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Classical complexity

A brief review:

We usually aim for polynomial-time algorithms: the running time is O(nc),

where n is the input size.

Classical polynomial-time algorithms: shortest path, matching, minimum

spanning tree, 2SAT, convext hull, planar drawing, linear programming, etc.

It is unlikely that polynomial-time algorithms exist for NP-hard problems.

Unfortunately, many problems of interest are NP-hard: Hamiltonian cycle,

3-coloring, 3SAT, etc.

We expect that these problems can be solved only in exponential time (i.e., cn).

Can we say anything nontrivial about NP-hard problems?
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Parameterized complexity

Main idea: Instead of expressing the running time as a function T (n) of n, we

express it as a function T (n, k) of the input size n and some parameter k of the

input.

In other words: we do not want to be efficient on all inputs of size n, only for those

where k is small.
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Parameterized complexity

Main idea: Instead of expressing the running time as a function T (n) of n, we

express it as a function T (n, k) of the input size n and some parameter k of the

input.

In other words: we do not want to be efficient on all inputs of size n, only for those

where k is small.

What can be the parameter k?

The size k of the solution we are looking for.

The maximum degree of the input graph.

The diameter of the input graph.

The length of clauses in the input Boolean formula.

...
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Fixed-parameter tractability

Definition: A parameterization of a decision problem is a function that assigns an

integer parameter k to each input instance x .

The parameter can be

explicit in the input (for example, if the parameter is the integer k appearing in

the input (G , k) of VERTEX COVER), or

implicit in the input (for example, if the parameter is the diameter d of the input

graph G ).

Main definition:

A parameterized problem is fixed-parameter tractable (FPT) if there is an

f (k)nc time algorithm for some constant c .
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Fixed-parameter tractability

Definition: A parameterization of a decision problem is a function that assigns an

integer parameter k to each input instance x .

Main definition:

A parameterized problem is fixed-parameter tractable (FPT) if there is an

f (k)nc time algorithm for some constant c .

Example: VERTEX COVER parameterized by the required size k is FPT:

It is known that it be solved in time O(2k + n2).

Better algorithms are known: e.g, O(1.2832kk + k |V |).

Main goal of parameterized complexity: to find FPT problems.
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FPT problems

Examples of NP-hard problems that are FPT:

Finding a vertex cover of size k .

Finding a path of length k .

Finding k disjoint triangles.

Drawing the graph in the plane with k edge crossings.

Finding disjoint paths that connect k pairs of points.

...
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The Birth of Parameterized Complexity

Motivated by Graph Minor Theory of Robertson and Seymour, and notions of

treewidth, around 1990-1991, over a series of papers, Downey and Fellows

defined the notion of fixed parameter tractability

developed hardness theory (W [1], W [2]-complete problems),

classified several problems ‘hard’ and ‘easy’ in this framework, (Eg: Vertex

Cover, feedback vertex cover – FPT; Dominating set, weight k satisfying

assignment – W-hard)

applied the framework in several application areas (databases, coding theory,

biology, ...)

built a lot of communities including at IMSc (Fellows!)
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FPT algorithmic techniques

Significant advances in the past 20 years or so (especially in recent years).

Powerful toolbox for designing FPT algorithms:

Iterative compressionTreewidth

Bounded Search Tree

Graph Minors Theorem
Color coding

Kernelization
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Books

Downey-Fellows: Parameterized Complexity,

Springer, 1999

Flum-Grohe: Parameterized Complexity Theory,

Springer, 2006

Niedermeier: Invitation to Fixed-Parameter Algo-

rithms, Oxford University Press, 2006.
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Outline of the talk

Algorithmic Techniques

Bounded Search Trees

Kernalization

Iterative Compression

Color Coding

Hardness Theory

Parameterized Complexity and Approximation

Conclusions
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Bounded search tree method

Algorithm for k - VERTEX COVER:

e1 = x1y1
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Bounded search tree method

Algorithm for k - VERTEX COVER:

e1 = x1y1

x1 y1
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Bounded search tree method

Algorithm for k - VERTEX COVER:

e1 = x1y1

x1 y1

e2 = x2y2
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Bounded search tree method

Algorithm for k - VERTEX COVER:

e1 = x1y1

x1 y1

e2 = x2y2
x2 y2
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Bounded search tree method

Algorithm for k - VERTEX COVER:

e1 = x1y1

x1 y1

e2 = x2y2
x2 y2 height: 6 k

Height of the search tree is 6 k ⇒ number of leaves is 6 2k ⇒ complete search

requires 2k · poly steps.
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Improved Branching Algorithms

Observation: For any vertex x , if x is not in the vertex cover, all its neighbors must be

in the vertex cover.

For any vertex x of degree at least 2, check recursively whether

G − x has a vertex cover of size at most k − 1 or

G − N(x) has a vertex cover of size at most k − degree(x).

If every vertex has degree at most 1, solve in polynomial time.
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Observation: For any vertex x , if x is not in the vertex cover, all its neighbors must be

in the vertex cover.

For any vertex x of degree at least 2, check recursively whether

G − x has a vertex cover of size at most k − 1 or

G − N(x) has a vertex cover of size at most k − degree(x).

If every vertex has degree at most 1, solve in polynomial time.

T (k) 6 T (k − 1) + T (k − 2)
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G − N(x) has a vertex cover of size at most k − degree(x).

If every vertex has degree at most 1, solve in polynomial time.

T (k) 6 T (k − 1) + T (k − 2)

Fibonacci recurrence on k that results in O((1.618)km)
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Improved Branching Algorithms

Observation: For any vertex x , if x is not in the vertex cover, all its neighbors must be

in the vertex cover.

For any vertex x of degree at least 2, check recursively whether

G − x has a vertex cover of size at most k − 1 or

G − N(x) has a vertex cover of size at most k − degree(x).

If every vertex has degree at most 1, solve in polynomial time.

T (k) 6 T (k − 1) + T (k − 2)

Fibonacci recurrence on k that results in O((1.618)km)

Can be improved by branching on larger structures and doing a lot of case

analyses; the current best is O(1.28k + kn).

Technique successfully applied for hitting set, undirected feedback vertex set,

directed feedback vertex set in tournaments, maxsat, maxcut, ...Fixed Parameter Algorithms – p. 11



Kernelization
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Kernelization

Definition: Kernelization is a polynomial-time transformation that maps an

instance (I , k) to an instance (I ′, k ′) such that

(I , k) is a yes-instance if and only if (I ′, k ′) is a yes-instance,

k ′ 6 k , and

|I ′| 6 f (k) for some function f (k).
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Kernelization

Definition: Kernelization is a polynomial-time transformation that maps an

instance (I , k) to an instance (I ′, k ′) such that

(I , k) is a yes-instance if and only if (I ′, k ′) is a yes-instance,

k ′ 6 k , and

|I ′| 6 f (k) for some function f (k).

Simple fact: If a problem has a kernelization algorithm, then it is FPT.

Proof: Solve the instance (I ′, k ′) by brute force.
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Kernelization

Definition: Kernelization is a polynomial-time transformation that maps an

instance (I , k) to an instance (I ′, k ′) such that

(I , k) is a yes-instance if and only if (I ′, k ′) is a yes-instance,

k ′ 6 k , and

|I ′| 6 f (k) for some function f (k).

Simple fact: If a problem has a kernelization algorithm, then it is FPT.

Proof: Solve the instance (I ′, k ′) by brute force.

Converse: Every FPT problem has a kernelization algorithm.

Proof: Suppose there is an f (k)nc algorithm for the problem.

If f (k) 6 n, then solve the instance in time f (k)nc 6 nc+1, and output a trivial

yes- or no-instance.

If n < f (k), then we are done: a kernel of size f (k) is obtained.
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Kernelization for VERTEX COVER

General strategy: We devise a list of reduction rules, and show that if none of the

rules can be applied and the size of the instance is still larger than f (k), then the

answer is trivial.

Reduction rules for VERTEX COVER instance (G , k):

Rule 1: If v is an isolated vertex ⇒ (G \ v , k)

Rule 2: If d(v) > k ⇒ (G \ v , k − 1)
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Kernelization for VERTEX COVER

General strategy: We devise a list of reduction rules, and show that if none of the

rules can be applied and the size of the instance is still larger than f (k), then the

answer is trivial.

Reduction rules for VERTEX COVER instance (G , k):

Rule 1: If v is an isolated vertex ⇒ (G \ v , k)

Rule 2: If d(v) > k ⇒ (G \ v , k − 1)

If neither Rule 1 nor Rule 2 can be applied:

If |V (G )| > k(k + 1) ⇒ There is no solution (every vertex should be the

neighbor of at least one vertex of the cover).

Otherwise, |V (G )| 6 k(k + 1) and we have a k(k + 1) vertex kernel.
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Kernelization for VERTEX COVER

Let us add a third rule:

Rule 1: If v is an isolated vertex ⇒ (G \ v , k)

Rule 2: If d(v) > k ⇒ (G \ v , k − 1)

Rule 3: If d(v) = 1, then we can assume that its neighbor u is in the

solution ⇒ (G \ (u ∪ v), k − 1).

If none of the rules can be applied, then every vertex has degree at least 2.

⇒ |V (G )| 6 |E (G )|

If |E (G )| > k2 ⇒ There is no solution (each vertex of the solution can cover at

most k edges).

Otherwise, |V (G )| 6 |E (G )| 6 k2 and we have a k2 vertex kernel.
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Kernelization for VERTEX COVER

Let us add a fourth rule:

Rule 4a: If v has degree 2, and its neighbors u1 and u2 are adjacent, then we

can assume that u1, u2 are in the solution ⇒ (G \ {u1, u2, v }, k − 2).

v

G

u1

u2
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Kernelization for VERTEX COVER

Let us add a fourth rule:

Rule 4b: If v has degree 2, then G ′ is obtained by identifying

the two neighbors of v and deleting v ⇒ (G ′, k − 1).

v ⇒

G ′G

u

u1

u2
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Kernelization for VERTEX COVER

Let us add a fourth rule:

Rule 4b: If v has degree 2, then G ′ is obtained by identifying

the two neighbors of v and deleting v ⇒ (G ′, k − 1).

v ⇒

G ′G

u

u1

u2

Correctness:

Let S ′ be a vertex cover of size k − 1 for G ′.

If u ∈ S ⇒ (S ′ \ u) ∪ {u1, u2} is a vertex cover of size k for G .

If u 6∈ S ⇒ S ′ ∪ v is a vertex cover of size k for G .
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Let us add a fourth rule:

Rule 4b: If v has degree 2, then G ′ is obtained by identifying

the two neighbors of v and deleting v ⇒ (G ′, k − 1).

⇒

G G ′

v

u2

u1

u

Correctness:

Let S be a vertex cover of size k for G .

If u1, u2 ∈ S ⇒ (S \ {u1, u2, v }) ∪ u is a vertex cover of size k − 1 for G ′.

If exactly one of u1 and u2 is in S , then v ∈ S ⇒ (S \ {u1, u2, v }) ∪ u is a vertex

cover of size k − 1 for G ′.

If u1, u2 6∈ S , then v ∈ S ⇒ (S \ v) is a vertex cover of size k − 1 for G ′.
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Kernelization for VERTEX COVER

Let us add a fourth rule:

Rule 4b: If v has degree 2, then G ′ is obtained by identifying

the two neighbors of v and deleting v ⇒ (G ′, k − 1).

v ⇒

G ′G

u

u1

u2

Kernel size:

If |E (G )| > k2 ⇒ There is no solution (each vertex of the solution can cover at

most k edges).

Otherwise, |V (G )| 6 2|E (G )|/3 6
2
3
k2 and we have a 2

3
k2 vertex kernel.
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More on kernels

There is a 2k vertex kernel for vertex cover using Nemhauser-Trotter LP based

approximation algorithm for vertex cover.

There is an O(k2) kernel for undirected feedback vertex set (SODA 2009) –

uses Hall’s like theorem.

Linear kernel for dominating set in Planar graphs (Alber et al JACM 2004);

generalized for more parameters in larger classes of graphs (BFLPS in FOCS

2010)

Fixed Parameter Algorithms – p. 17



More on kernels

There is a 2k vertex kernel for vertex cover using Nemhauser-Trotter LP based

approximation algorithm for vertex cover.

There is an O(k2) kernel for undirected feedback vertex set (SODA 2009) –

uses Hall’s like theorem.

Linear kernel for dominating set in Planar graphs (Alber et al JACM 2004);

generalized for more parameters in larger classes of graphs (BFLPS in FOCS

2010)

Famous Open problems: Polynomial sized (kO(1)) kernel for

Directed feedback vertex set?

Odd cycle transversal (set of vertices whose removal results in a bipartite

graph)?
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Kernelization

Kernelization can be thought of as a polynomial-time preprocessing before

attacking the problem with whatever method we have. “It does no harm” to try

kernelization.

Some kernelizations use lots of simple reduction rules and require a

complicated analysis to bound the kernel size... tricks (Crown Reduction and

the Sunflower Lemma).

Recently this topic got a lot of attention due to recent machineries that show

lower bounds on kernel sizes (i.e. no polynomial size kernel or O(k) kernel

possible under complexity theoretic assumptions).
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Iterative Compression

A powerful technique (for minimization problems)

Given a solution of size k + 1, check whether there is one of size k ; This is the

compression step; somehow starting with a solution helps.

How do we get the given k + 1-sized solution? We iterate and compress!
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Iterative Compression

A powerful technique (for minimization problems)

Given a solution of size k + 1, check whether there is one of size k ; This is the

compression step; somehow starting with a solution helps.

How do we get the given k + 1-sized solution? We iterate and compress!

The first k + 1 vertices of the graph is a solution for the graph induced on that set

of vertices.

Compress if possible; if not possible, say NO.

For, if the induced subgraph has no k-sized solution, the original graph can not

have.

If compressible, expand the compressed solution to get a solution for the graph

induced on one more vertex to get a k + 1-sized solution for a larger graph.

Overall time is O((n − k) ∗ time for compression step).
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More on Iterative Compression

Several recent results were shown FPT using iterative compression

1. Directed Feedback Vertex Set (STOC 08, JACM 2009)

2. Within k clauses from 2SAT (ICALP 08)

3. Cochromatic Number in perfect graphs (SWAT 2010)

4. Odd Cycle Transversal (the first one, in ORL)

5. Multicut problems

Fixed Parameter Algorithms – p. 20



Color coding for finding k-path

A randomized technique (Alon, Yuster, Zwick JACM 95)

Problem: Is there a simple path of length k (or more) in G?

NP-complete as this is a decision version of Hamiltonian path.

Fixed Parameter Algorithms – p. 21



Color coding for finding k-path

A randomized technique (Alon, Yuster, Zwick JACM 95)

Problem: Is there a simple path of length k (or more) in G?

NP-complete as this is a decision version of Hamiltonian path.

Color Coding Algorithm

1. Randomly color the vertices of the graph with integers 1 to k .

2. Find a colorful path (a path where all colors are distinct) of length k if exists

(using Dynamic Programming, can have a start vertex. Remember color sets

of size i (
(

k

i

)

) in paths of length i at intermediate steps. O(2km))

3. Else repeat

Fixed Parameter Algorithms – p. 21



Color coding for finding k-path

A randomized technique (Alon, Yuster, Zwick JACM 95)

Problem: Is there a simple path of length k (or more) in G?

NP-complete as this is a decision version of Hamiltonian path.

Color Coding Algorithm

1. Randomly color the vertices of the graph with integers 1 to k .

2. Find a colorful path (a path where all colors are distinct) of length k if exists

(using Dynamic Programming, can have a start vertex. Remember color sets

of size i (
(

k

i

)

) in paths of length i at intermediate steps. O(2km))

3. Else repeat

If there is a simple path of length k , it will be colorful with probability k!/kk which is

Ω(e−k). So, expected # of repetitions – O(ek).

Can be derandomized using perfect hash families.
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More on Color Coding

1. Can find k-path, k-cycle, k-tree, subgraphs of bounded treewidth with k

vertices all in FPT time.

2. Chromatic Coding – a generalization applied to get a 2O(
√
k log k) + nO(1)

algorithm for finding Feedback Arc Set in tournaments (ALS ICALP 2009).
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Hardness

Parameterized Reductions (converts (x , k) to (x ′, k ′) where k ′ is a function of

k , and the runtime takes g(k)nO(1).

W-hardness theory (W-hard implies unlikely to have f (k)nO(1) algorithm)

Independent Set, Clique, Weight k satisfying assignment in a bounded CNF

formula, hard for W [1].

Dominating Set, Set Cover – hard for W [2].
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Dominating Set, Set Cover – hard for W [2].

Recent Lower bounds on Kernels (Recall that FPT = Kernelizable) give finer

classification

Under Exponential Time Hypothesis (SAT has no 2o(n) algorithm), there are

some lower bounds for the f (k) functions known.
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Approximation and Parameterized
Complexity

The parameterized version of every MaxSNP, MinF+ problem is in FPT.

There are easy to approximate problems whose decision versions are W-hard

(rectangle stabbing) and

there are FPT problems (k-path, odd cycle traversal) whose optimization

versions are hard to approximate.

MaxSNP hard problems can not have subexponential parameterized problems

unless ETH is false.

A large class of bidimensional parameters have EPTAS in a large class of

graphs (FLRS 2011).
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Conclusions

Matured as a serious paradigm with a host of toolkits for algorithms and

hardness

Continues to make dents in application areas

Finer classifications,

in the size of the kernels for easy problems,

in the running time for harder problems

new connections (say, to approximation), and

new algorithmic techniques and new parameterizations

continue to be discovered.
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Concrete Open Problems

1. Does G have a Kk,k? FPT or W-hard?

2. Polynomial kernels for DFVS, OCT, ...

3. Does a planar graph have an independent set of size at least n/4+ k? FPT or

W-hard?
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Thank You
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