
Randomized Algorithms

C.R. Subramanian

The Institute of Mathematical Sciences, Chennai.

Expository talk presented at the Research Promotion Workshop
on ”Introduction to Geometric and Graph Algorithms” at PSG

College of Technology, Coimbatore, January 6-8, 2011.

Deterministic Algorithms : Characteristics

π - a computational problem ; Eg : Sorting.

A - a deterministic algorithm to solve π. Eg : Selection Sort.

At every point during an execution of algorithm A over I , the
next move of A is uniquely well-defined.

The execution and running time, intermediate steps and the
final output computed are the same during each execution of
A over I .

The course followed by the algorithm does not vary with
execution as long as the input I remains the same.

Randomized Algorithms : Characteristics

RA - a randomized algorithm to solve π.

At every point during an execution of algorithm RA over I ,
the next move of A can possibly be determined by employing
randomly chosen bits and is not uniquely well-defined.

The execution and running time, intermediate steps and the
final output computed could possibly vary for different
executions of RA over the same I .

The course followed by the algorithm varies for different
executions even if the input I remains the same.

Why Randomization ?

Randomness often helps in significantly reducing the work
involved in determining a correct choice when there are
several but finding one is very time consuming.

Reduction of work (and time) can be significant on the
average or in the worst case.

Randomness often leads to very simple and elegant
approaches to solve a problem or it can improve the
performance of the same algorithm.

Risk : loss of confidence in the correctness. This loss can be
made very small by repeated employment of randomness.

Assumes the availability of truly unbiased random bits which
are very expensive to generate in practice.

Some Tail Inequalities

X - random variable : µ = E [X]; Var(X) = E [X 2]− µ2.

Markov : X is nonnegative ;

For every t > 0, Pr(X ≥ t) ≤ µ/t.

Chebyschev : ∀t > 0, Pr(|X − µ| ≥ t) ≤ Var(X)/t2.

∀ε ∈ (0, 1], Pr(|X − µ| ≥ εµ) ≤ Var(X)/ε2µ2.

Chernoff : X = X1 + . . .+ Xn; Xi ∈ {0, 1}. independent.

∀ε ∈ (0, 1], Pr(X ≤ µ(1− ε)) ≤ e−ε
2µ/2.

∀ε ∈ (0, 1], Pr(X ≥ µ(1 + ε)) ≤ e−ε
2µ/3.

QuickSort(A, p, q):

If p ≥ q, EXIT.

s ← correct position of A[p] in the sorted order.

Move the ”pivot” A[p] into position s.

Move the remaining elements into ”appropriate” positions.

Quicksort(A, p, s − 1);

Quicksort(A, s + 1, q).

Worse-case Complexity of QuickSort :

T (n) = Worst-case Complexity of QuickSort on an input of
size n. Only comparisons are counted.

T (n) = max{T (π) : π is a permutation of [n]}.

T (n) = Θ(n2).

Worst case input is : π = 〈n, n − 1, . . . , 1〉.

There exist inputs requiring Θ(n2) time.

Randomized Version : RandQSort(A, p, q):

If p ≥ q, EXIT.

Choose uniformly at random r ∈ {p, . . . , q}.

s ← correct position of A[r] in the sorted order.

Move randomly chosen pivot A[r] into position s.

Move the remaining elements into ”appropriate” positions.

RandQSort(A, p, s − 1);

RandQSort(A, s + 1, q).

Analysis of RandQSort :

Every comparison is between a pivot and another element.

two elements are compared at most once.

rank of an element is the position in the sorted order.

xi is the element of rank i . Si ,j = {xi , . . . , xj}.

Xi ,j = 1 if xi and xj are ever compared and 0 otherwise.

E [T (π)] = E [
∑

i<j Xi ,j] =
∑

i<j E [Xi ,j].

E [Xi ,j] = 2
j−i+1 .

E [T (π)] =
∑

i<j
2

j−i+1 ≤ 2nHn = Θ(n(log n)).

Example of randomness improving the efficiency :

Analysis holds for every permutation π.

T (n) = Maximum value of the Expected Time Complexity of
RandQSort on an input of size n.

T (n) = max{E [T (π)] : π is a permutation of [n]}.

T (n) = Θ(n(log n)).

For every π, Pr(T (π) > 8nHn) ≤ 1/4.

introducing randomness very likely improves the efficiency.

An example of a Las Vegas algorithm : always correct but
running time varies but with possibly poly expected time.

Verifying matrix multiplication :

A,B,C ∈ F n×n; Goal : To verify if AB = C .

direct approach - O(n3) time.

algebraic approach - O(n2.376) time.

Randomized Alg :

Choose u.a.r. r ∈ {0, 1}n and check if ABr = Cr .

If so, output YES, otherwise output NO.

If AB 6= C , then Pr(ABr = Cr) ≤ 1/2.

requires O(n2) time.

An example of a Monte-Carlo algorithm : can be incorrect but
guaranteed running time and with a guarantee of confidence.

Las Vegas vs Monte-Carlo :

Las Vegas → Monte-Carlo

A - Las Vegas algo with E [TA(I)] ≤ poly(n) for every I .

By incorporating a counter which counts every elementary
step into A and stopping after, say, 4poly(n) steps, one gets a
poly time Monte-Carlo algorithm B with a guaranteed
confidence of at least 3/4.

Monte-Carlo → Las Vegas

A - Monte-Carlo alg with poly(n) time and 1/poly(n) success
probability. Suppose correctness of output can be verified in
poly(n) time.

By running the alg A repeatedly (with independent coin
tosses) until one gets a correct solution, we get a Las Vegas
algo with poly expected time.

Randomization provably helps

A simple counting problem (by CRS) :

A[1 . . . n]-array with Ai ∈ {1, 2} for every i .

f(x) = freq(x) ≥ n/5 for each x ∈ {1, 2}.

Goal : Given x ∈ {1, 2} and an ε > 0,

determine ans : ans ∈ [(1− ε)f (x), (1 + ε)f (x)].

Any deter. alg needs Ω(n) queries in the worst case for
ε = 1/10.

∃ rand. alg with O(log n) queries for every fixed ε.

Randomization provably helps

RandAlg(A, x , ε) :

m = 20(log n)/ε2 ; c = 0.

for i = 1, . . . ,m do

Choose uniformly at random j ∈ {1, . . . , n}.

if A[j] = x then increment c .

endfor

Return ans = nc/m.

end

Randomization provably helps

Analysis of RandAlg(A, x , ε) :

Xi = 1 if A[j] = x for j chosen in the ith-iteration.

c =
∑

i Xi ; E [Xi] = f (x)/n.

µ = E [c] = mf (x)/n ≥ m/5. E [ans] = f (x).

Pr(c 6∈ [(1− ε)µ, (1 + ε)µ]) ≤ 2e−ε
2µ/3 = o(n−1).

(1− ε)f (x) ≤ ans ≤ (1 + ε)f (x) with probability 1− o(1).

No. of queries = O((log n)/ε2).

No. of queries = O(1) with success probability ≥ 3/4.

Unbiased Estimator

A is a randomized algorithm to approximate #I .

A outputs X such that µ = E [X] = #I .

Pr(X 6∈ [(1± ε)µ]) ≤ Var(X)/ε2µ2 by Chebyshev.

Var(X) = O(µ)⇒ reqd .prob = O(ε−2µ−1).

Example above : Var(X) ≤ µ, helps us !

Often, X is not so nicely defined and Var(X) may not be
small compared to µ2.

Boosting Success Probability - I

Run m independent trials of A(I , ε).

Take ans to be the numerical average of {X1, . . . ,Xm}.

E [ans] = µ and Var(ans) = Var(X)/m.

Pr(ans 6∈ [(1± ε)µ]) ≤ Var(X)/mε2µ2.

Pr(success) ≥ 3/4 provided m ≥ 4E [X 2]/ε2µ2.

a good approximation efficiently computable.

Boosting success probability - II

A is a randomized algorithm to approximate #I .

A runs in time poly(n, 1/ε) and outputs ans :

Pr((1− ε)(#I) ≤ ans ≤ (1 + ε)(#I)) ≥ 1/2 + δ.

Run m independent trials of A(I , ε).

Take ans to be the median of {ans1, . . . , ansm}.

Pr ((1− ε)(#I) ≤ ans ≤ (1 + ε)(#I)) ≥ 1− e−δ
2m/2.

Pr(success) = 1− o(n−1) provided m ≥ 4(log n)/(δ2).

a good approximation efficiently computable.

Approximating Frequency Moments

Given A = (a1, . . . , am), aj ∈ {1, . . . , n}.

mi = frequency of i in A, i ∈ {1, . . . , n}.

Determine Fk =
∑

i m
k
i using ”small” space.

F0 = number of distinct elements in A.

F1 = length of the sequence A ; F2 = repeat rate of A.

Determining Fk arises in Data Mining.

Suppose we want to collect some statistical information from

a large stream of data without having to store the data.

Ω(n) bits needed for any deter. alg approximating Fk within a
ratio of 1± 0.1.

Approximating F2 - algorithm (Alon, Matias, Szegedy)

V = {v1, . . . , vh}, h = O(n2), each vi - a n-vector of ±1.

V is four-wise independent. For v ∈R V , ∀i1 ≤ . . . ≤ i4,
∀(ε1, . . . ε4) ∈ {−1, 1}4, Pr(∀j , v(ij) = εj) = 1/16.

Choose p ∈R {1, . . . , h} and store it using O(log n) bits.

vp(i) can be found (for a given i) using only O(log n) bits.

Z =
∑

i εimi . Z can be computed in one pass using
O(log n + log m) bits.

Compute X = Z 2. space = O(log m + log n).

Take s1 = 16/λ2 independent samples Xj = X and take their
average Y .

Take s2 = 2 log(1/ε) independent samples Yi = Y and output
their median.

Approximating F2 - analysis

E [X] = E [(
∑

i εimi)
2] =

∑
i m

2
i = F2.

E [X 2] =
∑

i m
4
i + 6

∑
i<j m2

i m
2
j .

Var(X) = E [X 2]− E [X]2 = 4
∑

i<j m2
i m

2
j ≤ 2F 2

2 .

Pr(|Yi − F2| ≥ λF2) ≤ 2F 2
2

s1λ2F 2
2
≤ 1/8.

Pr(|Y − F2| ≥ λF2) ≤ ε.

Total space complexity = O(log(1/ε)(log n + log m)/λ2) bits.

Some examples of counting problems

Given a connected G = (V ,E), determine the number of
spanning tress of G .

Given G , determine the number of perfect matchings in G .

Given G , determine the number of 3-colorings of G .

Given a boolean formula F on n boolean variables, determine
the number of satisfying assignments of F .

Class #P

M is a NP machine.

fM : Σ∗ → N such that

fM(I) = number of accepting paths of M on I , ∀ I ∈ Σ∗.

Counting version denoted by #M :

Given I ∈ Σ∗, determine fM(I).

#P = {#M : M is a NP machine }.

#P-complete problems

π1, π2 ∈ #P.

π1 αT π2 if there is a deterministic poly time algorithm for
solving π1 using a polynomial number of queries to an
algorithm for solving π2.

π is #P-hard if

π1 αT π for every π1 ∈ #P.

π is #P-complete if

π ∈ #P and π is #P-hard.

if a #P-complete π can be solved in poly time,

then P = NP.

Some examples of easy counting problems

COUNT the number of 2-colorings of a given G .

O(n + m) time ; Compute connected components.

COUNT the number of spanning trees of a connected G .

reduces to computing the determinant of a suitable matrix.

arborescence - directed rooted tree with a unique path ;

COUNT the number of arborescences of a directed G .

COUNT the number of Eulerian circuits of a directed G .

#PM for planar graphs G ;

reduces to computing the determinant of a suitable matrix.

Some examples of hard counting problems

1. DNF satisfying assignments

Given C = C1 ∨ C2 ∨ . . . ∨ Cm,

each Cj - conjunction of literals of n variables.

Count the number of satisfying assignments.

decision version trivially solvable.

2. #Perfect Matchings

Given arbitrary G ,

Count the number of perfect matchings.

decision version polynomial time solvable.

Some examples of hard counting problems

3. #-3-colorings

Given arbitrary G , Count the number of 3-colorings.

decision version NP-complete. Counting is hard

for every fixed k ≥ 3 or if G is bipartite.

4. Permanent computation

A - n × n, (0, 1)-matrix.

Perm(A) =
∑

σ∈Sn
ΠiAi ,σ(i).

same as #PMs of G = (U ∪ V ,E), |U| = |V | = n.

More examples of hard counting problems

5. #hamilton cycles of G .

6. #acyclic orientations of G .

7. #cycles in a directed graph.

8. #cliques in a graph.

9. #maximal cliques in a graph.

10. #independent sets in a graph.

FPRAS

Fully Polynomial Randomized Approximation Scheme

Algorithm A(x , ε) and produces ans :

Pr(ans ∈ (1± ε)f (x)) ≥ 1/2 + δ.

time bound is poly(|x |, 1/ε).

(1± ε)f (x) =def [(1− ε)f (x), (1 + ε)f (x)].

(π is NPC and NP 6⊆ RP) =⇒ (#π admits no FPRAS.)

Counting DNF assignments

C = C1 ∨ C2 ∨ . . . ∨ Cm. n boolean variables.

#Cj = no. of satisfying assignments.

Eg : Cj = x1 ∧ x3 ∧ x8. #Cj = 2n−3.

Goal : determine #C .

Obs 1: For every S ⊂ {1, . . . ,m}, no. of assignments
satisfying Cj for each j ∈ S can be computed in poly time.

for every j , let Nj =
∑
|S|=j #(∧i∈SCi).

PIE : #C = N1 − N2 + . . .+ (−1)m+1Nm.

takes exponential (in m) time.

Randomized DNF Counting-1

RandAlg-1(C , ε) :

M = (n + m)O(1) ; c = 0 ; V = {x1, . . . , xn}.

for i = 1, . . . ,M do

Choose uniformly at random f : V → {T ,F}.

if f satisfies C then increment c .

endfor

Return ans = 2nc/M.

end

Randomized DNF Counting-1

Analysis of RandAlg-1(C , ε) :

Xj = 1 if f satisfies C for f chosen in the jth-iteration.

c =
∑

i Xi ; E [Xi] = (#C)/2n.

µ = E [c] = M(#C)/2n. E [ans] = #C .

Pr(c 6∈ [(1− ε)µ, (1 + ε)µ]) ≤ 2e−ε
2µ/3.

Pr ((1− ε)#C ≤ ans ≤ (1 + ε)#C) ≥ 1− 2e−ε
2µ/3.

Pr(success) ≥ 1/2 provided M ≥ 6 · 2n/(ε2#C).

poly time possible only if #C ≥ 2n/nO(1).

Randomized DNF Counting-1

Analysis of RandAlg-1(C , ε) :

Major problem is #C/2n can be very small.

Essentially, it is the following problem.

A coin with unknown bias p is given. One is allowed to
repeatedly and independently toss the coin.

How many trials needed to ”estimate” p ? Expected no. of
trials to get a HEAD is 1/p.

We improve p by reducing the size of the search space.

Randomized DNF Counting-2

RandAlg-2(C , ε) : (Karp and Luby)

for j = 1, . . . ,m compute Nj = #Cj .

N =
∑

j Nj ; M = (n + m)O(1) ; c = 0 ;

for i = 1, . . . ,M do

Choose a random r ∈ {1, . . . ,m}
with Pr(r = j) = Nj/N for each j .

Choose uniformly at random a f : V → {T ,F}
which satisfies Cr .

if f satisfies Cr but does not satisfy any Cj

for j < r , then increment c .

endfor

Return ans = Nc/M.

end

Randomized DNF Counting-2

Analysis of RandAlg-2(C , ε) :

Xi = 1 if the ith-iteration is a success (c is incremented).

c =
∑

i Xi ; E [Xi] = (#C)/N.

µ = E [c] = M(#C)/N ≥ M/m. E [ans] = #C .

Pr(c 6∈ [(1− ε)µ, (1 + ε)µ]) ≤ 2e−ε
2µ/3.

Pr ((1− ε)#C ≤ ans ≤ (1 + ε)#C) ≥ 1− 2e−ε
2µ/3.

Pr(success) = 1− o(n−1) provided M ≥ 4m(log n)/(ε2).

a good approximation computable in poly time.

To count, just sample

To estimate |Ω|, embed Ω into a bigger U :

(i) |U| can be determined exactly and efficiently.

(ii) efficient testing of membership in Ω is possible.

(iii) a uniformly random sample from U can be
generated efficiently.

(iv) the ratio |Ω||U| is not ”too small”.

with ”sufficiently many” samples, get an estimate of |Ω|.

efficient uniformly sampling

Uniform sampling : Design a randomized algorithm A :

Given Ω (implicitly), output A(Ω) such that
Pr(A(Ω) = x) = 1/|Ω| for each x ∈ Ω.

Eg: Ω = set of (∆ + 1)-colorings of G .

Approximate sampling : Design a rand. algorithm A :

Given Ω and δ, output A(Ω) such that d1(A(.),U) ≤ 2δ.

A(.) distribution of the output of A ; U is uniform.

Required time bound is poly(|Ω|, log δ−1).

approximate counting reduces to approximate sampling

Problem : Given G = (V ,E), k ≥ ∆ + 2 and ε > 0,

compute an (1± ε) approximation to #col(G , k).

Approach : E = {e1, . . . , em}. Ei = {e1, . . . , ei}.

Gi = G (V ,Ei). G0 = (V , ∅) and Gm = G .

#col(G0, k) = kn. Denote Ni = #col(Gi , k).

Nm = Nm
Nm−1

· Nm−1

Nm−2
· . . . · N1

N0
· kn.

(1± ε2

m) approximation for each ratio Ni
Ni−1

implies

a (1± ε) approximation for Nm.

Required time bound is poly(|V |, 1/ε).

approximate counting reduces to approximate sampling

for every i , Ni ≤ Ni−1 and Ni
Ni−1
≥ 1/2.

for every i , obtain ”sufficiently many” and independent
samples of a k-coloring of Gi−1 to get a (1± ε2

m)

approximation to Ni
Ni−1

in poly(n, 1/ε) time.

Time complexity is poly(|V |, 1/ε).

Applicable to problems like matchings, independent sets, etc.

Generally, applicable to self-reducible problems.

Markov chain based samplers

Markov chain M = (Ω,P), Ω is finite.

P : Ω× Ω→ [0, 1] : ∀x ,
∑

y P(x , y) = 1.

∀t ≥ 0, Pt(x , y) = Pr(Xt = y |X0 = x).

π0 - initial distribution at time t = 0.

πt - distribution at time step t.

πt = π0P
t .

M is ergodic if there is some dist. π : Ω→ [0, 1] :
∀x , y ∈ Ω, Limt→∞Pt(x , y) = π(y).

Markov chain based samplers

dTV (π, π′) = ||π − π′||1/2.

Mixing time : τ(ε) = maxx min{t : dTV (exP
t , π) ≤ ε}.

Desirable : τ(ε) ≤ poly(n, log ε−1).

several analytical tools available to

rigorously bound the mixing time.

coupling, conductance, cananonical paths, etc.

set up a Markov chain, bound its mixing time and

simulate the chain to get an approximately uniform sample.

Glauber Dynamics

MC for uniformly sampling k-colorings of

G where k ≥ ∆(G) + 2.

Q = {1, . . . , k} and Xt(S) = {Xt(u) : u ∈ S}.

1. Choose u ∈ V uniformly at random.

2. Choose c ∈ Q \ Xt(N(u)) u.a.r.

3. Xt+1(v) = Xt(v) if v 6= u and Xt+1(u) = c.

aperiodic and irreducible and hence ergodic.

Can be shown to reach uniform distn asymptotically.

also shown to mix in O(n log n) time for k ≥ 2∆ + 1.

Conclusions

Employing randomness leads to improved simplicity and
improved efficiency in solving the problem.

However, assumes the availability of a perfect source of
independent and unbiased random bits.

access to truly unbiased and independent sequence of random
bits is expensive and should be considered as an expensive
resource like time and space. One should aim to minimize the
use of randomness to the extent possible.

assumes efficient realizability of any rational bias. However,
this assumption introduces error and increases the work and
the required number of random bits.

There are ways to reduce the randomness from several
algorithms while maintaining the efficiency nearly the same.

	Deterministic algorithms
	Counting Problems

