Probability and Graphs

Arnab Basu

Quantitative Methods and Information Systems Indian Institute of Management Bangalore Bangalore 560076, India.

Ramsey Number

－Ramsey Number $R(k, /)$ is the smallest integer n such that in any two－colouring of the edges of a complete graph on n vertices K_{n} by red and blue，either there is a red K_{k} or there is a blue K_{l} ．
Example（ K_{5} ）

K_{5} need not have a monochromatic triangle．

- Ramsey (1929) showed that $R(k, l)$ is finite for any two integers k and I.

Example $(R(3,3)=6)$

K_{6} will have a monochromatic triangle.

- We propose to obtain a lower bound on the diagonal Ramsey Numbers $R(k, k)$.
- We now proceed to prove, step by step, that

$$
R(k, k)>\left\lfloor 2^{\frac{k}{2}}\right\rfloor, \forall k \geq 3 .
$$

- Let S denote a fixed set of k vertices. Let A_{S} denote the event that the induced subgraph of K_{n} on S be monochromatic; then

$$
P\left[A_{S}\right]=2^{1-\binom{k}{2}} .
$$

- Note that there are $\binom{n}{k}$ choices for such an S.
- So the total probability $q(n, k)$ of the event that at least one induced subgraph of k vertices on K_{n} is monochromatic is

$$
q(n, k) \equiv\binom{n}{k} 2^{1-\binom{k}{2} .}
$$

- Suppose, we indeed choose n and $k \geq 3$ such that $q(n, k)<1$.
- Then, with positive probability, none of the A_{s} 's occur i.e., there is a two-colouring of K_{n} without a monochromatic K_{k} i.e.,

$$
R(k, k)>n .
$$

- Let the choice of n and $k \geq 3$ be $n=\left\lfloor 2^{\frac{k}{2}}\right\rfloor$.
- Then, $q(n, k)<\frac{2^{1+\frac{k}{2}}}{k!}\left(\frac{n}{2^{\frac{k}{2}}}\right)^{k}<1$.
- So, $R(k, k)>\left\lfloor 2^{\frac{k}{2}}\right\rfloor, \forall k \geq 3$.

Crossing Number and Szemerédi－Trotter Theorem

－An embedding of a graph $G=(V, E)$ in the plane is a planar representation of it，where each vertex is represented by a point in the plane，and each edge (u, v) is represented by a curve connecting the points corresponding to the vertices u and v ．
－The crossing number of such an embedding is the number of pairs of intersecting curves that correspond to pairs to edges with no common endpoints．
－The crossing number $\operatorname{cr}(G)$ of G is the minimum possible crossing number in an embedding of it in the plane．

Example $\left(K_{3}\right)$

In every planar embedding the graph K_{3} has crossing number 0 ．Hence it is a planar graph．

Example (K_{4})

The graph K_{4} has crossing number 1 !!!

Example (K_{4})

The graph K_{4} actually has crossing number 0 !!! It is a planar graph.

Example（ K_{5} ）

The graph K_{5} has crossing number 5 ！！！

Example (K_{5} has crossing number 1 !!!!)

In every planar embedding the graph K_{5} has at least a pair of edges crossing. Hence, it is a non-planar graph.

Example（ $K_{3,3}$ ）

The crossing number of $K_{3,3}$ is 9 ！！！

Example ($K_{3,3}$ has crossing number 1)

Hence, it is a non-planar graph.

Example（Petersen Graph）

Famous example of a non－planar graph

- Theorem (Kuratowski, 1930): A graph is planar iff it has no subgraph homeomorphic to K_{5} or $K_{3,3}$.
- The following Crossing Number Theorem was proved by Ajtai, Chvátal, Newborn and Szemerédi (1982) and independently, by Leighton:

The crossing number of any simple (i.e., with no multi-edges or no self-loops) graph $G=(V, E)$ with $|E| \geq 4|V|$ is at least $\frac{|E|^{3}}{64|V|^{2}}$.

- Let us describe a short probabilistic proof of this theorem.
- Euler's Formula: For any spherical polyhedron, with V vertices, E edges and F faces,

$$
V-E+F=2
$$

- Any maximal planar (i.e., one to which no edge can be added without losing planarity) graph will have triangular faces implying

$$
3 F=2 E .
$$

- Hence for any simple planar graph with $V=n \geq 3$ vertices, we have

$$
E=V+F-2 \leq V+\frac{2}{3} E-2 \Rightarrow E \leq 3 n-6
$$

implying that it has at most $3 n$ edges.

- Therefore, the crossing number of any simple graph with n vertices and m edges is at least $m-3 n$.
- Let $G=(V, E)$ be a graph with $|E| \geq 4|V|$ embedded in the plane with $t=\operatorname{cr}(G)$ crossings.
－Let H be the random induced subgraph of G obtained by picking each vertex of G ，randomly and independently，to be a vertex of H with probability p（to be chosen later）．
－Then，the expected number of vertices in H is $p|V|$ ，the expected number of edges is $p^{2}|E|$ ，and the expected number of crossings（in its given embedding）is $p^{4} t$ ．
－Therefore，we have

$$
p^{4} t \geq p^{2}|E|-3 p|V|,
$$

implying

$$
t \geq \frac{|E|}{p^{2}}-3 \frac{|V|}{p^{3}} .
$$

－Substituting $p=\frac{4|V|}{|E|}(\leq 1)$ ，we get the result．

- Now we state the famous Szemerédi-Trotter Theorem in Combinatorial Geometry:

Let P be a set of n distinct points in the plane, and let L be a set of m distinct lines. Then the number of incidences between the members of P and those of L (i.e., the number of pairs (p, I) with $p \in P, I \in L, p \in I)$ is at most $c\left(m^{\frac{2}{3}} n^{\frac{2}{3}}+m+n\right)$, for some absolute constant $c>0$.

- We shall now give a step-by-step proof using probabilistic arguments. This proof is due to Székely (1997).
- We may and shall assume that every line in L is incident with one of the points of P.
- Denote the number of such incidences by I.
- Form a graph $G=(V, E)$ with $V=P$, where for $p, q \in P,(p, q) \in E$ iff they are consecutive points of P on some line in L.
- Clearly, $|V|=n$, and $|E|=\sum_{j=1}^{m}\left(k_{j}-1\right)=\sum_{j=1}^{m} k_{j}-m=I-m$, where k_{j} is the number of points of P on line $j \in L$.
- Note that G is already embedded in the plane where the edges are represented by segments of the corresponding lines in L.
- In this embedding, every crossing is an intersection point of two members of L, implying

$$
\operatorname{cr}(G) \leq\binom{ m}{2} \leq \frac{1}{2} m^{2} .
$$

- By the Crossing Number Theorem, either $I-m=|E|<4|V|=4 n$, that is,

$$
l \leq m+4 n
$$

or

$$
\frac{m^{2}}{2} \geq \operatorname{cr}(G) \geq \frac{(I-m)^{3}}{64 n^{2}}
$$

implying

$$
I \leq(32)^{\frac{1}{3}} m^{\frac{2}{3}} n^{\frac{2}{3}}+m
$$

- In both cases,

$$
I \leq 4\left(m^{\frac{2}{3}} n^{\frac{2}{3}}+m+n\right) .
$$

Discrepancy Methods in Graphs

- Consider a set system (hypergraph) $G(V, \mathcal{S})$, with n vertices $(|V|=n)$ and a set \mathcal{S} of $m k$-hyperedges (subsets of V of size k).
- For all $e \in S$, define

$$
\chi(e) \stackrel{\text { def }}{=} \sum_{v \in V: v \in e} \chi(v),
$$

where $\chi(v) \in\{1=$ blue, $-1=$ red $\}$ is the colour assigned to vertex v.

- The discrepancy $\mathcal{D}(\mathcal{S})$ of the system is defined as

$$
\mathcal{D}(\mathcal{S}) \stackrel{\text { def }}{=} \min _{\chi: V \rightarrow\{1,-1\}} \max _{e \in \mathcal{S}}|\chi(e)| .
$$

- Before we proceed further, let us state the following famous theorem due to Chernoff (1952):

Let $X_{i}, i=1, \ldots, n$ be mutually independent random variables with

$$
P\left[X_{i}=+1\right]=P\left[X_{i}=-1\right]=\frac{1}{2}
$$

and let $S_{n}=\sum_{i=1}^{n} X_{n}$. Let $a>0$. Then

$$
P\left[S_{n}>a\right]<e^{-\frac{a^{2}}{2 n}} .
$$

- Using symmetry arguments, we immediately get the following corollary:

$$
P\left[\left|S_{n}\right|>a\right]<2 e^{-\frac{a^{2}}{2 n}} .
$$

－The following theorem gives an upper bound on the discrepancy $\mathcal{D}(\mathcal{S})$ of such a set system S ：
$\mathcal{D}(\mathcal{S}) \leq \sqrt{2 n \ln (2 m)}$.
－Let us prove this step by step．
－For $A \subset V$ ，and for random $\chi: V \rightarrow\{1,-1\}$ ，let X_{A} be the indicator of the event $\{|\chi(A)|>\alpha\}$ ，where $\alpha \stackrel{\text { def }}{=} \sqrt{2 n \ln (2 m)}$ ．
－If $|A|=k$ ，then by our choice of α ，we have，by the above corollary of Chernoff＇s Theorem，

$$
E\left[X_{A}\right]=P[|\chi(A)|>\alpha]<2 e^{-\frac{\alpha^{2}}{2 k}} \leq 2 e^{-\frac{\alpha^{2}}{2 n}}=\frac{1}{m}
$$

- Let X be the number of A with $\{|\chi(A)|>\alpha\}$, so that $X=\sum_{A \in \mathcal{S}} X_{A}$.
- Hence, we have $E[X]=\sum_{A \in \mathcal{S}} E\left[X_{A}\right]<|\mathcal{S}|\left(\frac{1}{m}\right)=1$.
- Thus, for some χ, we must have $X=0$, implying

$$
\chi(A) \leq \alpha, \forall A \in \mathcal{S},
$$

implying

$$
\max _{e \in \mathcal{S}}|\chi(e)| \leq \alpha
$$

- Hence we have

$$
\mathcal{D}(\mathcal{S})=\min _{\chi: V \rightarrow\{1,-1\}} \max _{e \in \mathcal{S}}|\chi(e)| \leq \alpha=\sqrt{2 n \ln (2 m)} .
$$

Bibliography

Ram - Ramsey, F. P. (1929); On a Problem of Formal Logic, Proc. Lond. Math. Soc., 30(2): 264-286.

Kur - Kuratowski, K. (1930); Sur le problème des courbes gauches en topologie, Fund. Math., 15: 271-183.

ST - Szemerédi, E. and Trotter (Jr.), W. (1983); A Combinatorial Distinction between Euclidean and Projective Planes, European J. Comb., 4: 385-394.

Sze - Székely, L. (1997); Crossing Numbers and Hard Erdös Problems in Discrete Geometry, Combin. Prob. Comp., 6: 353-358.

M - Matous̆ek, J. (1999); Geometric Discrepancy: An Illustrated Guide, Springer, Algorithms and Combinatorics, 18.

C - Chernoff, H. (1952); A Measure of the Aymptotic Efficiency for Tests of a Hypothesis Based on the Sum of Observations, Ann. Math. Stat., 23: 493-509.

THANK YOU

