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• We look for perfect answer always why approximation

• What is approximation ratio

• 2-approximation for vertex cover problem

• 2-approximation for TSP

• 1.5 approximation for TSP (conjectured optimal approximation)

•Lecture contents



•Background

• The time and resources of researchers taken by
P=NP question exceeds any other problem in
computer science.

• Most of the people are coming out with proof P ≠
NP which is yet to be verified. So there are more
voters of P ≠ NP theory.

• The scientists are not waiting for the final word
on this question to come and then think about
the next strategy.

• The Problems that are in question under this
dilemma are so important in our daily life and for
the society that these can not be left unsolved.





•Finding optimal solutions for specific categories 

• Looking at the characteristics of the problem it
should be explored whether it can be treated as
some special case of a NP-complete problem or
we can take advantage of any special feature or
additional information given in the problem .

• Vertex cover is NP-complete but finding vertex
cover for a bipartite graph can be done in
polynomial time.

• Pseudo polynomial time algorithms may be
better then their exponential counterparts.
(An algorithm is said to run in pseudo polynomial
time if its runtime is polynomial in the size of the
input instance when the numbers in the input are
represented in unary. Decimal 9 Binary 1001
Unary 111111111



•Finding optimal solutions to NP-Complete  problems

• Exponential algorithms may be adequate if
problem size is small or problem is to be solved
once.

• Some heuristics may be used which “work well in
practice” but does not give any guarantees.

• Given the available resources, If exact solution is
not available then we will try to find out a
solution which is near to the optimal solution and
this may be done in polynomial time.

• Difficult part is that at least we need to prove a
solution’s value is close to optimum ( and to what
extent), without even knowing what optimum
value is!



•Approximation factor

If SVA(i) : Solution value using Algorithm A on instance i
SVOPT(i): Solution value using Algorithm OPT on instance i

Assuming cost is positive always.
For Minimization problems : SVOPT(i) < SVA(i)
And for Maximization Problems : SVOPT(i) > SVA(i)

Approximation factori or ratioi =
SVA(i)/ SVOPT(i) for Minimization
SVOPT(i)/ SVA(i) for Maximization

Approximation factor of A(n) = max{ approx. factors of all
the instances of i of size n}



•Objective of approximation

• Goal of the approximation algorithms is to
design an algorithm such that approximation
factor is as small as possible which means that
we can go as close to the exact solution as
possible in the polynomial time.

• It will be good if in some cases the complexity
of the algorithm can be calculated in terms of
the input size as well as the approximation
factor.



•PTAS and FPTAS
• Polynomial Time Approximation Scheme: It takes two

arguments , an instance of the problem and a parameter
ε > 0 and, in polynomial time, produces a solution that is
within a factor 1 + ε.

• For the TSP, a PTAS would produce a tour with length at
most (1 + ε)L, where L is the length of the shortest tour.

• The running time of a PTAS is to be polynomial in n for
every fixed ε but can be different for different ε.

• If the time is also polynomial in 1/ ε then it is called fully
polynomial time approximation scheme (FPTAS).

• FPTAS for knapsack problem is n3/ ε



•Vertex cover
Input: graph G=(V,E) Output : A subset S of V, such
that, for every (u,v) in E, u is in S or v is in S.
OPT-VERTEX-COVER: A subset with smallest size,
which is NP-hard.



•2-Approximation for vertex cover

1. Pick any edge {u,v} from set E of G

2. add both u & v to S

3. Delete u & v and all the incident edges from G 

4. Repeat until any edge remains in G

Time taken by the above greedy algorithm is (V+E)

Output depends on the order we visit edges



•Proof for 2-approximation vertex cover

• Every chosen edge e has both ends in S

• But e must be covered by an optimal cover; hence,
one end of e must be in OPT

• Thus, there is at most twice as many vertices in C as in
OPT.

• That is, S is a 2-approximation of OPT



• Best approximation ratio 

• 2- (1/sqrt(logn)) [G Karakostas 2009 ACM trans 
on Algorithms]

• Best inapproximability

• (1+1/6) approximation algorithm unless P=NP 
[hastad Elseveir Science Direct Theoretical 
Computer Science 97]

Further approximation itself will be NP-Hard



•Travelling Salesman Problem (TSP)

• Input: Complete Graph of m vertices G= V,E
and edge weight values w

• Output : cycle V1,V2,V3,…… Vm , V1 visiting each
vertex exactly once

• Objective : minimize weight of the cycle

• w(V1,V2) +w(V2,V3) + w(V3,V4) +...+ w(Vm-

1,Vm)+w(Vm,V1)

• We consider the Metric TSP



•Metric TSP

u

v

x

W(u,v) ≤ w(u,x) + w(x,v)  for all u,v, x
W(u,v) = Euclidean distance between 
points u & v
Or w(u,v) = shortest path weight 
from u-> v in graph G



•2-Approximation Algorithm 

1. Computer Minimum Spanning Tree T

2. Pick arbitrary Root vertex  for T

3. Output preorder traversal of  T



•2-approximation for TSP

• In other words it is
. Construct the minimal spanning tree
• Walk around the tree visiting every tree edge exactly once
• Skip over repeats of vertices, taking direct edge to next 

vertex , guaranteed to be shortest by triangle inequality
• w of approximation algorithm ≤ 2 w(MST)
• ≤  2 (OPT)
• Claim : w(OPT) ≥ w(MST)
• OPT = spanning cycle
• OPT minus one edge = spanning path of which is a spanning 

tree
• W(MST) ≤ w(spanning path) ≤ w(OPT)



• Best approximation ratio 1.5 [christofedes,CMU]

• Inapproximability 1+1/3812 [papadimitriou & 
yannakakis 93]

• General Approximation bound technique

• - Find lower bound on OPT

• - relate approximation algorithm to lower bound

• Other technique can be competing with the 
optimal



•Christofides Algorithm

• There exists a 1.5-approximation algorithm for 
TSP 

• Find a minimum spanning tree T for Graph

• Find a min cost perfect matching of odd 
degree nodes in T . Call it M

• Do the union of spanning tree and matching 
edges. Call it G’

• Find the Eulerian tour in G’

• Find Short cut version of Eulerian Tour in E 



• What is Matching
• matching or independent edge set in a graph is a set of edges 

without common vertices
• What is a Minimum-weighted Matching?

It creates a MWM on a set of the nodes having an odd degree.
• Why odd degree?

To fulfil the Property of Euler Cycle. Union of MST and MWM 
is Eulerian.

Imp Theorem: Every Graph has an even number of odd degree 
nodes

• Why 1.5 TSP?
MST < Euler Cycle = MWM+MST <= 1.5 TSP
(MWM = ½ MST)



•Techniques for Approximation algorithms

• 1. Greedy Algorithms

• 2. Primal Dual Technique

• 3. Linear Programming and Rounding

• 4. Integer Programming
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