
Introduction

Lower
bounds

Dual Fitting

Rounding

Primal-dual

Approximation Algorithms
and

Linear Programming

Daya Gaur1

1Department of Computer Science and Engineering

Indian Institute of Technology Ropar

Thapar University IGGA

28 Oct 2010



Introduction

Lower
bounds

Dual Fitting

Rounding

Primal-dual

Vertex cover

IP :minimize ∑
v∈V

wvxv

xu+ xv >= 1 ∀(u,v) ∈ E

xv ∈ {0,1} ∀v ∈ V

LP :minimize ∑
v∈V

wvxv

xu+ xv >= 1 ∀(u,v) ∈ E

xv ≥ 0 ∀v ∈ V
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Matching

D−LP :minimize ∑
(u,v)∈E

yuv

∑
v∈N(u)

yuv ≤ wu for all u ∈ V

yuv ≥ 0 ∀v ∈ V

M :minimize ∑
(u,v)∈E

yuv

∑
v∈N(u)

yuv ≤ wu for all u ∈ V

yuv ∈ {0,1} ∀v ∈ V
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Set cover

IP :minimize ∑
s∈S

wsxs

∑
s:v∈s

xs >= 1 ∀v ∈ U

xs ∈ {0,1} ∀s ∈ S

LP :minimize ∑
v∈V

wsxs

∑
s:v∈s

xs >= 1 ∀v ∈ U

xs ≥ 0 ∀s ∈ S
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Set cover: Dual

LP :maximize ∑
u∈V

yu

∑
v∈s

yv ≤ ws ∀s ∈ S

yv ≥ 0 ∀v ∈ V

ILP :maximize ∑
u∈V

yu

∑
v∈s

yv ≤ ws ∀s ∈ S

yv ∈ {0,1} ∀v ∈ V
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Shortest paths in digraphs

IP :minimize ∑
e∈E

wexe

∑
e∈N(v)

xe =


1 if v = s

−1 if v = t

0 otherwise

xe ∈ {0,1} ∀e ∈ E

Vertex, Edge incidence matrix. (u,e) is 1 is edge goes out from

u, −1 otherwise.

LP relaxation polytope is integral (integrality gap is 1).
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Constrained shortest paths

IP :minimize ∑
e∈E

wexe

∑
e∈N(v)

xe =


1 if v = s

−1 if v = t

0 otherwise

∑
e∈E

dexe ≤ D

xe ∈ {0,1}∀e ∈ E
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Constrained shortest paths

IP1 :min ∑
e∈E

wexe +λ (∑
e∈E

dexe −D)

∑
e∈N(v)

xe =

 1 if v = s

−1 if v = t

0 otherwise

∑
e∈E

dexe ≤ D

xe ∈ {0,1} ∀e ∈ E

Let x∗ be the optimal integral solution to the constrainted shortest

path problem. v(IP,x∗)≥ v(IP1,x∗) for λ ≥ 0.
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Constrained shortest paths

IPL :min ∑
e∈E

wexe +λ (∑
e∈E

dexe −D)

∑
e∈N(v)

xe =


1 if v = s

−1 if v = t

0 otherwise

xe ∈ {0,1} ∀e ∈ E

Let x ′ be the optimal integral solution to IPL.
v(IP1,x∗)≥ v(IPL,x

′) ∀λ ≥ 0.

Theorem

The value of optimal solution to IPL is a lower bound on the value of

x∗.
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Lagrangian relaxation

• IPL is the Lagrangian relaxation.

• We want the best possible lower bound, therefore �nd λ

such that optimal to IPL maximized.
• Largarangian can be solved using subgradient methods

(note that the function might not be di�erentiable).
• Or using column generation (Dantzig-Wolfe

decomposition).
• Lagrangian bound is atleast as good as the linear

programming bound, for integral polytopes the two bounds
coincide
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Greedy Algorithm for Set Cover

R = {}

Sol = {}

while R != U

s : min { w(s)/|s \ R| }

Sol <- Sol union s

R <- R union (s \ R)

for all e in (s \ R)

p(e) = w(s)/|s \ R|
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Analysis

Proof.

∑
e∈U

p(e) = w(Sol)

Consider a set s = (s1, . . . ,sk)

For all i ,p(si )≤
w(s)

k− i

∑
si∈s

p(si )≤ w(s)H(k)

p(e)/H(n) is feasible in the dual

By weak duality the performance ratio is H(n).

s ′i s are ordered in the order they are covered by the greedy.
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LP rounding

1 Construct an integer program for the problem.

2 Relax the integrality constraints.

3 Solve the linear programming relaxation (in polynomial

time).

4 Construct an integral solution from the optimal LP

solution.
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Vertex Cover

IP :minimize ∑
v∈V

wvxv

xu+ xv >= 1 ∀(u,v) ∈ E

xv ∈ {0,1} ∀v ∈ V

LP :minimize ∑
v∈V

wvxv

xu+ xv >= 1 ∀(u,v) ∈ E

xv ≥ 0 ∀v ∈ V

Let x∗ be the optimal LP solution.

xv =

{
1 if x∗v >= 1

2

0 otherwise.
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Vertex Cover

• Each constraint contains atleast one variable with value

≥ 1/2 in x∗.

• Rounding gives a feasible integral solution.

• Value of the integral solution is at most double the value

of the optimal LP solution.

Current best approximation ratio for Vertex Cover. Long

standing problem to either improve or show that vertex cover

cannot be approximated better than 2 (absolute constant).
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Half integrality of Vertex Cover

De�nition

A solution to an LP is an extreme point if it cannot be expressed

as a convex combination of two other feasible solutions.

Lemma

Every extreme point solution is half integral i.e., xv ∈ {0,1/2,1}.

Proof.

Vp = {v | x∗v > 1/2} Vn = {v | x∗v < 1/2}

av =

 x∗v + ε if v ∈ Vp

x∗v − ε if v ∈ Vn

x∗v otherwise.
bv =

 x∗v − ε if v ∈ Vp

x∗v + ε if v ∈ Vn

x∗v otherwise.
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Multi processor scheduling

De�nition

Input: n jobs and m machines, pij is the processing time for job

i on machine j .

Problem: Assign each job to a machine so as to minimize the

makespan (time by which all the machines �nish).

IP :minimize t

∑
j∈M

xij = 1 ∀i ∈ J

∑
i∈J

pijxij <= t ∀j ∈M

xij ∈ {0,1} ∀ i , j

LP :minimize t

∑
j∈M

xij = 1 ∀i ∈ J

∑
i∈J

pijxij <= t ∀j ∈M

xij ≥ 0 ∀ i , j
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Integrality gap

iT = {j | pij <= T}

IP(T ) :minimize 0

∑
j∈iT

xij = 1 ∀i ∈ J

∑
i∈J

pijxij <= T ∀j ∈M

xij ∈ {0,1} ∀ i , j

LP(T ) : ∑
j∈iT

xij = 1 ∀i ∈ J

∑
i∈J

pijxij <= T ∀j ∈M

xij ≥ 0 ∀ i , j
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Plan

1 Guess the optimal makespan T

2 Construct an optimal extreme point solution to LP(T).

3 Assign fractionally scheduled jobs to machines such that no

machines receives more than 1 job.

Step 3, can be performed because of the special structure of the

extreme point solution.

Step 3 at most doubles the makespan of the fractional schedule.

Therefore the performance ratio is 2.
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Extreme point solutions

Lemma

At most n+m variables are fractional in any extreme point

solution.

Proof.

Let r be the total number of linearly independent constraints,

whose solution is the extreme point solution. Of these r , atleast

r − (n+m) should be of the type xij ≥ 0, (xij = 0). Therefore

atmost n+m variables are non-zero.
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Extreme point solutions

De�nition

Connected graph G on vertex set V has property T , if it has

atmost |V | edges. Graph G has property T is every connected

component has property T . G = ({J,M},{(i , j) | 1> xij > 0})

Lemma

G has property T .

Proof.
Extreme point solution restricted to connected component is also extreme point solution to LP(T)
restricted to the connected component. Else x is not extreme point. Result follows from the
previous Lemma.
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Extreme point solutions

De�nition

Let F be the set of fractionally assigned jobs. H is subgraph of

G on F ∪M

Lemma

H has property T .

Proof.

Equal number of job vertices and incident edges are removed from G

to obtain H.
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Extreme point solutions

Lemma

H has a perfect matching.

Proof.

Every job vertex has atleast two edge incident on it, therefore each
leaf is a machine. Pair a machine on the leaf with a job (along the
fractional edge). Remove the vertices and the edge from H, subgraph
still has property T . If left with even cycle (biparite graph) then pair
o� alternate edges.
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Rectangle Stabbing

De�nition

Given a set of n rectangles the objective is to stab all the

rectangles using minimum number of axis parallel lines.

Natural Greedy Algorithm (restricted to points)

• Pick the line that covers the maximum number of points in

each iteration.

• Approximation ratio is O(logn).

• Same analysis as for the set cover.



Introduction

Lower
bounds

Dual Fitting

Rounding

Primal-dual

An example

All the horizontal lines (12) comprise the optimal solution, and the

greedy algorithm will pick all the vertical lines (22). The example can

be generalized.
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Point Stabbing (min-max duality)

Theorem

The size of the minimum vertex cover is the same as the size of

the maximum matching in a bipartite graph.

Point stabbing can be solved optimally.
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Rectangle stabbing

L is set of all the lines. r(H) is the set of horizontal lines that

intersect rectangle r , r(V ) is the set of vertical lines that

intersect rectangle r ,

min ∑l∈Lwlxl

∑l∈r(H) xl +∑l∈r(V ) xl ≥ 1 ∀ r

xl ∈ {0,1}
P :min ∑l∈Lwlxl

∑l∈r(H) xl +∑l∈r(V ) xl ≥ 1 ∀ r

xl ≥ 0
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Rectangle stabbing

x∗ is the optimal LP solution.

r(∗) =
{

r(V ) if ∑l∈r(H) x
∗
l ≥

1
2

r(H) otherwise.

M :min ∑l∈Lwlxl

∑l∈r(∗) xl ≥ 1 ∀ r

xl ≥ 0

Polytope associated with M is integral. 2x∗ is feasible in M.
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Set cover

Let x∗ be the optimal solution.

1 Pick each set s in the cover with probability x∗s .

2 Repeat Step 1. c logn times.

E [cost(setsPicked)]≤ c log (n) cost(x∗)

P[cost(setsPicked)> 4c log (n) cost(x∗)]≤ 1/4

LP :minimize ∑
v∈V

xs

∑
s:v∈s

xs >= 1 ∀ v ∈ U

xs ≥ 0 ∀ s ∈ S
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Set Cover

Lemma

Probability that sets picked do not form a cover < 1/4.

Proof.

Let u ∈ U belong to sets s1,s2, . . . ,sk , probability that atleast one of
s1,s2, . . . ,sk is picked ∑

k
i=1

x∗i ≥ 1− (1− 1

k
)k ≥ 1− 1

e
as ∑i s

∗
i ≥ 1.

Probability that u is not covered after c log (n) iterations
≤ 1

ec log (n)
≤ 1

4n
.

Probability that picked sets do not form a cover ≤ n 1

4n
= 1

4
.

Theorem

Probability that picked sets form a cover with cost atmost c log (n)
times the optimal ≥ 1/2.
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Pricing Method for Vertex Cover

De�nition

pe ≥ 0 is the price associated with each edge e.
wv is the cost associated with each vertex v .
Price p is fair if for every vertex ∑e on v pe ≤ wv .

Theorem

A fair price is a lower bound on the cost of any vertex cover.

∑
e on v

pe ≤ wv

∑
v∈S

∑
e on v

pe ≤ w(S)
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Algorithm

De�nition

A vertex is saturated if ∑e on v pe = wv

An edge is uncovered if neither of its endpoints are in the cover.

price of e = 0

while there exists an

uncovered edge e

raise price on e

without violating

fairness

S = { v | v is saturated}
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Analysis

Theorem

Cost of vertex cover produced is at most twice the fair price.

Proof.

Every vertex in the cover is saturated.

∑
e on v

pe = wv

∑
v∈S

∑
e on v

pe = w(S)

2∑
e

pe ≥ w(S)
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Complementary Slackness

P :min ∑
n
i=1 cixi

n

∑
i=1

ajixi ≥ bj , j = 1..m

xi ≥ 0

D :max ∑
m
j=1 bjyj

m

∑
j=1

ajiyj ≤ ci , i = 1..n

yj ≥ 0



Introduction

Lower
bounds

Dual Fitting

Rounding

Primal-dual

Complementary Slackness

Theorem

Let x ,y be primal and dual feasible solutions. x ,y are optimal if

and only if following conditions are satis�ed:

1 xi (∑
m
j=1 ajiyj − ci ) = 0 for all 1≤ i ≤ n

2 yj(∑
n
i=1 ajixi −bj) = 0 for all 1≤ j ≤m.
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Relaxed Complementary Slackness

De�nition

Let x ,y be primal and dual feasible solutions. x ,y are said to

satisfy relaxed complementary slackness condition if:

1 xi > 0 =⇒ ci
α
≤ ∑

m
j=1 ajiyj ≤ ci = 0 for all 1≤ i ≤ n

2 yj > 0 =⇒ (bj ≤ ∑
n
i=1 ajixi ≤ βbj) = 0 for all 1≤ j ≤m.
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RCSC

Theorem

If x ,y are feasible and satisfy RCSC then

∑
n
i=1 cixi ≤ αβ ∑

m
j=1 bjyj .

Proof.

n

∑
i=1

cixi ≤ α

n

∑
i=1

(
m

∑
j=1

aijyj

)
xi

m

∑
j=1

(
n

∑
i=1

aijxi

)
yj ≤ β

m

∑
j=1

bjyj
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pricing method for vertex cover
revisited

α = 1,β = 2

xv > 0 =⇒ ∑e on v pe = wv

pe > 0 =⇒ xu+ xv ≤ 2

• PCSC: Pick only saturated vertices in the cover.

• DCSC: From every edge pick atmost two vertices in the

cover.

PSCS satis�ed by pricing algorithm, DCSC condition satis�ed

automatically
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Minimum Knapsack

min ∑
n
i=1 cixi

∑
n
i=1 dixi ≥ D

xi ∈ {0,1}

D :max y1D

diy1 ≤ ci ∀i
yi ≥ 0
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Flow cover inequalities

Let F be the set of all the items. Given a set A⊆ F of items

d(A) = ∑a∈A da, and the residual demand D(A) = D−d(A).
De�ne di (A) =min{di ,D(A)}. Items in F \A form another

knapsack problem, di replaced with di (A).

min ∑i∈F cixi

∑
i∈F\A

di (A)xi ≥ D(A) ∀A⊆ F

xi ≥ 0

max ∑A⊆D(A)yA

∑
A⊆F :i 6∈A

di (A)yA ≤ ci ∀i ∈ F

yA ≥ 0
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Primal-dual algorithm

• PCSC: xi > 0 =⇒ ∑A⊆F :i 6∈A di (A)yA = ci

• DSCP: yA > 0 =⇒ ∑i∈F\A di (A)xi ≤ 2D(A)

y_{} <- 0

A <- {}

while D(A) > 0 do

raise y_A until some

constraint is tight

x_i <- 1

A <- A union {i}

end while

S <- A
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Relaxed complementary slackness

• Algorithm can raise yA without violating packing

constraint.

• Primal condition is satis�ed because algorithm only picks

tight elements.

• Let elements in A be {1,2, . . . ,k} in the order they are

picked.

• At the start A= φ , d1(φ)x1+ . . .+dk(φ)xk ≤ 2D(φ).
Consider the point in time when y{1,2,...,k−1} was raised,
then the �rst k−1 on the LHS in the equation sum

to< D(φ), and the last term is ≤ D(φ).

• The argument holds for any A= {1, . . . , i −1},
di (A)x1+ . . .+dk(A)xk ≤ 2D(A).
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