Graph Partitioning

Ajit A. Diwan

Department of Computer Science and Engineering Indian Institute of Technology Bombay.

Introduction to Graph and Geometric Algorithms, Coimbatore, January 2011.

Outline

(9) Introduction

- Graph Partitioning Problems
- Partitioning into Connected Parts
(2) Results
- k-Partitionable Graphs
- Basic Properties
- Proof for Near-Triangulations
- Bounded Degree Graphs

Graph Partitioning

- Partition the vertices and/or edges of a graph.
- Partition must satisfy specified properties.
- Does there exist a partition with specified properties?
- Optimize a specified cost function associated with possible partitions.
- Variety of graph partitioning problems.

Graph Coloring

- Partition the vertex set.
- No two vertices in the same part should be adjacent.
- Number of parts is at most k.
- Does there exist such a partition?
- Minimize the number of parts.
- NP-Hard in general.

Min and Max Cut

- Partition the vertex set.
- Number of parts is 2.
- Minimize (or maximize) number of edges with an end vertex in each part.
- Min-cut can be solved in polynomial-time.
- Max-cut is NP-Hard.

Arborocity

- Partition the edges.
- Each part should be acyclic.
- Minimize the number of parts.
- Solvable in polynomial-time.

Connected Partitions

- Partition the vertices.
- Number of parts and size of each part specified.
- Each part should induce a connected subgraph of the graph.
- Does there exist such a partition?
- NP-Hard in general, even if number of parts is 2.
- Generalization of perfect matchings.

Formal Definition

- Input
- A graph G with n vertices.
- Positive integers $n_{1}, n_{2}, \ldots, n_{k}$ such that $\sum_{1 \leq i \leq k} n_{i}=n$.
- Output
- A partition $V_{1}, V_{2}, \ldots, V_{k}$ of $V(G)$ such that $\left|V_{i}\right|=n_{i}$ and V_{i}
induces a connected subgraph of G, if it exists.
- We call such a partition a k-partition of G.

Formal Definition

- Input
- A graph G with n vertices.
- Positive integers $n_{1}, n_{2}, \ldots, n_{k}$ such that $\sum_{1 \leq i \leq k} n_{i}=n$.
- Output
- A partition $V_{1}, V_{2}, \ldots, V_{k}$ of $V(G)$ such that $\left|V_{i}\right|=n_{i}$ and V_{i} induces a connected subgraph of G, if it exists.
- We call such a partition a k-partition of G.

Graph Partitioning Problems Partitioning into Connected Parts

Motivation

Motivation

Graph Partitioning Problems
Partitioning into Connected Parts

Motivation

Graph Partitioning Problems
Partitioning into Connected Parts

Motivation

Györi and Lovász Theorem

Theorem (Györi and Lovász)

A graph G with n vertices is k-connected iff for any subset $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ of k vertices, and any positive integers $n_{1}, n_{2}, \ldots, n_{k}$ such that $\sum_{1 \leq i \leq k} n_{i}=n$, there exists a partition of $V(G)$ into k parts $V_{1}, V_{2}, \ldots, V_{k}$ such that $v_{i} \in V_{i},\left|V_{i}\right|=n_{i}$ and V_{i} induces a connected subgraph of G for all $1 \leq i \leq k$.

k-Partitionable and Decomposable Graphs

Definition

A graph G with n vertices is said to be k-partitionable if for all positive integers $n_{1}, n_{2}, \ldots, n_{k}$ such that $\sum_{1 \leq i \leq k} n_{i}=n$, there exists a partition of $V(G)$ into k parts $V_{1}, V_{2}, \ldots, V_{k}$ such that $\left|V_{i}\right|=n_{i}$ and V_{i} induces a connected subgraph of G, for $1 \leq i \leq k$.

Definition

A graph G is said to be decomposable if it is k-partitionable for all $k \geq 1$.

Algorithmic Complexity

- NP-Hard to find a k-partition of an arbirary graph, for all $k \geq 2$.
- No polynomial-time algorithm known to find a k-partition for a k-connected graph for $k \geq 4$. The partition always exists by the Györi-Lovász Theorem.
- NP-Hard to recognize k-partitionable and decomposable graphs, for $k \geq 2$.
- Not clear whether recognizing k-partitionable and decomposable graphs is in NP, for arbitrary k.

Sufficient Conditions for k-Partitionability

- k-connected graphs are k-partitionable for all $k \geq 1$. (Györi-Lovász Theorem).
- k-connected graphs are not $(k+1)$-partitionable in general.
- Complete bipartite graph $K_{k, k+2}$ has no perfect matching.
- Does k-connectivity with some additional property imply higher partitionability?

Planar Graphs

- $K_{1,3}$ is a planar 1-connected graph that is not 2-partitionable.
- $K_{2,4}$ is a planar 2-connected graph that is not 3-partitionable.
- Planar 4-connected graphs are Hamiltonian (Tutte's Theorem), which implies they are decomposable.
- What happens for 3-connected planar graphs? ($K_{3,5}$ is not planar).
- Conjecture: Planar 3-connected graphs are 6-partitionable

Planar Graphs

- $K_{1,3}$ is a planar 1-connected graph that is not 2-partitionable.
- $K_{2,4}$ is a planar 2-connected graph that is not 3-partitionable.
- Planar 4-connected graphs are Hamiltonian (Tutte's Theorem), which implies they are decomposable.
- What happens for 3-connected planar graphs? ($K_{3,5}$ is not planar).
- Conjecture: Planar 3-connected graphs are 6-partitionable.

Plane Triangulations

> Definition
> A plane triangulation is a planar simple graph in which every face is a triangle. Equivalently, it is a maximal planar graph with at least 3 vertices.

Theorem
Plane triangulations are 6-partitionable.
The proof also gives a polynomial-time algorithm to find a
6-partition.

Plane Triangulations

Definition

A plane triangulation is a planar simple graph in which every face is a triangle. Equivalently, it is a maximal planar graph with at least 3 vertices.

Theorem

Plane triangulations are 6-partitionable.
The proof also gives a polynomial-time algorithm to find a 6-partition.

Plane Triangulations

Definition

A plane triangulation is a planar simple graph in which every face is a triangle. Equivalently, it is a maximal planar graph with at least 3 vertices.

Theorem

Plane triangulations are 6-partitionable.
The proof also gives a polynomial-time algorithm to find a 6-partition.

Plane Near-Triangulations

Definition

A plane near-triangulation is a planar simple graph in which all internal (bounded) faces are triangles and the outer face is a simple cycle.

Theorem

Plane near-triangulations are 4-partitionable.

Contractible Edges in Triangulations

Lemma

Let u, v, w be the vertices on the boundary of some face of a plane triangulation with at least 4 vertices. There exists a vertex $x \notin\{v, w\}$ such that contracting edge ux gives a plane triangulation.

Contractible Edges in Triangulations

Lemma

Let u be any vertex in a plane triangulation with at least 4 vertices. There are at least two edges uv, uw incident with u such that contracting uv or uw gives a plane triangulation.

Contractible Edges

Contractible Edges

Contractible Edges

Contractible Edges in Chordless Near-Triangulations

Lemma

Let u be a vertex in the external cycle of a chordless near-triangulation G with at least 4 vertices. Then at least one of the following holds:
(i) There exists an internal vertex x adjacent to u such that contracting the edge ux gives a chordless near-triangulation.
(ii) Contracting any external edge incident with u gives a chordless near-triangulation.

Contractible Edges

3-Partitioning Near-Triangulations

Lemma

Let G be a plane near-triangulation with n vertices and let u, v be two adjacent vertices in the outer face of G. Then for any 3 positive integers n_{1}, n_{2}, n_{3} such that $n_{1}+n_{2}+n_{3}=n$, there exists a partition of $V(G)$ into 3 parts V_{1}, V_{2}, V_{3} such that $u \in V_{1}, v \in V_{2},\left|V_{i}\right|=n_{i}$ and $G\left[V_{i}\right]$ is connected, for $1 \leq i \leq 3$.

3-Partitioning Near-Triangulations

3-Partitioning Near-Triangulations

3-Partitioning Near-Triangulations

3-Partitioning Near-Triangulations

Ajit A. Diwan
Graph Partitioning

4-Partitioning Near-Triangulations

4-Partitioning Near-Triangulations

4-Partitioning Near-Triangulations

4-Partitioning a Plane Triangulations

Lemma

Let u, v, w be vertices on the boundary of some face of a plane triangulation G with n vertices. Then for all positive integers $n_{1}, n_{2}, n_{3}, n_{4}$ such that $n_{1}+n_{2}+n_{3}+n_{4}=n$, there exists a partition of $V(G)$ into parts $V_{1}, V_{2}, V_{3}, V_{4}$, such that $u \in V_{1}$, $v \in V_{2}, w \in V_{3},\left|V_{i}\right|=n_{i}$ and V_{i} induces a connected subgraph of G for $1 \leq i \leq 4$.

4-Partitioning a Plane Triangulation

Lemma

Let G be a plane triangulation with n vertices and let u, v, w be the vertices on the boundary of some face in G. Then for all positive integers $n_{1}, n_{2}, n_{3}, n_{4}$ such that $n_{1}+n_{2}+n_{3}+n_{4}=n-1$, there exists a partition of $V(G)-v$ or $V(G)-w$ into parts $V_{1}, V_{2}, V_{3}, V_{4}$, such that $u \in V_{1},\left|V_{i}\right|=n_{i}$ and V_{i} induces a connected subgraph of G for $1 \leq i \leq 5$.

5-Partitioning a Plane Triangulation

Lemma

Let u be any vertex in a plane triangulation G with n vertices.
Then for all positive integers $n_{1}, n_{2}, n_{3}, n_{4}, n_{5}$ such that
$n_{1}+n_{2}+n_{3}+n_{4}+n_{5}=n$, there exists a partition of $V(G)$ into parts $V_{1}, V_{2}, V_{3}, V_{4}, V_{5}$ such that $u \in V_{1},\left|V_{i}\right|=n_{i}$ and V_{i} induces a connected subgraph of G for $1 \leq i \leq 5$.

6-Partitioning a Plane Triangulation

Near-Triangulations are not 5-partitionable

Triangulations are not 7-partitionable

Conjecture

Planar 3-connected graphs are 6-partitionable.

Partitioning 2-connected Graphs

Theorem

Every 2-connected graph with maximum degree at most 3 is 4-partitionable.

Theorem

Every 2-connected claw-free ($K_{1,3}$-free) graph is 4-partitionable.

Counterexamples

Counterexamples

Partitioning k-connected Graphs

Is every k-connected graph with maximum degree at most $k+12 k$-partitionable?

Is every k-connected k-regular graph decomposable, that is, l-partitionable for all $I \geq 1$.

References I

围 A．A．Diwan and M．P．Kurhekar，Plane triangulations are 6 partitionable，Discrete Mathematics 256：91－103， 2002.
围 M．E．Dyer and A．M．Frieze，On the complexity of partitioning graphs into connected subgraphs，Discrete Applied Mathematics 10：139－153， 1985.
圊 E．Györi，On division of connected subgraphs，Proc．5th Hungarian Combinational Coll．，485－494， 1978.
－L．Lovász，A homology theory for spanning trees of a graph，Acta Math．Acad．Sci．Hung．30：241－251， 1977.

Thank You

