Graph Partitioning

Ajit A. Diwan

Department of Computer Science and Engineering Indian Institute of Technology Bombay.

Introduction to Graph and Geometric Algorithms, Coimbatore, January 2011.

ヘロト ヘ戸ト ヘヨト ヘヨト

э

Introduction

- Graph Partitioning Problems
- Partitioning into Connected Parts

2 Results

- k-Partitionable Graphs
- Basic Properties
- Proof for Near-Triangulations
- Bounded Degree Graphs

▲ @ ▶ ▲ 三 ▶ .

≣ ▶

Graph Partitioning Problems Partitioning into Connected Parts

イロト イポト イヨト イヨト

æ

Graph Partitioning

- Partition the vertices and/or edges of a graph.
- Partition must satisfy specified properties.
- Does there exist a partition with specified properties?
- Optimize a specified cost function associated with possible partitions.
- Variety of graph partitioning problems.

Graph Partitioning Problems Partitioning into Connected Parts

- Partition the vertex set.
- No two vertices in the same part should be adjacent.
- Number of parts is at most k.
- Does there exist such a partition?
- Minimize the number of parts.
- NP-Hard in general.

イロト イポト イヨト イヨト

э

Graph Partitioning Problems Partitioning into Connected Parts

ヘロト 人間 ト ヘヨト ヘヨト

3

Min and Max Cut

- Partition the vertex set.
- Number of parts is 2.
- Minimize (or maximize) number of edges with an end vertex in each part.
- Min-cut can be solved in polynomial-time.
- Max-cut is NP-Hard.

Graph Partitioning Problems Partitioning into Connected Parts

イロト イポト イヨト イヨト

э

- Partition the edges.
- Each part should be acyclic.
- Minimize the number of parts.
- Solvable in polynomial-time.

Graph Partitioning Problems Partitioning into Connected Parts

ヘロト ヘアト ヘヨト ヘ

글 > 글

Connected Partitions

- Partition the vertices.
- Number of parts and size of each part specified.
- Each part should induce a connected subgraph of the graph.
- Does there exist such a partition?
- NP-Hard in general, even if number of parts is 2.
- Generalization of perfect matchings.

Graph Partitioning Problems Partitioning into Connected Parts

ヘロト 人間 とくほとくほとう

1

Formal Definition

Input

- A graph G with n vertices.
- Positive integers n_1, n_2, \ldots, n_k such that $\sum_{1 \le i \le k} n_i = n$.
- Output
 - A partition $V_1, V_2, ..., V_k$ of V(G) such that $|V_i| = n_i$ and V_i induces a connected subgraph of *G*, if it exists.
- We call such a partition a k-partition of G.

Graph Partitioning Problems Partitioning into Connected Parts

ヘロト 人間 とくほとくほとう

1

Formal Definition

- Input
 - A graph G with n vertices.
 - Positive integers n_1, n_2, \ldots, n_k such that $\sum_{1 \le i \le k} n_i = n$.
- Output
 - A partition $V_1, V_2, ..., V_k$ of V(G) such that $|V_i| = n_i$ and V_i induces a connected subgraph of *G*, if it exists.
- We call such a partition a *k*-partition of *G*.

Graph Partitioning Problems Partitioning into Connected Parts

æ

Graph Partitioning Problems Partitioning into Connected Parts

Graph Partitioning Problems Partitioning into Connected Parts

æ

Graph Partitioning Problems Partitioning into Connected Parts

æ

Graph Partitioning Problems Partitioning into Connected Parts

ヘロト ヘアト ヘビト ヘビト

Györi and Lovász Theorem

Theorem (Györi and Lovász)

A graph G with n vertices is k-connected iff for any subset $\{v_1, v_2, ..., v_k\}$ of k vertices, and any positive integers $n_1, n_2, ..., n_k$ such that $\sum_{1 \le i \le k} n_i = n$, there exists a partition of V(G) into k parts $V_1, V_2, ..., V_k$ such that $v_i \in V_i, |V_i| = n_i$ and V_i induces a connected subgraph of G for all $1 \le i \le k$.

ヘロト 人間 とくほとくほとう

э

k-Partitionable and Decomposable Graphs

Definition

A graph G with n vertices is said to be k-partitionable if for all positive integers $n_1, n_2, ..., n_k$ such that $\sum_{1 \le i \le k} n_i = n$, there exists a partition of V(G) into k parts $V_1, V_2, ..., V_k$ such that $|V_i| = n_i$ and V_i induces a connected subgraph of G, for $1 \le i \le k$.

Definition

A graph G is said to be decomposable if it is k-partitionable for all $k \ge 1$.

ヘロト 人間 とくほとくほとう

1

Algorithmic Complexity

- NP-Hard to find a k-partition of an arbirary graph, for all k ≥ 2.
- No polynomial-time algorithm known to find a *k*-partition for a *k*-connected graph for *k* ≥ 4. The partition always exists by the Györi-Lovász Theorem.
- NP-Hard to recognize *k*-partitionable and decomposable graphs, for *k* ≥ 2.
- Not clear whether recognizing *k*-partitionable and decomposable graphs is in NP, for arbitrary *k*.

k-Partitionable Graphs Basic Properties Proof for Near-Triangulations Bounded Degree Graphs References

Sufficient Conditions for *k*-Partitionability

- k-connected graphs are k-partitionable for all k ≥ 1. (Györi-Lovász Theorem).
- k-connected graphs are not (k + 1)-partitionable in general.
- Complete bipartite graph $K_{k,k+2}$ has no perfect matching.
- Does *k*-connectivity with some additional property imply higher partitionability?

ヘロト 人間 ト ヘヨト ヘヨト

k-Partitionable Graphs Basic Properties Proof for Near-Triangulations Bounded Degree Graphs References

Planar Graphs

- $K_{1,3}$ is a planar 1-connected graph that is not 2-partitionable.
- *K*_{2,4} is a planar 2-connected graph that is not 3-partitionable.
- Planar 4-connected graphs are Hamiltonian (Tutte's Theorem), which implies they are decomposable.
- What happens for 3-connected planar graphs? (*K*_{3,5} is not planar).
- Conjecture: Planar 3-connected graphs are 6-partitionable.

ヘロト 人間 とくほとく ほとう

k-Partitionable Graphs Basic Properties Proof for Near-Triangulations Bounded Degree Graphs References

Planar Graphs

- $K_{1,3}$ is a planar 1-connected graph that is not 2-partitionable.
- *K*_{2,4} is a planar 2-connected graph that is not 3-partitionable.
- Planar 4-connected graphs are Hamiltonian (Tutte's Theorem), which implies they are decomposable.
- What happens for 3-connected planar graphs? (*K*_{3,5} is not planar).
- Conjecture: Planar 3-connected graphs are 6-partitionable.

ヘロト 人間 とくほとくほとう

k-Partitionable Graphs Basic Properties Proof for Near-Triangulations Bounded Degree Graphs References

Plane Triangulations

Definition

A plane triangulation is a planar simple graph in which every face is a triangle. Equivalently, it is a maximal planar graph with at least 3 vertices.

Theorem

Plane triangulations are 6-partitionable.

The proof also gives a polynomial-time algorithm to find a 6-partition.

ヘロト ヘ戸ト ヘヨト ヘヨト

k-Partitionable Graphs Basic Properties Proof for Near-Triangulations Bounded Degree Graphs References

Plane Triangulations

Definition

A plane triangulation is a planar simple graph in which every face is a triangle. Equivalently, it is a maximal planar graph with at least 3 vertices.

Theorem

Plane triangulations are 6-partitionable.

The proof also gives a polynomial-time algorithm to find a 6-partition.

イロト イポト イヨト イヨト

k-Partitionable Graphs Basic Properties Proof for Near-Triangulations Bounded Degree Graphs References

Plane Triangulations

Definition

A plane triangulation is a planar simple graph in which every face is a triangle. Equivalently, it is a maximal planar graph with at least 3 vertices.

Theorem

Plane triangulations are 6-partitionable.

The proof also gives a polynomial-time algorithm to find a 6-partition.

イロン イロン イヨン イヨン

k-Partitionable Graphs Basic Properties Proof for Near-Triangulations Bounded Degree Graphs References

Plane Near-Triangulations

Definition

A plane near-triangulation is a planar simple graph in which all internal (bounded) faces are triangles and the outer face is a simple cycle.

Theorem

Plane near-triangulations are 4-partitionable.

ヘロト ヘヨト ヘヨト

k-Partitionable Graphs Basic Properties Proof for Near-Triangulations Bounded Degree Graphs References

Contractible Edges in Triangulations

Lemma

Let u, v, w be the vertices on the boundary of some face of a plane triangulation with at least 4 vertices. There exists a vertex $x \notin \{v, w\}$ such that contracting edge ux gives a plane triangulation.

くロト (過) (目) (日)

k-Partitionable Graphs Basic Properties Proof for Near-Triangulations Bounded Degree Graphs References

Contractible Edges in Triangulations

Lemma

Let u be any vertex in a plane triangulation with at least 4 vertices. There are at least two edges uv, uw incident with u such that contracting uv or uw gives a plane triangulation.

くロト (過) (目) (日)

k-Partitionable Graphs Basic Properties Proof for Near-Triangulations Bounded Degree Graphs References

Contractible Edges

ヘロン 人間 とくほ とくほとう

æ

k-Partitionable Graphs Basic Properties Proof for Near-Triangulations Bounded Degree Graphs References

Contractible Edges

ヘロト 人間 とくほとくほとう

æ

k-Partitionable Graphs Basic Properties Proof for Near-Triangulations Bounded Degree Graphs References

Contractible Edges

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣へ()>

k-Partitionable Graphs Basic Properties Proof for Near-Triangulations Bounded Degree Graphs References

Contractible Edges in Chordless Near-Triangulations

Lemma

Let u be a vertex in the external cycle of a chordless near-triangulation G with at least 4 vertices. Then at least one of the following holds:

- (i) There exists an internal vertex x adjacent to u such that contracting the edge ux gives a chordless near-triangulation.
- (ii) Contracting any external edge incident with u gives a chordless near-triangulation.

イロン イロン イヨン イヨン

k-Partitionable Graphs Basic Properties Proof for Near-Triangulations Bounded Degree Graphs References

Contractible Edges

ヘロト 人間 とくほとくほとう

æ

k-Partitionable Graphs Basic Properties Proof for Near-Triangulations Bounded Degree Graphs References

3-Partitioning Near-Triangulations

Lemma

Let G be a plane near-triangulation with n vertices and let u, vbe two adjacent vertices in the outer face of G. Then for any 3 positive integers n_1, n_2, n_3 such that $n_1 + n_2 + n_3 = n$, there exists a partition of V(G) into 3 parts V_1, V_2, V_3 such that $u \in V_1, v \in V_2, |V_i| = n_i$ and $G[V_i]$ is connected, for $1 \le i \le 3$.

ヘロト ヘ戸ト ヘヨト ヘヨト

k-Partitionable Graphs Basic Properties Proof for Near-Triangulations Bounded Degree Graphs References

k-Partitionable Graphs Basic Properties Proof for Near-Triangulations Bounded Degree Graphs References

k-Partitionable Graphs Basic Properties Proof for Near-Triangulations Bounded Degree Graphs References

k-Partitionable Graphs Basic Properties Proof for Near-Triangulations Bounded Degree Graphs References

k-Partitionable Graphs Basic Properties Proof for Near-Triangulations Bounded Degree Graphs References

4-Partitioning Near-Triangulations

⇒ < ⇒ >

э

k-Partitionable Graphs Basic Properties Proof for Near-Triangulations Bounded Degree Graphs References

4-Partitioning Near-Triangulations

k-Partitionable Graphs Basic Properties Proof for Near-Triangulations Bounded Degree Graphs References

4-Partitioning Near-Triangulations

k-Partitionable Graphs Basic Properties Proof for Near-Triangulations Bounded Degree Graphs References

4-Partitioning a Plane Triangulations

Lemma

Let u, v, w be vertices on the boundary of some face of a plane triangulation G with n vertices. Then for all positive integers n_1, n_2, n_3, n_4 such that $n_1 + n_2 + n_3 + n_4 = n$, there exists a partition of V(G) into parts V_1, V_2, V_3, V_4 , such that $u \in V_1$, $v \in V_2$, $w \in V_3$, $|V_i| = n_i$ and V_i induces a connected subgraph of G for $1 \le i \le 4$.

ヘロト ヘ戸ト ヘヨト ヘヨト

k-Partitionable Graphs Basic Properties Proof for Near-Triangulations Bounded Degree Graphs References

4-Partitioning a Plane Triangulation

Lemma

Let G be a plane triangulation with n vertices and let u, v, w be the vertices on the boundary of some face in G. Then for all positive integers n_1, n_2, n_3, n_4 such that $n_1 + n_2 + n_3 + n_4 = n - 1$, there exists a partition of V(G) - v or V(G) - w into parts V_1, V_2, V_3, V_4 , such that $u \in V_1, |V_i| = n_i$ and V_i induces a connected subgraph of G for $1 \le i \le 5$.

ヘロト ヘアト ヘビト ヘビト

k-Partitionable Graphs Basic Properties Proof for Near-Triangulations Bounded Degree Graphs References

5-Partitioning a Plane Triangulation

Lemma

Let u be any vertex in a plane triangulation G with n vertices. Then for all positive integers n_1, n_2, n_3, n_4, n_5 such that $n_1 + n_2 + n_3 + n_4 + n_5 = n$, there exists a partition of V(G) into parts V_1, V_2, V_3, V_4, V_5 such that $u \in V_1, |V_i| = n_i$ and V_i induces a connected subgraph of G for $1 \le i \le 5$.

ヘロト 人間 ト ヘヨト ヘヨト

k-Partitionable Graphs Basic Properties Proof for Near-Triangulations Bounded Degree Graphs References

6-Partitioning a Plane Triangulation

k-Partitionable Graphs Basic Properties Proof for Near-Triangulations Bounded Degree Graphs References

6-Partitioning a Plane Triangulation

k-Partitionable Graphs Basic Properties Proof for Near-Triangulations Bounded Degree Graphs References

6-Partitioning a Plane Triangulation

k-Partitionable Graphs Basic Properties Proof for Near-Triangulations Bounded Degree Graphs References

6-Partitioning a Plane Triangulation

k-Partitionable Graphs Basic Properties Proof for Near-Triangulations Bounded Degree Graphs References

6-Partitioning a Plane Triangulation

k-Partitionable Graphs Basic Properties Proof for Near-Triangulations Bounded Degree Graphs References

6-Partitioning a Plane Triangulation

k-Partitionable Graphs Basic Properties Proof for Near-Triangulations Bounded Degree Graphs References

Near-Triangulations are not 5-partitionable

ъ

k-Partitionable Graphs Basic Properties Proof for Near-Triangulations Bounded Degree Graphs References

Triangulations are not 7-partitionable

k-Partitionable Graphs Basic Properties Proof for Near-Triangulations Bounded Degree Graphs References

Planar 3-connected graphs are 6-partitionable.

Ajit A. Diwan Graph Partitioning

<ロト <回 > < 注 > < 注 > 、

2

k-Partitionable Graphs Basic Properties Proof for Near-Triangulations Bounded Degree Graphs References

Partitioning 2-connected Graphs

Theorem

Every 2-connected graph with maximum degree at most 3 is 4-partitionable.

Theorem

Every 2-connected claw-free ($K_{1,3}$ -free) graph is 4-partitionable.

ヘロン 人間 とくほど くほとう

k-Partitionable Graphs Basic Properties Proof for Near-Triangulations Bounded Degree Graphs References

Counterexamples

Ajit A. Diwan Graph Partitioning

<ロト <回 > < 注 > < 注 > 、

æ

k-Partitionable Graphs Basic Properties Proof for Near-Triangulations Bounded Degree Graphs References

Counterexamples

k-Partitionable Graphs Basic Properties Proof for Near-Triangulations Bounded Degree Graphs References

Partitioning k-connected Graphs

Is every *k*-connected graph with maximum degree at most k + 1 2k-partitionable?

Is every *k*-connected *k*-regular graph decomposable, that is, *l*-partitionable for all $l \ge 1$.

くロト (過) (目) (日)

k-Partitionable Graphs Basic Properties Proof for Near-Triangulations Bounded Degree Graphs References

References I

- A.A. Diwan and M.P. Kurhekar, *Plane triangulations are 6 partitionable*, Discrete Mathematics 256: 91-103, 2002.
- M.E. Dyer and A.M. Frieze, On the complexity of partitioning graphs into connected subgraphs, Discrete Applied Mathematics 10:139-153, 1985.
- E. Györi, *On division of connected subgraphs*, Proc. 5th Hungarian Combinational Coll., 485-494, 1978.
- L. Lovász, A homology theory for spanning trees of a graph, Acta Math. Acad. Sci. Hung. 30: 241-251, 1977.

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

k-Partitionable Graphs Basic Properties Proof for Near-Triangulations Bounded Degree Graphs References

Thank You

Ajit A. Diwan Graph Partitioning

ヘロト 人間 とくほとくほとう

∃ 𝒫𝔄𝔄