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Graph Partitioning

Partition the vertices and/or edges of a graph.
Partition must satisfy specified properties.
Does there exist a partition with specified properties?
Optimize a specified cost function associated with possible
partitions.
Variety of graph partitioning problems.
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Graph Coloring

Partition the vertex set.
No two vertices in the same part should be adjacent.
Number of parts is at most k .
Does there exist such a partition?
Minimize the number of parts.
NP-Hard in general.
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Min and Max Cut

Partition the vertex set.
Number of parts is 2.
Minimize (or maximize) number of edges with an end
vertex in each part.
Min-cut can be solved in polynomial-time.
Max-cut is NP-Hard.
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Arborocity

Partition the edges.
Each part should be acyclic.
Minimize the number of parts.
Solvable in polynomial-time.
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Connected Partitions

Partition the vertices.
Number of parts and size of each part specified.
Each part should induce a connected subgraph of the
graph.
Does there exist such a partition?
NP-Hard in general, even if number of parts is 2.
Generalization of perfect matchings.
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Formal Definition

Input
A graph G with n vertices.
Positive integers n1,n2, . . . ,nk such that

∑
1≤i≤k ni = n.

Output
A partition V1,V2, . . . ,Vk of V (G) such that |Vi | = ni and Vi
induces a connected subgraph of G, if it exists.

We call such a partition a k -partition of G.
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Györi and Lovász Theorem

Theorem (Györi and Lovász)
A graph G with n vertices is k-connected iff for any subset
{v1, v2, . . . , vk} of k vertices, and any positive integers
n1,n2, . . . ,nk such that

∑
1≤i≤k ni = n, there exists a partition of

V (G) into k parts V1,V2, . . . ,Vk such that vi ∈ Vi , |Vi | = ni and
Vi induces a connected subgraph of G for all 1 ≤ i ≤ k.

Ajit A. Diwan Graph Partitioning



Introduction
Results

Graph Partitioning Problems
Partitioning into Connected Parts

k -Partitionable and Decomposable Graphs

Definition
A graph G with n vertices is said to be k-partitionable if for all
positive integers n1,n2, . . . ,nk such that

∑
1≤i≤k ni = n, there

exists a partition of V (G) into k parts V1,V2, . . . ,Vk such that
|Vi | = ni and Vi induces a connected subgraph of G, for
1 ≤ i ≤ k.

Definition
A graph G is said to be decomposable if it is k-partitionable for
all k ≥ 1.
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Algorithmic Complexity

NP-Hard to find a k -partition of an arbirary graph, for all
k ≥ 2.
No polynomial-time algorithm known to find a k -partition
for a k -connected graph for k ≥ 4. The partition always
exists by the Györi-Lovász Theorem.
NP-Hard to recognize k -partitionable and decomposable
graphs, for k ≥ 2.
Not clear whether recognizing k -partitionable and
decomposable graphs is in NP, for arbitrary k .
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Sufficient Conditions for k -Partitionability

k -connected graphs are k -partitionable for all k ≥ 1.
(Györi-Lovász Theorem).
k -connected graphs are not (k + 1)-partitionable in
general.
Complete bipartite graph Kk ,k+2 has no perfect matching.
Does k -connectivity with some additional property imply
higher partitionability?
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Planar Graphs

K1,3 is a planar 1-connected graph that is not
2-partitionable.
K2,4 is a planar 2-connected graph that is not
3-partitionable.
Planar 4-connected graphs are Hamiltonian (Tutte’s
Theorem), which implies they are decomposable.
What happens for 3-connected planar graphs? (K3,5 is not
planar).
Conjecture: Planar 3-connected graphs are 6-partitionable.
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Plane Triangulations

Definition
A plane triangulation is a planar simple graph in which every
face is a triangle. Equivalently, it is a maximal planar graph with
at least 3 vertices.

Theorem
Plane triangulations are 6-partitionable.

The proof also gives a polynomial-time algorithm to find a
6-partition.
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Plane Near-Triangulations

Definition
A plane near-triangulation is a planar simple graph in which all
internal (bounded) faces are triangles and the outer face is a
simple cycle.

Theorem
Plane near-triangulations are 4-partitionable.
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Contractible Edges in Triangulations

Lemma
Let u, v ,w be the vertices on the boundary of some face of a
plane triangulation with at least 4 vertices. There exists a vertex
x 6∈ {v ,w} such that contracting edge ux gives a plane
triangulation.
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Contractible Edges in Triangulations

Lemma
Let u be any vertex in a plane triangulation with at least 4
vertices. There are at least two edges uv ,uw incident with u
such that contracting uv or uw gives a plane triangulation.
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Contractible Edges in Chordless Near-Triangulations

Lemma
Let u be a vertex in the external cycle of a chordless
near-triangulation G with at least 4 vertices. Then at least one
of the following holds:

(i) There exists an internal vertex x adjacent to u such that
contracting the edge ux gives a chordless
near-triangulation.

(ii) Contracting any external edge incident with u gives a
chordless near-triangulation.
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3-Partitioning Near-Triangulations

Lemma
Let G be a plane near-triangulation with n vertices and let u, v
be two adjacent vertices in the outer face of G. Then for any 3
positive integers n1,n2,n3 such that n1 + n2 + n3 = n, there
exists a partition of V (G) into 3 parts V1,V2,V3 such that
u ∈ V1, v ∈ V2, |Vi | = ni and G[Vi ] is connected, for 1 ≤ i ≤ 3.
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4-Partitioning Near-Triangulations
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4-Partitioning a Plane Triangulations

Lemma
Let u, v ,w be vertices on the boundary of some face of a plane
triangulation G with n vertices. Then for all positive integers
n1,n2,n3,n4 such that n1 + n2 + n3 + n4 = n, there exists a
partition of V (G) into parts V1,V2,V3,V4, such that u ∈ V1,
v ∈ V2, w ∈ V3, |Vi | = ni and Vi induces a connected subgraph
of G for 1 ≤ i ≤ 4.
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4-Partitioning a Plane Triangulation

Lemma
Let G be a plane triangulation with n vertices and let u, v ,w be
the vertices on the boundary of some face in G. Then for all
positive integers n1,n2,n3,n4 such that
n1 + n2 + n3 + n4 = n− 1, there exists a partition of V (G)− v or
V (G)− w into parts V1,V2,V3,V4, such that u ∈ V1, |Vi | = ni
and Vi induces a connected subgraph of G for 1 ≤ i ≤ 5.
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5-Partitioning a Plane Triangulation

Lemma
Let u be any vertex in a plane triangulation G with n vertices.
Then for all positive integers n1,n2,n3,n4,n5 such that
n1 + n2 + n3 + n4 + n5 = n, there exists a partition of V (G) into
parts V1,V2,V3,V4,V5 such that u ∈ V1, |Vi | = ni and Vi
induces a connected subgraph of G for 1 ≤ i ≤ 5.
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6-Partitioning a Plane Triangulation
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Near-Triangulations are not 5-partitionable

Ajit A. Diwan Graph Partitioning



Introduction
Results

k -Partitionable Graphs
Basic Properties
Proof for Near-Triangulations
Bounded Degree Graphs
References

Triangulations are not 7-partitionable
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Conjecture

Planar 3-connected graphs are 6-partitionable.
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Partitioning 2-connected Graphs

Theorem
Every 2-connected graph with maximum degree at most 3 is
4-partitionable.

Theorem
Every 2-connected claw-free (K1,3-free) graph is 4-partitionable.
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Counterexamples
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Partitioning k -connected Graphs

Is every k -connected graph with maximum degree at most
k + 1 2k -partitionable?

Is every k -connected k -regular graph decomposable, that is,
l-partitionable for all l ≥ 1.
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