Fixed Parameter Algorithms

Venkatesh Raman
The Institute of Mathematical Sciences, Chennai Jan 7, 2011, Psgtech, Coimbatore, IGGA, India

Classical complexity

A brief review:
6 We usually aim for polynomial-time algorithms: the running time is $O\left(n^{c}\right)$, where n is the input size.

6 Classical polynomial-time algorithms: shortest path, matching, minimum spanning tree, 2SAT, convext hull, planar drawing, linear programming, etc.
6. It is unlikely that polynomial-time algorithms exist for NP-hard problems.

6 Unfortunately, many problems of interest are NP-hard: Hamiltonian cycle, 3-coloring, 3SAT, etc.

6 We expect that these problems can be solved only in exponential time (i.e., c^{n}).
Can we say anything nontrivial about NP-hard problems?

Parameterized complexity

Main idea: Instead of expressing the running time as a function $T(n)$ of n, we express it as a function $T(n, k)$ of the input size n and some parameter k of the input.

In other words: we do not want to be efficient on all inputs of size n, only for those where k is small.

Parameterized complexity

Main idea: Instead of expressing the running time as a function $T(n)$ of n, we express it as a function $T(n, k)$ of the input size n and some parameter k of the input.

In other words: we do not want to be efficient on all inputs of size n, only for those where k is small.

What can be the parameter k ?
6 The size k of the solution we are looking for.
6 The maximum degree of the input graph.
6 The diameter of the input graph.
6 The length of clauses in the input Boolean formula.

Fixed-parameter tractability

Definition: A parameterization of a decision problem is a function that assigns an integer parameter k to each input instance x.

The parameter can be
6 explicit in the input (for example, if the parameter is the integer k appearing in the input (G, k) of Vertex Cover), or

6 implicit in the input (for example, if the parameter is the diameter d of the input graph G).

Main definition:

A parameterized problem is fixed-parameter tractable (FPT) if there is an $f(k) n^{c}$ time algorithm for some constant c.

Fixed-parameter tractability

Definition: A parameterization of a decision problem is a function that assigns an integer parameter k to each input instance x.

Main definition:

A parameterized problem is fixed-parameter tractable (FPT) if there is an $f(k) n^{c}$ time algorithm for some constant c.

Example: Vertex Cover parameterized by the required size k is FPT:
It is known that it be solved in time $O\left(2^{k}+n^{2}\right)$.
Better algorithms are known: e.g, $O\left(1.2832^{k} k+k|V|\right)$.
Main goal of parameterized complexity: to find FPT problems.

FPT problems

Examples of NP-hard problems that are FPT:

6 Finding a vertex cover of size k.
6 Finding a path of length k.
6 Finding k disjoint triangles.
(6) Drawing the graph in the plane with k edge crossings.
© Finding disjoint paths that connect k pairs of points.

The Birth of Parameterized Complexity

Motivated by Graph Minor Theory of Robertson and Seymour, and notions of treewidth, around 1990-1991, over a series of papers, Downey and Fellows

6 defined the notion of fixed parameter tractability
© developed hardness theory (W [1], W [2]-complete problems),
6 classified several problems 'hard' and 'easy' in this framework, (Eg: Vertex Cover, feedback vertex cover - FPT; Dominating set, weight k satisfying assignment - W-hard)

6 applied the framework in several application areas (databases, coding theory, biology, ...)
© built a lot of communities including at IMSc (Fellows!)

FPT algorithmic techniques

6 Significant advances in the past 20 years or so (especially in recent years).
6 Powerful toolbox for designing FPT algorithms:

Books

Downey-Fellows: Parameterized Complexity, Springer, 1999

Flum-Grohe: Parameterized Complexity Theory, Springer, 2006

Niedermeier: Invitation to Fixed-Parameter Algorithms, Oxford University Press, 2006.

Outline of the talk

6 Algorithmic Techniques
Δ Bounded Search Trees
Δ Kernalization
Δ Iterative Compression
\triangle Color Coding
6 Hardness Theory
6 Parameterized Complexity and Approximation
6 Conclusions

Bounded search tree method

Algorithm for k - Vertex Cover:

$$
e_{1}=x_{1} y_{1}
$$

Bounded search tree method

Algorithm for k - Vertex Cover:

Bounded search tree method

Algorithm for k - Vertex Cover:

Bounded search tree method

Algorithm for k - Vertex Cover:

Bounded search tree method

Algorithm for k - Vertex Cover:

Height of the search tree is $\leqslant k \Rightarrow$ number of leaves is $\leqslant 2^{k} \Rightarrow$ complete search requires 2^{k}. poly steps.

Improved Branching Algorithms

Observation: For any vertex x, if x is not in the vertex cover, all its neighbors must be in the vertex cover.

For any vertex x of degree at least 2 , check recursively whether
(6) $G-x$ has a vertex cover of size at most $k-1$ or

6 $G-N(x)$ has a vertex cover of size at most k - degree (x).
If every vertex has degree at most 1 , solve in polynomial time.

Improved Branching Algorithms

Observation: For any vertex x, if x is not in the vertex cover, all its neighbors must be in the vertex cover.

For any vertex x of degree at least 2 , check recursively whether
(6) $G-x$ has a vertex cover of size at most $k-1$ or

G $G-N(x)$ has a vertex cover of size at most $k-\operatorname{degree}(x)$.
If every vertex has degree at most 1 , solve in polynomial time.

$$
T(k) \leqslant T(k-1)+T(k-2)
$$

Improved Branching Algorithms

Observation: For any vertex x, if x is not in the vertex cover, all its neighbors must be in the vertex cover.

For any vertex x of degree at least 2 , check recursively whether
(6) $G-x$ has a vertex cover of size at most $k-1$ or

G $G-N(x)$ has a vertex cover of size at most $k-\operatorname{degree}(x)$.
If every vertex has degree at most 1 , solve in polynomial time.

$$
T(k) \leqslant T(k-1)+T(k-2)
$$

Fibonacci recurrence on k that results in $O\left((1.618)^{k} m\right)$

Improved Branching Algorithms

Observation: For any vertex x, if x is not in the vertex cover, all its neighbors must be in the vertex cover.

For any vertex x of degree at least 2 , check recursively whether
(6) $G-x$ has a vertex cover of size at most $k-1$ or

6 $G-N(x)$ has a vertex cover of size at most k - degree (x).
If every vertex has degree at most 1 , solve in polynomial time.

$$
T(k) \leqslant T(k-1)+T(k-2)
$$

Fibonacci recurrence on k that results in $O\left((1.618)^{k} m\right)$
6 Can be improved by branching on larger structures and doing a lot of case analyses; the current best is $O\left(1.28^{k}+k n\right)$.
© Technique successfully applied for hitting set, undirected feedback vertex set, directed feedback vertex set in tournaments, maxsat, maxcut, ..Fxed Parameter Agooriths -p. 11

Kernelization

Kernelization

Definition: Kernelization is a polynomial-time transformation that maps an instance (I, k) to an instance ($\left.I^{\prime}, k^{\prime}\right)$ such that

6 (I, k) is a yes-instance if and only if $\left(I^{\prime}, k^{\prime}\right)$ is a yes-instance,
6 $k^{\prime} \leqslant k$, and
6 $\left|I^{\prime}\right| \leqslant f(k)$ for some function $f(k)$.

Kernelization

Definition: Kernelization is a polynomial-time transformation that maps an instance (I, k) to an instance (I^{\prime}, k^{\prime}) such that

6 (I, k) is a yes-instance if and only if $\left(I^{\prime}, k^{\prime}\right)$ is a yes-instance,
6 $k^{\prime} \leqslant k$, and
6 $\left|I^{\prime}\right| \leqslant f(k)$ for some function $f(k)$.

Simple fact: If a problem has a kernelization algorithm, then it is FPT.
Proof: Solve the instance $\left(I^{\prime}, k^{\prime}\right)$ by brute force.

Kernelization

Definition: Kernelization is a polynomial-time transformation that maps an instance (I, k) to an instance (I^{\prime}, k^{\prime}) such that

6 (I, k) is a yes-instance if and only if $\left(I^{\prime}, k^{\prime}\right)$ is a yes-instance,
6 $k^{\prime} \leqslant k$, and
б $\left|I^{\prime}\right| \leqslant f(k)$ for some function $f(k)$.
Simple fact: If a problem has a kernelization algorithm, then it is FPT.
Proof: Solve the instance (I^{\prime}, k^{\prime}) by brute force.
Converse: Every FPT problem has a kernelization algorithm.
Proof: Suppose there is an $f(k) n^{c}$ algorithm for the problem.
6 If $f(k) \leqslant n$, then solve the instance in time $f(k) n^{c} \leqslant n^{c+1}$, and output a trivial yes- or no-instance.
(6) If $n<f(k)$, then we are done: a kernel of size $f(k)$ is obtained.

Kernelization for Vertex Cover

General strategy: We devise a list of reduction rules, and show that if none of the rules can be applied and the size of the instance is still larger than $f(k)$, then the answer is trivial.

Reduction rules for Vertex Cover instance (G, k):
Rule 1: If v is an isolated vertex $\Rightarrow(G \backslash v, k)$
Rule 2: If $d(v)>k \Rightarrow(G \backslash v, k-1)$

Kernelization for Vertex Cover

General strategy: We devise a list of reduction rules, and show that if none of the rules can be applied and the size of the instance is still larger than $f(k)$, then the answer is trivial.

Reduction rules for Vertex Cover instance (\mathbf{G}, k):
Rule 1: If v is an isolated vertex $\Rightarrow(G \backslash v, k)$
Rule 2: If $d(v)>k \Rightarrow(G \backslash v, k-1)$
If neither Rule 1 nor Rule 2 can be applied:
(6) If $|V(G)|>k(k+1) \Rightarrow$ There is no solution (every vertex should be the neighbor of at least one vertex of the cover).
(6) Otherwise, $|V(G)| \leqslant k(k+1)$ and we have a $k(k+1)$ vertex kernel.

Kernelization for Vertex Cover

Let us add a third rule:
Rule 1: If v is an isolated vertex $\Rightarrow(G \backslash v, k)$
Rule 2: If $d(v)>k \Rightarrow(G \backslash v, k-1)$
Rule 3: If $d(v)=1$, then we can assume that its neighbor u is in the solution $\Rightarrow(G \backslash(u \cup v), k-1)$.

If none of the rules can be applied, then every vertex has degree at least 2.
$\Rightarrow|V(G)| \leqslant|E(G)|$
6 If $|E(G)|>k^{2} \Rightarrow$ There is no solution (each vertex of the solution can cover at most k edges).
(6) Otherwise, $|V(G)| \leqslant|E(G)| \leqslant k^{2}$ and we have a k^{2} vertex kernel.

Kernelization for Vertex Cover

Let us add a fourth rule:
Rule 4a: If v has degree 2, and its neighbors u_{1} and u_{2} are adjacent, then we can assume that u_{1}, u_{2} are in the solution $\Rightarrow\left(G \backslash\left\{u_{1}, u_{2}, v\right\}, k-2\right)$.

Kernelization for Vertex Cover

Let us add a fourth rule:
Rule 4b: If v has degree 2 , then G^{\prime} is obtained by identifying the two neighbors of v and deleting $v \Rightarrow\left(G^{\prime}, k-1\right)$.

Kernelization for Vertex Cover

Let us add a fourth rule:
Rule 4b: If v has degree 2 , then G^{\prime} is obtained by identifying the two neighbors of v and deleting $v \Rightarrow\left(G^{\prime}, k-1\right)$.

Correctness:

Let S^{\prime} be a vertex cover of size $k-1$ for G^{\prime}.
If $u \in S \Rightarrow\left(S^{\prime} \backslash u\right) \cup\left\{u_{1}, u_{2}\right\}$ is a vertex cover of size k for G.
If $u \notin S \Rightarrow S^{\prime} \cup v$ is a vertex cover of size k for G.

Kernelization for Vertex Cover

Let us add a fourth rule:
Rule 4b: If v has degree 2 , then G^{\prime} is obtained by identifying the two neighbors of v and deleting $v \Rightarrow\left(G^{\prime}, k-1\right)$.

Correctness:

Let S^{\prime} be a vertex cover of size $k-1$ for G^{\prime}.
If $u \in S \Rightarrow\left(S^{\prime} \backslash u\right) \cup\left\{u_{1}, u_{2}\right\}$ is a vertex cover of size k for G.
If $u \notin S \Rightarrow S^{\prime} \cup v$ is a vertex cover of size k for G.

Kernelization for Vertex Cover

Let us add a fourth rule:
Rule 4b: If v has degree 2 , then G^{\prime} is obtained by identifying the two neighbors of v and deleting $v \Rightarrow\left(G^{\prime}, k-1\right)$.

Correctness:

Let S^{\prime} be a vertex cover of size $k-1$ for G^{\prime}.
If $u \in S \Rightarrow\left(S^{\prime} \backslash u\right) \cup\left\{u_{1}, u_{2}\right\}$ is a vertex cover of size k for G.
If $u \notin S \Rightarrow S^{\prime} \cup v$ is a vertex cover of size k for G.

Kernelization for Vertex Cover

Let us add a fourth rule:
Rule 4b: If v has degree 2 , then G^{\prime} is obtained by identifying the two neighbors of v and deleting $v \Rightarrow\left(G^{\prime}, k-1\right)$.

Correctness:

Let S be a vertex cover of size k for G.
If $u_{1}, u_{2} \in S \Rightarrow\left(S \backslash\left\{u_{1}, u_{2}, v\right\}\right) \cup u$ is a vertex cover of size $k-1$ for G^{\prime}.
If exactly one of u_{1} and u_{2} is in S, then $v \in S \Rightarrow\left(S \backslash\left\{u_{1}, u_{2}, v\right\}\right) \cup u$ is a vertex cover of size $k-1$ for G^{\prime}.
If $u_{1}, u_{2} \notin S$, then $v \in S \Rightarrow(S \backslash v)$ is a vertex cover of size $k-1$ for G^{\prime}.

Kernelization for Vertex Cover

Let us add a fourth rule:
Rule 4b: If v has degree 2 , then G^{\prime} is obtained by identifying the two neighbors of v and deleting $v \Rightarrow\left(G^{\prime}, k-1\right)$.

Correctness:

Let S be a vertex cover of size k for G.
If $u_{1}, u_{2} \in S \Rightarrow\left(S \backslash\left\{u_{1}, u_{2}, v\right\}\right) \cup u$ is a vertex cover of size $k-1$ for G^{\prime}.
If exactly one of u_{1} and u_{2} is in S, then $v \in S \Rightarrow\left(S \backslash\left\{u_{1}, u_{2}, v\right\}\right) \cup u$ is a vertex cover of size $k-1$ for G^{\prime}.
If $u_{1}, u_{2} \notin S$, then $v \in S \Rightarrow(S \backslash v)$ is a vertex cover of size $k-1$ for G^{\prime}.

Kernelization for Vertex Cover

Let us add a fourth rule:
Rule 4b: If v has degree 2 , then G^{\prime} is obtained by identifying the two neighbors of v and deleting $v \Rightarrow\left(G^{\prime}, k-1\right)$.

Correctness:

Let S be a vertex cover of size k for G.
If $u_{1}, u_{2} \in S \Rightarrow\left(S \backslash\left\{u_{1}, u_{2}, v\right\}\right) \cup u$ is a vertex cover of size $k-1$ for G^{\prime}.
If exactly one of u_{1} and u_{2} is in S, then $v \in S \Rightarrow\left(S \backslash\left\{u_{1}, u_{2}, v\right\}\right) \cup u$ is a vertex cover of size $k-1$ for G^{\prime}.
If $u_{1}, u_{2} \notin S$, then $v \in S \Rightarrow(S \backslash v)$ is a vertex cover of size $k-1$ for G^{\prime}.

Kernelization for Vertex Cover

Let us add a fourth rule:
Rule 4b: If v has degree 2 , then G^{\prime} is obtained by identifying the two neighbors of v and deleting $v \Rightarrow\left(G^{\prime}, k-1\right)$.

Kernel size:

6. If $|E(G)|>k^{2} \Rightarrow$ There is no solution (each vertex of the solution can cover at most k edges).
(6) Otherwise, $|V(G)| \leqslant 2|E(G)| / 3 \leqslant \frac{2}{3} k^{2}$ and we have a $\frac{2}{3} k^{2}$ vertex kernel.

More on kernels

6 There is a $2 k$ vertex kernel for vertex cover using Nemhauser-Trotter LP based approximation algorithm for vertex cover.
6. There is an $O\left(k^{2}\right)$ kernel for undirected feedback vertex set (SODA 2009) uses Hall's like theorem.

6 Linear kernel for dominating set in Planar graphs (Alber et al JACM 2004); generalized for more parameters in larger classes of graphs (BFLPS in FOCS 2010)

More on kernels

(6 There is a $2 k$ vertex kernel for vertex cover using Nemhauser-Trotter LP based approximation algorithm for vertex cover.

6 There is an $O\left(k^{2}\right)$ kernel for undirected feedback vertex set (SODA 2009) uses Hall's like theorem.

6 Linear kernel for dominating set in Planar graphs (Alber et al JACM 2004); generalized for more parameters in larger classes of graphs (BFLPS in FOCS 2010)

Famous Open problems: Polynomial sized ($k^{O(1)}$) kernel for
6 Directed feedback vertex set?
6 Odd cycle transversal (set of vertices whose removal results in a bipartite graph)?

Kernelization

© Kernelization can be thought of as a polynomial-time preprocessing before attacking the problem with whatever method we have. "It does no harm" to try kernelization.

6 Some kernelizations use lots of simple reduction rules and require a complicated analysis to bound the kernel size... tricks (Crown Reduction and the Sunflower Lemma).

6 Recently this topic got a lot of attention due to recent machineries that show lower bounds on kernel sizes (i.e. no polynomial size kernel or $O(k)$ kernel possible under complexity theoretic assumptions).

Iterative Compression

6 A powerful technique (for minimization problems)
6 Given a solution of size $k+1$, check whether there is one of size k; This is the compression step; somehow starting with a solution helps.

6 How do we get the given $k+1$-sized solution? We iterate and compress!

Iterative Compression

6 A powerful technique (for minimization problems)
6 Given a solution of size $k+1$, check whether there is one of size k; This is the compression step; somehow starting with a solution helps.

6 How do we get the given $k+1$-sized solution? We iterate and compress!
The first $k+1$ vertices of the graph is a solution for the graph induced on that set of vertices.

6 Compress if possible; if not possible, say NO.
For, if the induced subgraph has no k-sized solution, the original graph can not have.

6 If compressible, expand the compressed solution to get a solution for the graph induced on one more vertex to get a $k+1$-sized solution for a larger graph.

Overall time is $O((n-k) *$ time for compression step $)$.

More on Iterative Compression

Several recent results were shown FPT using iterative compression

1. Directed Feedback Vertex Set (STOC 08, JACM 2009)
2. Within k clauses from 2SAT (ICALP 08)
3. Cochromatic Number in perfect graphs (SWAT 2010)
4. Odd Cycle Transversal (the first one, in ORL)
5. Multicut problems

Color coding for finding k-path

6. A randomized technique (Alon, Yuster, Zwick JACM 95)

6 Problem: Is there a simple path of length k (or more) in G ?
6 NP-complete as this is a decision version of Hamiltonian path.

Color coding for finding k-path

6. A randomized technique (Alon, Yuster, Zwick JACM 95)

6 Problem: Is there a simple path of length k (or more) in G ?
6 NP-complete as this is a decision version of Hamiltonian path.
Color Coding Algorithm

1. Randomly color the vertices of the graph with integers 1 to k.
2. Find a colorful path (a path where all colors are distinct) of length k if exists (using Dynamic Programming, can have a start vertex. Remember color sets of size $i\left(\binom{k}{i}\right)$ in paths of length i at intermediate steps. $\left.O\left(2^{k} m\right)\right)$
3. Else repeat

Color coding for finding k-path

6. A randomized technique (Alon, Yuster, Zwick JACM 95)

6 Problem: Is there a simple path of length k (or more) in G ?
6 NP-complete as this is a decision version of Hamiltonian path.
Color Coding Algorithm

1. Randomly color the vertices of the graph with integers 1 to k.
2. Find a colorful path (a path where all colors are distinct) of length k if exists (using Dynamic Programming, can have a start vertex. Remember color sets of size $i\left(\binom{k}{i}\right)$ in paths of length i at intermediate steps. $\left.O\left(2^{k} m\right)\right)$
3. Else repeat

If there is a simple path of length k, it will be colorful with probability $k!/ k^{k}$ which is $\Omega\left(e^{-k}\right)$. So, expected \# of repetitions $-O\left(e^{k}\right)$.
Can be derandomized using perfect hash families.

More on Color Coding

1. Can find k-path, k-cycle, k-tree, subgraphs of bounded treewidth with k vertices all in FPT time.
2. Chromatic Coding - a generalization applied to get a $2^{O(\sqrt{k} \log k)}+n^{O(1)}$ algorithm for finding Feedback Arc Set in tournaments (ALS ICALP 2009).

Hardness

6 Parameterized Reductions (converts (x, k) to $\left(x^{\prime}, k^{\prime}\right)$ where k^{\prime} is a function of k, and the runtime takes $g(k) n^{O(1)}$.

6 W-hardness theory (W-hard implies unlikely to have $f(k) n^{O(1)}$ algorithm)
6 Independent Set, Clique, Weight k satisfying assignment in a bounded CNF formula, hard for W [1].
© Dominating Set, Set Cover - hard for W [2].

Hardness

6. Parameterized Reductions (converts (x, k) to $\left(x^{\prime}, k^{\prime}\right)$ where k^{\prime} is a function of k, and the runtime takes $g(k) n^{O(1)}$.

6 W-hardness theory (W-hard implies unlikely to have $f(k) n^{O(1)}$ algorithm)
6 Independent Set, Clique, Weight k satisfying assignment in a bounded CNF formula, hard for W [1].
© Dominating Set, Set Cover - hard for W [2].
6. Recent Lower bounds on Kernels (Recall that FPT = Kernelizable) give finer classification

6 Under Exponential Time Hypothesis (SAT has no $2^{\circ(n)}$ algorithm), there are some lower bounds for the $f(k)$ functions known.

Hardness

6. Parameterized Reductions (converts (x, k) to $\left(x^{\prime}, k^{\prime}\right)$ where k^{\prime} is a function of k, and the runtime takes $g(k) n^{O(1)}$.

6 W-hardness theory (W-hard implies unlikely to have $f(k) n^{O(1)}$ algorithm)
6 Independent Set, Clique, Weight k satisfying assignment in a bounded CNF formula, hard for W [1].
© Dominating Set, Set Cover - hard for W [2].
6. Recent Lower bounds on Kernels (Recall that FPT = Kernelizable) give finer classification

6 Under Exponential Time Hypothesis (SAT has no $2^{\circ(n)}$ algorithm), there are some lower bounds for the $f(k)$ functions known.

Hardness

6. Parameterized Reductions (converts (x, k) to $\left(x^{\prime}, k^{\prime}\right)$ where k^{\prime} is a function of k, and the runtime takes $g(k) n^{O(1)}$.

6 W-hardness theory (W-hard implies unlikely to have $f(k) n^{O(1)}$ algorithm)
6 Independent Set, Clique, Weight k satisfying assignment in a bounded CNF formula, hard for W [1].
© Dominating Set, Set Cover - hard for W [2].
6. Recent Lower bounds on Kernels (Recall that FPT = Kernelizable) give finer classification

6 Under Exponential Time Hypothesis (SAT has no $2^{\circ(n)}$ algorithm), there are some lower bounds for the $f(k)$ functions known.

Hardness

6. Parameterized Reductions (converts (x, k) to $\left(x^{\prime}, k^{\prime}\right)$ where k^{\prime} is a function of k, and the runtime takes $g(k) n^{O(1)}$.

6 W-hardness theory (W-hard implies unlikely to have $f(k) n^{O(1)}$ algorithm)
6 Independent Set, Clique, Weight k satisfying assignment in a bounded CNF formula, hard for W [1].
© Dominating Set, Set Cover - hard for W [2].
6. Recent Lower bounds on Kernels (Recall that FPT = Kernelizable) give finer classification

6 Under Exponential Time Hypothesis (SAT has no $2^{\circ(n)}$ algorithm), there are some lower bounds for the $f(k)$ functions known.

Approximation and Parameterized
 Complexity

6 The parameterized version of every MaxSNP, MinF+ problem is in FPT.
6 There are easy to approximate problems whose decision versions are W-hard (rectangle stabbing) and
© there are FPT problems (k-path, odd cycle traversal) whose optimization versions are hard to approximate.

6 MaxSNP hard problems can not have subexponential parameterized problems unless ETH is false.

6 A large class of bidimensional parameters have EPTAS in a large class of graphs (FLRS 2011).

Conclusions

6 Matured as a serious paradigm with a host of toolkits for algorithms and hardness

6 Continues to make dents in application areas
6 Finer classifications,
Δ in the size of the kernels for easy problems,
Δ in the running time for harder problems
6 new connections (say, to approximation), and
(6) new algorithmic techniques and new parameterizations
continue to be discovered.

Concrete Open Problems

1. Does G have a $K_{k, k}$? FPT or W-hard?
2. Polynomial kernels for DFVS, OCT, ...
3. Does a planar graph have an independent set of size at least $n / 4+k$? FPT or W-hard?

References

1. Invitation to Fixed-Parameter Algorithms - Rolf Niedermeir (Oxford UP 2006)
2. Parameterized Complexity - Rod Downey and Mike Fellows (Springer 1999)
3. Parameterized Complexity Theory - Jörg Flum and Martin Grohe (Springer 2006)
4. Proceedings of IPEC, and other conferences

Thank You

