35	1.09	20.6
PCR	0.14	3.85	0.67	82.62%	15.43	2.68	23.8
BUN	0.15	1.53	0.38	74.64%	6.09	1.5	21.7
DRA	0.55	2.75	0.43	84.54%	11.0	1.7	23.5
BUD	0.67	1.58	0.39	74.75%	6.33	1.6	23.9
GAN	0.15	1.56	0.38	75.64%	6.2	1.55	22.0
GOD	0.17	1.62	0.4	75.31%	6.4	1.63	22.9

- ECR Empty Cornell room
- PCR Packed Cornell room
- BUN Bunny in Cornell room
- DRA Dragon in Cornell room
- BUD Buddha in Cornell room
- GAN Indian God Ganesha in a Cornell room
- GOD Indian Goddess Satya in a Cornell room

Image: A matched black

э

Quantitative Results

Model	Points (millions)	N ² links (millions)	V-Map Links (millions)	% Decrease	Memory(MB) N ² links	Memory(MB) V-Map links	Build V-Map Time(secs)
ECR	0.1	1.4	0.27	79.5%	5.35	1.09	20.6
PCR	0.14	3.85	0.67	82.62%	15.43	2.68	23.8
BUN	0.15	1.53	0.38	74.64%	6.09	1.5	21.7
DRA	0.55	2.75	0.43	84.54%	11.0	1.7	23.5
BUD	0.67	1.58	0.39	74.75%	6.33	1.6	23.9
GAN	0.15	1.56	0.38	75.64%	6.2	1.55	22.0
GOD	0.17	1.62	0.4	75.31%	6.4	1.63	22.9

- ECR Empty Cornell room
- PCR Packed Cornell room
- BUN Bunny in Cornell room
- DRA Dragon in Cornell room
- BUD Buddha in Cornell room
- GAN Indian God Ganesha in a Cornell room
- GOD Indian Goddess Satyavati in a Cornell room

Image: A matched black

э

Overview

1 Introduction

- Visibility Map
 What is a V-map?
 Construction of a V-map
- 3 Results

4 Conclusion and Future Work

Conclusion

- The lack of surface information in point models creates difficulties in operations like generating global illumination effects and computing point-pair visibility
- Point-to-Point Visibility is arguably one of the most difficult problems in rendering since the interaction between two primitives depends on the rest of the scene
- One way to reduce the difficulty is to consider clustering of regions such that their mutual visibility is resolved at a group level (V-Map)
- Visibility Map data structure enables efficient answer to common rendering queries
- We have presented a novel, provably efficient, hierarchical, visibility determination scheme for point based models
- By viewing this visibility map as a 'preprocessing' step, photo-realistic global illumination rendering of complex point-based models have been shown

ViGIL. IIT Bombay

(日)

Conclusion

- The lack of surface information in point models creates difficulties in operations like generating global illumination effects and computing point-pair visibility
- Point-to-Point Visibility is arguably one of the most difficult problems in rendering since the interaction between two primitives depends on the rest of the scene
- One way to reduce the difficulty is to consider clustering of regions such that their mutual visibility is resolved at a group level (V-Map)
- Visibility Map data structure enables efficient answer to common rendering queries
- We have presented a novel, provably efficient, hierarchical, visibility determination scheme for point based models
- By viewing this visibility map as a 'preprocessing' step, photo-realistic global illumination rendering of complex point-based models have been shown

ViGIL, IIT Bombay

(日)

Conclusion

- The lack of surface information in point models creates difficulties in operations like generating global illumination effects and computing point-pair visibility
- Point-to-Point Visibility is arguably one of the most difficult problems in rendering since the interaction between two primitives depends on the rest of the scene
- One way to reduce the difficulty is to consider clustering of regions such that their mutual visibility is resolved at a group level (V-Map)
- Visibility Map data structure enables efficient answer to common rendering queries
- We have presented a novel, provably efficient, hierarchical, visibility determination scheme for point based models
- By viewing this visibility map as a 'preprocessing' step, photo-realistic global illumination rendering of complex point-based models have been shown

ViGIL, IIT Bombay

(日)

Conclusion

- The lack of surface information in point models creates difficulties in operations like generating global illumination effects and computing point-pair visibility
- Point-to-Point Visibility is arguably one of the most difficult problems in rendering since the interaction between two primitives depends on the rest of the scene
- One way to reduce the difficulty is to consider clustering of regions such that their mutual visibility is resolved at a group level (V-Map)
- Visibility Map data structure enables efficient answer to common rendering queries
- We have presented a novel, provably efficient, hierarchical, visibility determination scheme for point based models
- By viewing this visibility map as a 'preprocessing' step, photo-realistic global illumination rendering of complex point-based models have been shown

ViGIL, IIT Bombay

イロト イヨト イヨト

Conclusion

- The lack of surface information in point models creates difficulties in operations like generating global illumination effects and computing point-pair visibility
- Point-to-Point Visibility is arguably one of the most difficult problems in rendering since the interaction between two primitives depends on the rest of the scene
- One way to reduce the difficulty is to consider clustering of regions such that their mutual visibility is resolved at a group level (V-Map)
- Visibility Map data structure enables efficient answer to common rendering queries
- We have presented a novel, provably efficient, hierarchical, visibility determination scheme for point based models
 - By viewing this visibility map as a 'preprocessing' step, photo-realistic global illumination rendering of complex point-based models have been shown

ViGIL, IIT Bombay

イロト イヨト イヨト

Conclusion

- The lack of surface information in point models creates difficulties in operations like generating global illumination effects and computing point-pair visibility
- Point-to-Point Visibility is arguably one of the most difficult problems in rendering since the interaction between two primitives depends on the rest of the scene
- One way to reduce the difficulty is to consider clustering of regions such that their mutual visibility is resolved at a group level (V-Map)
- Visibility Map data structure enables efficient answer to common rendering queries
- We have presented a novel, provably efficient, hierarchical, visibility determination scheme for point based models
- By viewing this visibility map as a 'preprocessing' step, photo-realistic global illumination rendering of complex point-based models have been shown

イロト イヨト イヨト

TIFR-CRCE 2008

- Conclusion and Future Work

Thank You

That's it !

