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Ramsey Number

I Ramsey Number R(k , l) is the smallest integer n such that in any
two-colouring of the edges of a complete graph on n vertices Kn by
red and blue, either there is a red Kk or there is a blue Kl .

Example (K5)
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K5 need not have a monochromatic triangle.



I Ramsey (1929) showed that R(k , l) is finite for any two integers k
and l .

Example (R(3, 3) = 6)
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K6 will have a monochromatic triangle.

I We propose to obtain a lower bound on the diagonal Ramsey
Numbers R(k , k).



I We now proceed to prove, step by step, that

R(k , k) > b2 k
2 c, ∀k ≥ 3.

I Let S denote a fixed set of k vertices. Let AS denote the event that
the induced subgraph of Kn on S be monochromatic; then

P [AS ] = 21−(k
2).

I Note that there are

(
n

k

)
choices for such an S .

I So the total probability q(n, k) of the event that at least one
induced subgraph of k vertices on Kn is monochromatic is

q(n, k) ≡
(

n

k

)
21−(k

2).



I Suppose, we indeed choose n and k ≥ 3 such that q(n, k) < 1.

I Then, with positive probability, none of the AS ’s occur i.e., there is a
two-colouring of Kn without a monochromatic Kk i.e.,

R(k , k) > n.

I Let the choice of n and k ≥ 3 be n = b2 k
2 c.

I Then, q(n, k) < 21+ k
2

k!

(
n

2
k
2

)k

< 1.

I So, R(k, k) > b2 k
2 c, ∀k ≥ 3.



Crossing Number and Szemerédi-Trotter Theorem

I An embedding of a graph G = (V ,E ) in the plane is a planar
representation of it, where each vertex is represented by a point in
the plane, and each edge (u, v) is represented by a curve connecting
the points corresponding to the vertices u and v .

I The crossing number of such an embedding is the number of pairs
of intersecting curves that correspond to pairs to edges with no
common endpoints.

I The crossing number cr(G ) of G is the minimum possible crossing
number in an embedding of it in the plane.



Example (K3)
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In every planar embedding the graph K3 has crossing number 0. Hence it
is a planar graph.



Example (K4 )
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The graph K4 has crossing number 1 !!!



Example (K4 )
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The graph K4 actually has crossing number 0 !!! It is a planar graph.



Example (K5 )
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The graph K5 has crossing number 5 !!!



Example (K5 has crossing number 1 !!!)
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In every planar embedding the graph K5 has at least a pair of edges
crossing. Hence, it is a non-planar graph.



Example (K3,3)
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The crossing number of K3,3 is 9 !!!



Example (K3,3 has crossing number 1)
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Hence, it is a non-planar graph.



Example (Petersen Graph)
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Famous example of a non-planar graph



I Theorem (Kuratowski, 1930): A graph is planar iff it has no
subgraph homeomorphic to K5 or K3,3.

I The following Crossing Number Theorem was proved by Ajtai,
Chvátal, Newborn and Szemerédi (1982) and independently, by
Leighton:

The crossing number of any simple (i.e., with no multi-edges or no

self-loops) graph G = (V ,E ) with |E | ≥ 4|V | is at least |E |3
64|V |2 .

I Let us describe a short probabilistic proof of this theorem.

I Euler’s Formula: For any spherical polyhedron, with V vertices, E
edges and F faces,

V − E + F = 2.



I Any maximal planar (i.e., one to which no edge can be added
without losing planarity) graph will have triangular faces implying

3F = 2E .

I Hence for any simple planar graph with V = n ≥ 3 vertices, we have

E = V + F − 2 ≤ V +
2

3
E − 2⇒ E ≤ 3n − 6,

implying that it has at most 3n edges.

I Therefore, the crossing number of any simple graph with n vertices
and m edges is at least m − 3n.

I Let G = (V ,E ) be a graph with |E | ≥ 4|V | embedded in the plane
with t = cr(G ) crossings.



I Let H be the random induced subgraph of G obtained by picking
each vertex of G , randomly and independently, to be a vertex of H
with probability p (to be chosen later).

I Then, the expected number of vertices in H is p|V |, the expected
number of edges is p2|E |, and the expected number of crossings (in
its given embedding) is p4t.

I Therefore, we have

p4t ≥ p2|E | − 3p|V |,

implying

t ≥ |E |
p2
− 3
|V |
p3
.

I Substituting p = 4|V |
|E | (≤ 1), we get the result.



I Now we state the famous Szemerédi-Trotter Theorem in
Combinatorial Geometry:

Let P be a set of n distinct points in the plane, and let L be a set of
m distinct lines. Then the number of incidences between the
members of P and those of L (i.e., the number of pairs (p, l) with

p ∈ P, l ∈ L, p ∈ l) is at most c(m
2
3 n

2
3 + m + n), for some absolute

constant c > 0.

I We shall now give a step-by-step proof using probabilistic
arguments. This proof is due to Székely (1997).



I We may and shall assume that every line in L is incident with one of
the points of P.

I Denote the number of such incidences by I .

I Form a graph G = (V ,E ) with V = P, where for
p, q ∈ P, (p, q) ∈ E iff they are consecutive points of P on some
line in L.

I Clearly, |V | = n, and |E | =
∑m

j=1(kj − 1) =
∑m

j=1 kj −m = I −m,
where kj is the number of points of P on line j ∈ L.

I Note that G is already embedded in the plane where the edges are
represented by segments of the corresponding lines in L.

I In this embedding, every crossing is an intersection point of two
members of L, implying

cr(G ) ≤
(

m

2

)
≤ 1

2
m2.



I By the Crossing Number Theorem, either I −m = |E | < 4|V | = 4n,
that is,

I ≤ m + 4n

or
m2

2
≥ cr(G ) ≥ (I −m)3

64n2
,

implying

I ≤ (32)
1
3 m

2
3 n

2
3 + m.

I In both cases,

I ≤ 4
(

m
2
3 n

2
3 + m + n

)
.



Discrepancy Methods in Graphs

I Consider a set system (hypergraph) G (V ,S), with n vertices
(|V | = n) and a set S of m k-hyperedges (subsets of V of size k).

I For all e ∈ S , define

χ(e)
def
=

∑
v∈V :v∈e

χ(v),

where χ(v) ∈ {1 = blue, −1 = red} is the colour assigned to
vertex v .

I The discrepancy D(S) of the system is defined as

D(S)
def
= min

χ:V→{1,−1}
max
e∈S
|χ(e)|.



I Before we proceed further, let us state the following famous theorem
due to Chernoff (1952):

Let Xi , i = 1, . . . , n be mutually independent random variables with

P [Xi = +1] = P [Xi = −1] =
1

2
,

and let Sn =
∑n

i=1 Xn. Let a > 0. Then

P [Sn > a] < e−
a2

2n .

I Using symmetry arguments, we immediately get the following
corollary:

P [|Sn| > a] < 2e−
a2

2n .



I The following theorem gives an upper bound on the discrepancy
D(S) of such a set system S :

D(S) ≤
√

2n ln(2m).

I Let us prove this step by step.

I For A ⊂ V , and for random χ : V → {1,−1}, let XA be the

indicator of the event {|χ(A)| > α}, where α
def
=
√

2n ln(2m).

I If |A| = k, then by our choice of α, we have, by the above corollary
of Chernoff’s Theorem,

E [XA] = P [|χ(A)| > α] < 2e−
α2

2k ≤ 2e−
α2

2n =
1

m
.



I Let X be the number of A with {|χ(A)| > α}, so that
X =

∑
A∈S XA.

I Hence, we have E [X ] =
∑

A∈S E [XA] < |S|
(

1
m

)
= 1.

I Thus, for some χ, we must have X = 0, implying

χ(A) ≤ α, ∀A ∈ S,

implying
max
e∈S
|χ(e)| ≤ α.

I Hence we have

D(S) = min
χ:V→{1,−1}

max
e∈S
|χ(e)| ≤ α =

√
2n ln(2m).
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