# Geometric Data Structures 

## Swami Sarvottamananda

Ramakrishna Mission Vivekananda University

THAPAR-IGGA, 2010

## Outline I

(1) Introduction

- Motivation for Geometric Data Structures
- Scope of the Lecture
(2) Range searching
- Kd-trees
- Range Trees
(3) Interval Queries
- Interval Trees
- Segment Trees

4 Sweeping Technique

- Linear Sweep
- Angular Sweep
(5) Conclusion


## Introduction

## Motivation-I

- Why do we need special data structures for Computational Geometry?


## Motivation-I

- Why do we need special data structures for Computational Geometry?
- Because objects are more complex than set of arbitrary numbers.
- And yet, they have geometric structure and properties that can be exploited.


## Motivation-I: Visibility in plane/space



Any first-person-shooter game needs to solve visibility problem of computational geometry which is mostly done by Binary Space Partitions (BSP) $[4,5]$. (Software: BSPview)

## Motivation-I: Visibility in rough terrain



We might not have enclosed space, or even nice simple objects. (Software: BSPview)

## Motivation-I: Visibility in a room



At every step, we need to compute visible walls, doors, ceiling and floor. (Software: BSPview)

## Motivation-I: Calculation of Binary Space Partitions

The data structure that is useful in this situation is known as Binary Space/Planar Partitions. Almost every 3D animation with moving camera makes use of it in rendering the scene.

## Motivation-II: Locating given objects is geometric subdivisions



Another problem, we might need to locate objects (the elephant) in distinct regions like trees, riverlet, fields, etc. (GPLed game: 0AD)

## Motivation-II: Location of objects in subdivision



This problem is known as point location problem in its simplest special case.

## Motivation-III: Finding objects in a window



Yet in another case, we need to find all objects in a given window that need to be drawn and manipulated. (GPLed game: OAD)

## Motivation-III: Problem of Rangesearching



This problem is known as 2D/3D range searching.

## Motivation-IV: Finding intersections of objects



This is classical collision detection. Intersection of parabolic trajectories with a 3D terrain. (GPLed game: TA-Spring)

## Motivation-IV: Problem of Collision Detection/Finding Intersections

This problem is known as collision detection.
In the static case it is just the intersections computation problem.

## Scope of the lecture

- Binary search trees and Kd-trees: We consider 1-d and 2-d range queries for point sets.


## Scope of the lecture

- Binary search trees and Kd-trees: We consider 1-d and 2-d range queries for point sets.
- Range trees: Improved 2-d orthogonal range searching with range trees.


## Scope of the lecture

- Binary search trees and Kd-trees: We consider 1-d and 2-d range queries for point sets.
- Range trees: Improved 2-d orthogonal range searching with range trees.
- Interval trees: Interval trees for reporting all intervals on a line containing a given query point on the line.


## Scope of the lecture

- Binary search trees and Kd-trees: We consider 1-d and 2-d range queries for point sets.
- Range trees: Improved 2-d orthogonal range searching with range trees.
- Interval trees: Interval trees for reporting all intervals on a line containing a given query point on the line.
- Segment trees: For reporting all intervals in a line containing a given query point on the line.


## Scope of the lecture

- Binary search trees and Kd-trees: We consider 1-d and 2-d range queries for point sets.
- Range trees: Improved 2-d orthogonal range searching with range trees.
- Interval trees: Interval trees for reporting all intervals on a line containing a given query point on the line.
- Segment trees: For reporting all intervals in a line containing a given query point on the line.
- Paradigm of Sweep algorithms: For reporting intersections of line segments, and for computing visible regions.


## Not in the Scope yet relevant

- Point location Problem: The elegant solution makes use of traditional data structures such as height balanced trees which are augmented and modified to suite the purpose.


## Not in the Scope yet relevant

- Point location Problem: The elegant solution makes use of traditional data structures such as height balanced trees which are augmented and modified to suite the purpose.
- BSP trees: Trees are usually normal binary trees again (not even height balanced), so we skip it, even though it is quite interesting and needs a lecture by itself to properly treat the subject.

Range Searching

## 1-dimensional Range searching



## Problem

Given a set $P$ of $n$ points $\left\{p_{1}, p_{2}, \cdots, p_{n}\right\}$ on the real line, report points of $P$ that lie in the range $[a, b], a \leq b$.

- Using binary search on an array we can answer such a query in $O(\log n+k)$ time where $k$ is the number of points of $P$ in $[a, b]$.


## 1-dimensional Range searching



## Problem

Given a set $P$ of $n$ points $\left\{p_{1}, p_{2}, \cdots, p_{n}\right\}$ on the real line, report points of $P$ that lie in the range $[a, b], a \leq b$.

- Using binary search on an array we can answer such a query in $O(\log n+k)$ time where $k$ is the number of points of $P$ in $[a, b]$.
- However, when we permit insertion or deletion of points, we cannot use an array answering queries so efficiently.


## 1-dimensional Range searching



- We use a binary leaf search tree where leaf nodes store the points on the line, sorted by $x$-coordinates.


## 1-dimensional Range searching

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 4 | 7 | 13 | 20 | 22 | 26 | 35 |



Search range [6,25]
Report 7,13,20,22

- We use a binary leaf search tree where leaf nodes store the points on the line, sorted by $x$-coordinates.
- Each internal node stores the $x$-coordinate of the rightmost point in its left subtree for guiding search.


## 2-dimensional Range Searching



## Problem

Given a set $P$ of $n$ points in the plane, report points inside a query rectangle $Q$ whose sides are parallel to the axes.

Here, the points inside $Q$ are 14,12 and 17 .

## Kd-trees for Range Searching Problem

We use a data structure called Kd -tree to solve the problem efficiently.
What are Kd-trees?

## Kd-trees for Range Searching Problem

Kd-trees are basically trees where we divide data first on $x$-coordinates, then $y$-coordinates, then $z$-coordinates, etc. and then cycle.

## 2-dimensional Range Searching



## Problem

Given a set $P$ of $n$ points in the plane, report points inside a query rectangle $Q$ whose sides are parallel to the axes.

Here, the points inside $Q$ are 14,12 and 17 .

## 2-dimensional Range Searching - using 1-dimensional Range Searching



- Using two 1-d range queries, one along each axis, solves the 2-d range query.


## 2-dimensional Range Searching - using 1-dimensional Range Searching



- Using two 1-d range queries, one along each axis, solves the 2-d range query.
- The cost incurred may exceed the actual output size of the 2-d range query (worst case is $O(n), n=|P|$ ).


## 2-dimensional Range Searching: Using Kd-trees

Can we do better?
We can do significantly better using Kd-tree (from $O(n)$ to $O(\sqrt{n})$.


## Range searching

Kd-trees

## Kd-trees: Some concepts



- The tree $T$ is a perfectly height-balanced binary search tree with alternate layers of nodes spitting subsets of points in $P$ using $x$ - and $y$-coordinates, respectively as follows.


## Range searching

Kd-trees

## Kd-trees: Some concepts



- The tree $T$ is a perfectly height-balanced binary search tree with alternate layers of nodes spitting subsets of points in $P$ using $x$ - and $y$-coordinates, respectively as follows.
- The point $r$ stored in the root vertex $T$ splits the set $S$ into two roughly equal sized sets $L$ and $R$ using the median $x$-coordinate $x$ median $(S)$ of points in $S$, so that all points in $L(R)$ have coordinates less than or equal to (strictly greater than) xmedian $(S)$.


## Range searching

Kd-trees

## Kd-trees: Some concepts



- The tree $T$ is a perfectly height-balanced binary search tree with alternate layers of nodes spitting subsets of points in $P$ using $x$ - and $y$-coordinates, respectively as follows.
- The point $r$ stored in the root vertex $T$ splits the set $S$ into two roughly equal sized sets $L$ and $R$ using the median $x$-coordinate $x$ median $(S)$ of points in $S$, so that all points in $L(R)$ have coordinates less than or equal to (strictly greater than) xmedian $(S)$.
- The entire plane is called the region $(r)$.


## Range searching

Kd-trees

## Kd-trees: Some Concepts



- The set $L(R)$ is split into two roughly equal sized subsets $L U$ and $L D(R U$ and $R D)$, using point $u(v)$ that has the median $y$-coordinate in the set $L(R)$, and including $u$ in $L U(R U)$.


## Range searching

Kd-trees

## Kd-trees: Some Concepts



- The set $L(R)$ is split into two roughly equal sized subsets $L U$ and $L D(R U$ and $R D)$, using point $u(v)$ that has the median $y$-coordinate in the set $L(R)$, and including $u$ in $L U(R U)$.
- The entire halfplane containing set $L(R)$ is called the region $(u)($ region $(v))$.


## Range searching

Kd-trees

## Answering rectangle queries using Kd-trees



- A query rectangle $Q$ may partially overlap a region, say $\operatorname{region}(p)$, completely contain it, or completely avoids it.


## Range searching

Kd-trees

## Answering rectangle queries using Kd-trees



- A query rectangle $Q$ may partially overlap a region, say $\operatorname{region}(p)$, completely contain it, or completely avoids it.
- If $Q$ contains an entire bounded region $(p)$ then report all points in region $(p)$.
- If $Q$ partially intersects $\operatorname{region}(p)$ then descend into the children.
- Otherwise skip region $(p)$.


## Time complexity of rectangle queries



## Time complexity of output point reporting

- Reporting points within $Q$ contributes to the output size $k$ for the query.


## Time complexity of output point reporting

- Reporting points within $Q$ contributes to the output size $k$ for the query.
- No leaf level region in $T$ has more than 2 points.


## Time complexity of output point reporting

- Reporting points within $Q$ contributes to the output size $k$ for the query.
- No leaf level region in $T$ has more than 2 points.
- So, the cost of inspecting points outside $Q$ but within the intersection of leaf level regions of $T$ can be charged to the internal nodes traversed in $T$.


## Time complexity of output point reporting

- Reporting points within $Q$ contributes to the output size $k$ for the query.
- No leaf level region in $T$ has more than 2 points.
- So, the cost of inspecting points outside $Q$ but within the intersection of leaf level regions of $T$ can be charged to the internal nodes traversed in $T$.
- This cost is borne for all leaf level regions intersected by $Q$.


## Time complexity of traversing the tree



Now we need to bound the number of nodes of $T$ traversed for a given query $Q$.

## Time complexity of traversing the tree



- It is sufficient to determine the upper bound on the number of (internal) nodes whose regions are intersected by a single vertical (horizontal) line.


## Range searching

Kd-trees

## Time complexity of traversing the tree



- It is sufficient to determine the upper bound on the number of (internal) nodes whose regions are intersected by a single vertical (horizontal) line.
- Any vertical line intersecting $S$ can intersect either $L$ or $R$ but not both, but it can meet both $R U$ and $R D$ ( $L U$ and $L D$ ).


## Range searching

Kd-trees

## Time complexity of traversing the tree



- It is sufficient to determine the upper bound on the number of (internal) nodes whose regions are intersected by a single vertical (horizontal) line.
- Any vertical line intersecting $S$ can intersect either $L$ or $R$ but not both, but it can meet both $R U$ and $R D$ ( $L U$ and $L D$ ).
- Any horizontal line intersecting $R$ can intersect either $R U$ or $R D$ but not both, but it can meet both children of $R U(R D)$.


## Time complexity of rectangle queries



- Therefore, the time complexity $T(n)$ for an $n$-vertex Kd -tree obeys the recurrence relation

$$
T(n)=2+2 T\left(\frac{n}{4}\right), \quad T(1)=1
$$

## Time complexity of rectangle queries



- Therefore, the time complexity $T(n)$ for an $n$-vertex Kd -tree obeys the recurrence relation

$$
T(n)=2+2 T\left(\frac{n}{4}\right), \quad T(1)=1
$$

- The solution for $T(n)$ is $O(\sqrt{n})$ (an exercise for audience!!, direct substitution does not work!!).
- The total cost of reporting $k$ points in $Q$ is therefore $O(\sqrt{n}+k)$.


## Summary:Range searching with Kd-trees

Given a set $S$ of $n$ points in the plane, we can construct a Kd-tree in $O(n \log n)$ time and $O(n)$ space, so that rectangle queries can be executed in $O(\sqrt{n}+k)$ time. Here, the number of points in the query rectangle is $k$.

## Range searching with Range-trees

There is another beast called Range-trees.

## Range searching with Range-trees

There is another beast called Range-trees.

- Given a set $S$ of $n$ points in the plane, we can construct a range tree in $O(n \log n)$ time and space, so that rectangle queries can be executed in $O\left(\log ^{2} n+k\right)$ time.


## Range searching with Range-trees

There is another beast called Range-trees.

- Given a set $S$ of $n$ points in the plane, we can construct a range tree in $O(n \log n)$ time and space, so that rectangle queries can be executed in $O\left(\log ^{2} n+k\right)$ time.
- The query time can be improved to $O(\log n+k)$ using the technique of fractional cascading. We won't discuss this, some deep constructions are involved.


## Range trees: Concepts



Given a 2-d rectangle query $[a, b] \times[c, d]$, we can identify subtrees whose leaf nodes are in the range $[a, b]$ along the $x$-direction.

Only a subset of these leaf nodes lie in the range $[c, d]$ along the $y$-direction.

## Range trees: What are these?


$T_{a s s o c(v)}$ is a binary search tree on $y$-coordinates for points in the leaf nodes of the subtree tooted at $v$ in the tree $T$.

The point $p$ is duplicated in $T_{a s s o c(v)}$ for each $v$ on the search path for $p$ in tree $T$.

The total space requirements is therefore $O(n \log n)$.

## Range trees: Method



We perform 1-d range queries with the $y$-range $[c, d]$ in each of the subtrees adjacent to the left and right search paths for the $x$-range $[a, b]$ in the tree $T$.

## Complexity of range searching using range trees



Since the search path is $O(\log n)$ in size, and each $y$-range query requires $O(\log n)$ time, the total cost of searching is $O\left(\log ^{2} n\right)$. The reporting cost is $O(k)$ where $k$ points lie in the query rectangle.

## More general queries



General Queries: Points inside triangles, circles, ellipses, etc.

- Triangles can simulate other shapes with straight edges.


## More general queries



General Queries: Points inside triangles, circles, ellipses, etc.

- Triangles can simulate other shapes with straight edges.
- Circle are different, cannot be simulated by triangles! (or any other straight edge figure!!).


## Interval Queries

## Motivation: Windowing Problem



Windowing problem is not a special case of rangequery. Even for orthogonal segments.
Segments with endpoints outside the window can intersect it.

## Special Treatment: Windowing Problem



We solve the special case. We take the window edges as infinite lines for segments partially inside.

## Problem concerning intervals

## Problem

Given a set of intervals $I$ and a query point $x$, report all intervals in I intersecting $x$.

Solution: Obviously $O(n), n=|I|$, algorithm will work.

## Finding intervals containing a query point



Simpler queries ask for reporting all intervals intersecting the vertical line $X=x_{\text {query }}$.
More difficult queries ask for reporting all intervals intersecting a vertical segment joining $\left(x_{\text {query }}^{\prime}, y\right)$ and $\left(x_{\text {query }}^{\prime}, y^{\prime}\right)$.

## Interval trees: What are these?



The set $M$ has intervals intersecting the vertical line $X=x_{m i d}$, where $x_{\text {mid }}$ is the median of the $x$-coordinates of the $2 n$ endpoints. The root node has intervals $M$ sorted in two independent orders (i) by right end points (B-E-A), and (ii) left end points (A-E-B).

## Interval tree: Computing and Space Requirements



The set $L$ and $R$ have at most $n$ endpoints each.
So they have at most $\frac{n}{2}$ intervals each.
Clearly, the cost of (recursively) building the interval tree is $O(n \log n)$.
The space required is linear.

## Answering queries using an interval tree



For $x_{\text {query }}<x_{\text {mid }}$, we do not traverse subtree for subset $R$.
For $x_{\text {query }}^{\prime}>x_{\text {mid }}$, we do not traverse subtree for subset $L$.
Clearly, the cost of reporting the $k$ intervals is $O(\log n+k)$.

## Another solution using segment trees

There is yet another beast called Segment Trees!.
Segment trees can also be used to solve the problem concerning intervals.

## Interval Queries

Segment Trees

## Introducing the segment tree



For an interval which spans the entire range $\operatorname{inv}(v)$, we mark only internal node $v$ in the segment tree, and not any descendant of $v$. We never mark any ancestor of a marked node with the same label.

## Representing intervals in the segment tree



At each level, at most two internal nodes are marked for any given interval.

Along a root to leaf path an interval is stored only once.
The space requirement is therefore $O(n \log n)$.

## Reporting intervals containing a given query point



- Search the tree for the given query point.


## Reporting intervals containing a given query point



- Search the tree for the given query point.
- Report against all intervals that are on the search path to the leaf.


## Reporting intervals containing a given query point



- Search the tree for the given query point.
- Report against all intervals that are on the search path to the leaf.
- If $k$ intervals contain the query point then the time complexity is $O(\log n+k)$.


## Line Sweep Technique

## Sweeping Technique

Linear Sweep

## Problem to Exemplify Line Sweep



## Problem

Given a set $S$ of $n$ line segments in the plane, report all intersections between the segments.

## Reporting segments intersections



Easy but not the best solution: Check all pairs in $O\left(n^{2}\right)$ time.

## Line Sweep: Some observations for Sweeping



- A vertical line just before any intersection meets intersecting segments in an empty, intersection free segment, i.e. they must be consecutive.


## Line Sweep: Some observations for Sweeping



- A vertical line just before any intersection meets intersecting segments in an empty, intersection free segment, i.e. they must be consecutive.
- Detect intersections by checking consecutive pairs of segments along a vertical line.


## Sweeping Technique

Linear Sweep

## Line Sweep: Some observations for Sweeping



- A vertical line just before any intersection meets intersecting segments in an empty, intersection free segment, i.e. they must be consecutive.
- Detect intersections by checking consecutive pairs of segments along a vertical line.
- This way, each intersection point can be detected. How?


## Line Sweep: Some observations for Sweeping



- A vertical line just before any intersection meets intersecting segments in an empty, intersection free segment, i.e. they must be consecutive.
- Detect intersections by checking consecutive pairs of segments along a vertical line.
- This way, each intersection point can be detected. How?
- We maintain the order at the sweep line, which only changes at event points.


## Sweeping: Steps to be taken at each event



We use heap for event queue.
We use binary search trees (balanced) for segments in the sweep line.
Source (for image): http://research.engineering.wustl.edu/ pless/

## Reporting segments intersections

## $\mathrm{n} / 4$ <br> $\mathrm{n} / 2$ <br>  <br> $$
\mathrm{n}=2^{\mathrm{k}}-1
$$

- The use of a heap does nor require apriori sorting.


## Reporting segments intersections

## $\mathrm{n} / 4$ <br> $\mathrm{n} / 2$ <br>  <br> $\mathrm{n}=2^{\mathrm{k}}-1$

- The use of a heap does nor require apriori sorting.
- All we do is a heap building operation in linear time level by level and bottom-up.


## Reporting segments intersections

## $\mathrm{n} / 4$ <br> $\mathrm{n} / 2$ <br>  <br> $\mathrm{n}=2^{\mathrm{k}}-1$

- The use of a heap does nor require apriori sorting.
- All we do is a heap building operation in linear time level by level and bottom-up.
- $1 \times \frac{n}{2}+2 \times \frac{n}{4}+4 \times \frac{n}{8}+\ldots$


## Sweeping steps: Endpoints and intersection points



## Sweeping Technique

Angular Sweep

## Problem for Visibility: angular sweep



The problem is to determine edges visible from an interior point [6]. We can use a similar angular sweep method.

## Sweeping Technique

Angular Sweep

## Visibility polygon computation

SQ,SR,DC,1-->SQ,SR,DE,2-->DE,3--
FG,FE,DE,4-->NP,NO,FG,FE,DE,5-->
NP,NO,FG,FE,DE,6-->LM,MK,NP,NO,FG,7


Final computed visibility region.

## Conclusion

## Open Problems and Generalisations

- Generalizations of each of the problems in space and higher dimensions
- Counting points/objects inside different type of objects such as triangles, circles, ellipses, or, tetrahedrons, simplexes, ellipsoids in higher space and higher dimensions
- Good data structures for computing and storing visibility information in 3D


## Summary

- We studied the concept of Kd-trees and Range trees.


## Summary

- We studied the concept of Kd-trees and Range trees.
- Next we saw how we can answer queries about intervals using interval trees and segment trees.


## Summary

- We studied the concept of Kd-trees and Range trees.
- Next we saw how we can answer queries about intervals using interval trees and segment trees.
- We looked into line-sweep technique.


## Summary

- We studied the concept of Kd-trees and Range trees.
- Next we saw how we can answer queries about intervals using interval trees and segment trees.
- We looked into line-sweep technique.
- Now we are for the final concluding remarks.


## You may read

- The classic book by Preparata and Shamos [7], and
- The introductory textbook by Marc de Berg et al. [2],
- The book on algorithms by Cormen et al. [1] contains some basic geometric problems and algorithms,
- For point location Edelsbrunner [3], though a little hard to understand, is good,
- And lots of lots of web resources.


## Acknowledgments

Thanks to Dr Sudep P Pal, IIT Kharagpur, for providing most of the material and pictures of the presentation.

## References I

Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson. Introduction to Algorithms.
McGraw-Hill Higher Education, 2001.
R Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwarzkopf.
Computational Geometry: Algorithms and Applications. Springer-Verlag, second edition, 2000.
圊 Herbert Edelsbrunner.
Algorithms in Combinatorial Geometry. Springer-Verlag, New York, 1987.

## References II

國 H．Fuchs，Z．M．Kedem，and B．Naylor．
Predetermining visibility priority in 3－D scenes（preliminary report）．
13（3）：175－181，August 1979.
囯 H．Fuchs，Z．M．Kedem，and B．F．Naylor．
On visible surface generation by a priori tree structures．
14（3）：124－133，July 1980.
圊 Subir K Ghosh．
Visibility Algorithms in the Plane．
Cambridge University Press，Cambridge，UK， 2007.
國 F．P．Preparata and M．I．Shamos．
Computational Geometry：An Introduction．
Springer－Verlag， 1985.

## At Last . . .

## Thank You

shreesh@rkmvu.ac.in
sarvottamananda@gmail.com

