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Definition: A simple graph is a triple G = (V,E, φ), where V is a
finite set of vertices, E is a finite set of edges, and φ is a function
that assigns to each edge e ∈ E a 2-element set of vertices. Thus
φ : E →

(V
2

)
and φ is injective (one-to-one).

Example:
V = {1, 2, 3, 4, 5}, E = {e1, e2, e3, e4, e5}, φ(e1) = {1, 2},
φ(e2) = {2, 3}, φ(e3) = {3, 4}, φ(e4) = {5, 1}, φ(e5) = {3, 5}.
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In a directed graph φ : E → V × V −∆ and injective.

Example:
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Definition: A set of edges in a simple graph G = (V,E) is called a
matching if no two edges have a vertex in common. (M ⊂ E(G)

and e1, e2 ∈M implies e1 ∩ e2 = ∅.)
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Problem: Find the matching M such that |M | is largest.
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Definition: A simple graph G(V,E) is called bipartite if there exists
A,B ⊂ V such that V = A ∪B, A ∩B = ∅ and for all e ∈ E(G),
|e ∩A| = |e ∩B| = 1.



Problem: Find the matching M such that |M | is largest.

Problem: Does a graph G(V,E) have a matching of size |V |
2

(perfect matching)?

Definition: A simple graph G(V,E) is called bipartite if there exists
A,B ⊂ V such that V = A ∪B, A ∩B = ∅ and for all e ∈ E(G),
|e ∩A| = |e ∩B| = 1.

Example:

d

1

2

3

4

a

b

c

d

1

2

3

4

a

b

c



Theorem: (Hall’s matching) A Bipartite graph G(A,B,E) has a
perfect matching iff ∀C ⊂ A, |N(C)| ≥ |C| and |A| = |B|.
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Matching in nonbipartite graphs.



Theorem (Tutte) A graph G(V,E) has a perfect matching iff
∀X ⊂ V , |X| ≥ qG(X).
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Tutte Matrix:
Orient the edges in G(V,E) to obtain D(V,E).

(TG(x))i,j =


xi,j if (i, j) ∈ E(D),

−xi,j if (j, i) ∈ E(D)

0 otherwise.



Theorem (Tutte) A graph G(V,E) has a perfect matching iff
∀X ⊂ V , |X| ≥ qG(X).

Tutte Matrix:
Orient the edges in G(V,E) to obtain D(V,E).

(TG(x))i,j =


xi,j if (i, j) ∈ E(D),

−xi,j if (j, i) ∈ E(D)

0 otherwise.



4

2

34

1 1 2

3

TG(x) =


0 x12 0 −x14

−x12 0 x23 0

0 −x23 0 −x34

x14 0 x34 0


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TG(x) =


0 x12 0 −x14

−x12 0 x23 0

0 −x23 0 −x34

x14 0 x34 0


Det(TG(x)) = x2

12x
2
34 + x2

14x
2
23 + 2x12x14x23x34.



Theorem: (Tutte)
G(V,E) has a perfect matching iff DetTG(x) is not identically zero.



Theorem: (Tutte)
G(V,E) has a perfect matching iff DetTG(x) is not identically zero.

Corollary: (Lovasz)
Let x be a random vector where each coordinate is uniformly
distributed in [0, 1]. Then with probability 1 the rank of TG(x) is
exactly twice the size of a maximum matching.
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Definition: Let G(V,E) be a graph and let M be a matching. A path
P is M alternating if E(P )−M is a matching.
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Theorem: (Berge)
Let G be a graph with a matching M . Then M is maximum iff there
is no M augmenting path.
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In bipartite case finding augmenting paths is “easy”.

In nonbipartite case finding augmenting paths is tricky.
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Edmonds idea: “Shrink” odd cycles to a vertex when you find them
and start the process again on the new graph.
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Later we need to construct an augmenting path in the original path
starting from an augmenting path in the “shrunken” graph.



Edmonds idea: “Shrink” odd cycles to a vertex when you find them
and start the process again on the new graph.

Later we need to construct an augmenting path in the original path
starting from an augmenting path in the “shrunken” graph.

Efficient implementation requires good data structures.

Running time O(|E|
√
|V |

log
|V |2
|E|

log |V | ).



Application:
Problem (Chinese postman Problem)
Let G(V,E) be a graph with w : E(G)→ R≥0. Find f : E(G)→ N
such that the (need not be simple) graph which arises from G by
repeating each edge e, f(e) times is Eulerian and∑

e∈E(G) f(e)w(e) is minimum.
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Open problems:
Conjecture (Berge-Fulkerson) If G is a bridgeless cubic graph, then
there exist 6 perfect matchings M1, . . . ,M6 of G with the property
that every edge of G is contained in exactly two of M1, . . . ,M6.
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If G has a 3 edge-colouring then it is true.
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Definition: An r-graph is an r-regular graph G on an even number
of vertices with the property that every edge-cut which separates
V (G) into two sets of odd cardinality has size at least r.



Open problems:
Conjecture (Berge-Fulkerson) If G is a bridgeless cubic graph, then
there exist 6 perfect matchings M1, . . . ,M6 of G with the property
that every edge of G is contained in exactly two of M1, . . . ,M6.

If G has a 3 edge-colouring then it is true.

Definition: An r-graph is an r-regular graph G on an even number
of vertices with the property that every edge-cut which separates
V (G) into two sets of odd cardinality has size at least r.

Conjecture: (Seymour) Let G be an r-graph. Then there exist 2r

perfect matchings M1, . . . ,M2r of G with the property that every
edge of G is contained in exactly two of M1, . . . ,M2r.



Conjecture: (Berge) There exists a fixed integer k such that the
edge set of every 3-graph can be written as a union of k perfect
matchings.



Conjecture: (Berge) There exists a fixed integer k such that the
edge set of every 3-graph can be written as a union of k perfect
matchings.

Conjecture: There exists a fixed integer k such that every 3-graph
has a list of k perfect matchings with empty intersection.



Thank You


