Geometric Data Structures

Swami Sarvottamananda

Ramakrishna Mission Vivekananda University

THAPAR-IGGA, 2010

Outline I

- Introduction
 - Motivation for Geometric Data Structures
 - Scope of the Lecture
- Range searching
 - Kd-trees
 - Range Trees
- Interval Queries
 - Interval Trees
 - Segment Trees
- Sweeping Technique
 - Linear Sweep
 - Angular Sweep
- Conclusion

Introduction

Introduction

Motivation-I

• Why do we need special data structures for Computational Geometry?

Motivation-I

- Why do we need special data structures for Computational Geometry?
- Because objects are more complex than set of arbitrary numbers.
- And yet, they have geometric structure and properties that can be exploited.

Motivation-I: Visibility in plane/space

Any first-person-shooter game needs to solve visibility problem of computational geometry which is mostly done by Binary Space Partitions (BSP) [4, 5]. (Software: BSPview)

Motivation-I: Visibility in rough terrain

We might not have enclosed space, or even nice simple objects. (Software: BSPview)

Motivation-I: Visibility in a room

At every step, we need to compute visible walls, doors, ceiling and floor. (Software: BSPview)

Motivation-I: Calculation of Binary Space Partitions

The data structure that is useful in this situation is known as *Binary Space/Planar Partitions*.

Almost every 3D animation with moving camera makes use of it in rendering the scene.

Geometric Data Structures

Introduction Motivation

Motivation-II: Locating given objects is geometric subdivisions

Another problem, we might need to locate objects (the elephant) in distinct regions like trees, riverlet, fields, etc. (GPLed game: 0AD)

Motivation-II: Location of objects in subdivision

This problem is known as point location problem in its simplest special case.

Motivation-III: Finding objects in a window

Yet in another case, we need to find all objects in a given window that need to be drawn and manipulated. (GPLed game: 0AD)

Motivation-III: Problem of Rangesearching

This problem is known as 2D/3D range searching.

Motivation-IV: Finding intersections of objects

This is classical collision detection. Intersection of parabolic trajectories with a 3D terrain. (GPLed game: TA-Spring)

Motivation-IV: Problem of Collision Detection/Finding Intersections

This problem is known as collision detection. In the static case it is just the intersections computation problem.

Scope of the lecture

• Binary search trees and Kd-trees: We consider 1-d and 2-d range queries for point sets.

Scope of the lecture

- Binary search trees and Kd-trees: We consider 1-d and 2-d range queries for point sets.
- Range trees: Improved 2-d orthogonal range searching with range trees.

range queries for point sets.

• Binary search trees and Kd-trees: We consider 1-d and 2-d

- Range trees: Improved 2-d orthogonal range searching with range trees.
- Interval trees: Interval trees for reporting all intervals on a line containing a given query point on the line.

Scope of the lecture

- Binary search trees and Kd-trees: We consider 1-d and 2-d range queries for point sets.
- Range trees: Improved 2-d orthogonal range searching with range trees.
- Interval trees: Interval trees for reporting all intervals on a line containing a given query point on the line.
- Segment trees: For reporting all intervals in a line containing a given query point on the line.

Scope of the lecture

- Binary search trees and Kd-trees: We consider 1-d and 2-d range queries for point sets.
- Range trees: Improved 2-d orthogonal range searching with range trees.
- Interval trees: Interval trees for reporting all intervals on a line containing a given query point on the line.
- Segment trees: For reporting all intervals in a line containing a given query point on the line.
- Paradigm of Sweep algorithms: For reporting intersections of line segments, and for computing visible regions.

Not in the Scope yet relevant

 Point location Problem: The elegant solution makes use of traditional data structures such as height balanced trees which are augmented and modified to suite the purpose.

Not in the Scope yet relevant

- Point location Problem: The elegant solution makes use of traditional data structures such as height balanced trees which are augmented and modified to suite the purpose.
- BSP trees: Trees are usually normal binary trees again (not even height balanced), so we skip it, even though it is quite interesting and needs a lecture by itself to properly treat the subject.

Range searching

Range Searching

Problem

Given a set P of n points $\{p_1, p_2, \dots, p_n\}$ on the real line, report points of P that lie in the range [a, b], $a \leq b$.

• Using binary search on an array we can answer such a query in $O(\log n + k)$ time where k is the number of points of P in [a,b].

Problem

Given a set P of n points $\{p_1, p_2, \dots, p_n\}$ on the real line, report points of P that lie in the range [a, b], $a \leq b$.

- Using binary search on an array we can answer such a query in $O(\log n + k)$ time where k is the number of points of P in [a,b].
- However, when we permit insertion or deletion of points, we cannot use an array answering queries so efficiently.

• We use a *binary leaf search tree* where leaf nodes store the points on the line, sorted by *x*-coordinates.

- We use a *binary leaf search tree* where leaf nodes store the points on the line, sorted by *x*-coordinates.
- Each internal node stores the *x*-coordinate of the rightmost point in its left subtree for guiding search.

Problem

Given a set P of n points in the plane, report points inside a query rectangle Q whose sides are parallel to the axes.

Here, the points inside Q are 14, 12 and 17.

Kd-trees for Range Searching Problem

We use a data structure called Kd-tree to solve the problem efficiently.

What are Kd-trees?

Kd-trees for Range Searching Problem

Kd-trees are basically trees where we divide data first on x-coordinates, then y-coordinates, then z-coordinates, etc. and then cycle.

Problem

Given a set P of n points in the plane, report points inside a query rectangle Q whose sides are parallel to the axes.

Here, the points inside Q are 14, 12 and 17.

2-dimensional Range Searching - using 1-dimensional Range Searching

 Using two 1-d range queries, one along each axis, solves the 2-d range query.

2-dimensional Range Searching - using 1-dimensional Range Searching

- Using two 1-d range queries, one along each axis, solves the 2-d range query.
- The cost incurred may exceed the actual output size of the 2-d range query (worst case is O(n), n = |P|).

2-dimensional Range Searching: Using Kd-trees

Can we do better? We can do significantly better using Kd-tree (from O(n) to $O(\sqrt{n})$.

Kd-trees

Kd-trees: Some concepts

ullet The tree T is a perfectly height-balanced binary search tree with alternate layers of nodes spitting subsets of points in P using x- and y- coordinates, respectively as follows.

Kd-trees: Some concepts

- The tree T is a perfectly height-balanced binary search tree with alternate layers of nodes spitting subsets of points in P using x- and y- coordinates, respectively as follows.
- The point r stored in the root vertex T splits the set S into two roughly equal sized sets L and R using the median x-coordinate xmedian(S) of points in S, so that all points in L (R) have coordinates less than or equal to (strictly greater than) xmedian(S).

Kd-trees: Some concepts

- The tree T is a perfectly height-balanced binary search tree with alternate layers of nodes spitting subsets of points in P using x- and y- coordinates, respectively as follows.
- The point r stored in the root vertex T splits the set S into two roughly equal sized sets L and R using the median x-coordinate xmedian(S) of points in S, so that all points in L (R) have coordinates less than or equal to (strictly greater than) xmedian(S).
- The entire plane is called the region(r).

Kd-trees: Some Concepts

• The set L (R) is split into two roughly equal sized subsets LU and LD (RU and RD), using point u (v) that has the median y-coordinate in the set L (R), and including u in LU (RU).

Kd-trees: Some Concepts

- The set L (R) is split into two roughly equal sized subsets LU and LD (RU and RD), using point u (v) that has the median y-coordinate in the set L (R), and including u in LU (RU).
- The entire halfplane containing set L(R) is called the region(u) (region(v)).

Answering rectangle queries using Kd-trees

ullet A query rectangle Q may partially overlap a region, say region(p), completely contain it, or completely avoids it.

Kd-trees

Answering rectangle queries using Kd-trees

- A query rectangle Q may partially overlap a region, say region(p), completely contain it, or completely avoids it.
- If Q contains an entire bounded region(p) then report all points in region(p).
- If Q partially intersects region(p) then descend into the children.
- Otherwise skip region(p).

Time complexity of rectangle queries

ullet Reporting points within Q contributes to the output size k for the query.

- Reporting points within Q contributes to the output size k for the query.
- No leaf level region in T has more than 2 points.

- Reporting points within Q contributes to the output size k for the query.
- No leaf level region in T has more than 2 points.
- So, the cost of inspecting points outside Q but within the intersection of leaf level regions of T can be charged to the internal nodes traversed in T.

- Reporting points within Q contributes to the output size k for the query.
- No leaf level region in T has more than 2 points.
- So, the cost of inspecting points outside Q but within the intersection of leaf level regions of T can be charged to the internal nodes traversed in T.
- ullet This cost is borne for all leaf level regions intersected by Q.

Kd-trees

Time complexity of traversing the tree

Now we need to bound the number of nodes of T traversed for a given query Q.

Time complexity of traversing the tree

 It is sufficient to determine the upper bound on the number of (internal) nodes whose regions are intersected by a single vertical (horizontal) line.

Time complexity of traversing the tree

- It is sufficient to determine the upper bound on the number of (internal) nodes whose regions are intersected by a single vertical (horizontal) line.
- Any vertical line intersecting S can intersect either L or R but not both, but it can meet both RU and RD (LU and LD).

Time complexity of traversing the tree

- It is sufficient to determine the upper bound on the number of (internal) nodes whose regions are intersected by a single vertical (horizontal) line.
- Any vertical line intersecting S can intersect either L or R but not both, but it can meet both RU and RD (LU and LD).
- Any horizontal line intersecting R can intersect either RU or RD but not both, but it can meet both children of RU (RD)

Time complexity of rectangle queries

 \bullet Therefore, the time complexity T(n) for an n-vertex Kd-tree obeys the recurrence relation

$$T(n) = 2 + 2T(\frac{n}{4}), T(1) = 1$$

Time complexity of rectangle queries

 \bullet Therefore, the time complexity T(n) for an n-vertex Kd-tree obeys the recurrence relation

$$T(n) = 2 + 2T(\frac{n}{4}), T(1) = 1$$

- The solution for T(n) is $O(\sqrt{n})$ (an exercise for audience!!, direct substitution does not work!!).
- The total cost of reporting k points in Q is therefore $O(\sqrt{n}+k)$.

Summary: Range searching with Kd-trees

Given a set S of n points in the plane, we can construct a Kd-tree in $O(n\log n)$ time and O(n) space, so that rectangle queries can be executed in $O(\sqrt{n}+k)$ time. Here, the number of points in the query rectangle is k.

Range searching with Range-trees

There is another beast called Range-trees.

Range searching with Range-trees

There is another beast called Range-trees.

• Given a set S of n points in the plane, we can construct a range tree in $O(n\log n)$ time and space, so that rectangle queries can be executed in $O(\log^2 n + k)$ time.

Range searching with Range-trees

There is another beast called Range-trees.

- Given a set S of n points in the plane, we can construct a range tree in $O(n \log n)$ time and space, so that rectangle queries can be executed in $O(\log^2 n + k)$ time.
- The query time can be improved to $O(\log n + k)$ using the technique of *fractional cascading*. We won't discuss this, some deep constructions are involved.

Range trees: Concepts

Given a 2-d rectangle query $[a,b] \times [c,d]$, we can identify subtrees whose leaf nodes are in the range [a,b] along the x-direction.

Only a subset of these leaf nodes lie in the range $\left[c,d\right]$ along the y-direction.

Range trees: What are these?

 $T_{assoc(v)}$ is a binary search tree on y-coordinates for points in the leaf nodes of the subtree tooted at v in the tree T.

The point p is duplicated in $T_{assoc(v)}$ for each v on the search path for p in tree T.

The total space requirements is therefore $O(n \log n)$.

Range trees: Method

We perform 1-d range queries with the y-range [c,d] in each of the subtrees adjacent to the left and right search paths for the x-range [a,b] in the tree T.

Complexity of range searching using range trees

Since the search path is $O(\log n)$ in size, and each y-range query requires $O(\log n)$ time, the total cost of searching is $O(\log^2 n)$. The reporting cost is O(k) where k points lie in the query rectangle.

More general queries

General Queries: Points inside triangles, circles, ellipses, etc.

• Triangles can simulate other shapes with straight edges.

More general queries

General Queries: Points inside triangles, circles, ellipses, etc.

- Triangles can simulate other shapes with straight edges.
- Circle are different, cannot be simulated by triangles! (or any other straight edge figure!!).

Interval Queries

Motivation: Windowing Problem

Windowing problem is not a special case of rangequery. Even for orthogonal segments.

Segments with endpoints outside the window can intersect it.

Special Treatment: Windowing Problem

We solve the special case. We take the window edges as infinite lines for segments partially inside.

Problem concerning intervals

Problem

Given a set of intervals I and a query point x, report all intervals in I intersecting x.

Solution: Obviously O(n), n = |I|, algorithm will work.

Finding intervals containing a query point

Simpler queries ask for reporting all intervals intersecting the vertical line $X=x_{query}.$

More difficult queries ask for reporting all intervals intersecting a vertical segment joining (x'_{query}, y) and (x'_{query}, y') .

Interval trees: What are these?

The set M has intervals intersecting the vertical line $X=x_{mid}$, where x_{mid} is the median of the x-coordinates of the 2n endpoints. The root node has intervals M sorted in two independent orders (i) by right end points (B-E-A), and (ii) left end points (A-E-B).

Interval tree: Computing and Space Requirements

The set L and R have at most n endpoints each.

So they have at most $\frac{n}{2}$ intervals each.

Clearly, the cost of (recursively) building the interval tree is $O(n \log n)$.

The space required is linear.

Answering queries using an interval tree

For $x_{query} < x_{mid}$, we do not traverse subtree for subset R. For $x'_{query} > x_{mid}$, we do not traverse subtree for subset L. Clearly, the cost of reporting the k intervals is $O(\log n + k)$.

Another solution using segment trees

There is yet another beast called *Segment Trees!*. Segment trees can also be used to solve the problem concerning intervals.

Introducing the segment tree

For an interval which spans the entire range inv(v), we mark only internal node v in the segment tree, and not any descendant of v. We never mark any ancestor of a marked node with the same label

Representing intervals in the segment tree

At each level, at most two internal nodes are marked for any given interval.

Along a root to leaf path an interval is stored only once.

The space requirement is therefore $O(n \log n)$.

Reporting intervals containing a given query point

• Search the tree for the given query point.

Reporting intervals containing a given query point

- Search the tree for the given query point.
- Report against all intervals that are on the search path to the leaf.

Reporting intervals containing a given query point

- Search the tree for the given query point.
- Report against all intervals that are on the search path to the leaf.
- If k intervals contain the query point then the time complexity is $O(\log n + k)$.

Line Sweep Technique

Problem to Exemplify Line Sweep

Problem

Given a set S of n line segments in the plane, report all intersections between the segments.

Easy but not the best solution: Check all pairs in $O(n^2)$ time.

 A vertical line just before any intersection meets intersecting segments in an empty, intersection free segment, i.e. they must be consecutive.

- A vertical line just before any intersection meets intersecting segments in an empty, intersection free segment, i.e. they must be consecutive.
- Detect intersections by checking consecutive pairs of segments along a vertical line.

- A vertical line just before any intersection meets intersecting segments in an empty, intersection free segment, i.e. they must be consecutive.
- Detect intersections by checking consecutive pairs of segments along a vertical line.
- This way, each intersection point can be detected. How?

- A vertical line just before any intersection meets intersecting segments in an empty, intersection free segment, i.e. they must be consecutive.
- Detect intersections by checking consecutive pairs of segments along a vertical line.
- This way, each intersection point can be detected. How?
- We maintain the order at the sweep line, which only changes at event points.

Sweeping: Steps to be taken at each event

We use heap for event queue.

We use binary search trees (balanced) for segments in the sweep line.

Source (for image): http://research.engineering.wustl.edu/ pless/

$$n/4$$

$$n = 2^{k} - 1$$

$$n/2$$

• The use of a heap does nor require apriori sorting.

- The use of a heap does nor require apriori sorting.
- All we do is a heap building operation in linear time level by level and bottom-up.

- The use of a heap does nor require apriori sorting.
- All we do is a heap building operation in linear time level by level and bottom-up.

$$\bullet \ 1 \times \tfrac{n}{2} + 2 \times \tfrac{n}{4} + 4 \times \tfrac{n}{8} + \dots$$

Sweeping steps: Endpoints and intersection points

Problem for Visibility: angular sweep

The problem is to determine edges visible from an interior point [6]. We can use a similar angular sweep method.

Visibility polygon computation

Final computed visibility region.

Conclusion

Conclusion

Open Problems and Generalisations

- Generalizations of each of the problems in space and higher dimensions
- Counting points/objects inside different type of objects such as triangles, circles, ellipses, or, tetrahedrons, simplexes, ellipsoids in higher space and higher dimensions
- Good data structures for computing and storing visibility information in 3D

• We studied the concept of Kd-trees and Range trees.

- We studied the concept of Kd-trees and Range trees.
- Next we saw how we can answer queries about intervals using interval trees and segment trees.

- We studied the concept of Kd-trees and Range trees.
- Next we saw how we can answer queries about intervals using interval trees and segment trees.
- We looked into line-sweep technique.

- We studied the concept of Kd-trees and Range trees.
- Next we saw how we can answer queries about intervals using interval trees and segment trees.
- We looked into line-sweep technique.
- Now we are for the final concluding remarks.

You may read

- The classic book by Preparata and Shamos [7], and
- The introductory textbook by Marc de Berg et al. [2],
- The book on algorithms by Cormen et al. [1] contains some basic geometric problems and algorithms,
- For point location Edelsbrunner [3], though a little hard to understand, is good,
- And lots of lots of web resources.

Acknowledgments

Thanks to Dr Sudep P Pal, IIT Kharagpur, for providing most of the material and pictures of the presentation.

References I

Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles F. Leiserson.

Introduction to Algorithms.

McGraw-Hill Higher Education, 2001.

Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwarzkopf.

Computational Geometry: Algorithms and Applications. Springer-Verlag, second edition, 2000.

Herbert Edelsbrunner.

Algorithms in Combinatorial Geometry.

Springer-Verlag, New York, 1987.

References II

H. Fuchs, Z. M. Kedem, and B. Naylor.

Predetermining visibility priority in 3-D scenes (preliminary report).

13(3):175–181, August 1979.

H. Fuchs, Z. M. Kedem, and B. F. Naylor.
On visible surface generation by a priori tree structures.
14(3):124–133, July 1980.

Subir K Ghosh.

Visibility Algorithms in the Plane.

Cambridge University Press, Cambridge, UK, 2007.

F. P. Preparata and M. I. Shamos.

Computational Geometry: An Introduction.

Springer-Verlag, 1985.

At Last ...

Thank You

shreesh@rkmvu.ac.in
sarvottamananda@gmail.com

