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than p2  and p4
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Computing the Voronoi Diagram
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V(p1)
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Computing the Voronoi Diagram

p2 p3 

p4 

p1 
V(p1)

What is V(p1)? H1 ∩ H2 ∩ H3

In general, what would be V(p1)? Intersection of (n-1) hyperplanes
H1 ∩ H2 ∩ ... ∩ Hn-1
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Time complexity of this Brute Force 
Algorithm

Intersection of (n-1) hyperplanes can be found in O(n log n) time

Total time complexity : O(n2 log n)
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Time Complexity of Best Algorithms for 
Voronoi Diagram 

Voronoi Diagram can be constructed in O(n log n) time 

\
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Time Complexity of Best Algorithms for 
Voronoi Diagram 

Voronoi Diagram can be constructed in O(n log n) time 

There are well-known algorithms like: 

1. Fortune’s Line Sweep
2. Divide and Conquer
3. Lifting points in 3D
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Size of the Voronoi Diagram 

Size means: number of vertices, edges and faces

Lower bound (Smallest Size possible):

Trivial Upper bound (Biggest Size possible):

n, where n is number of sites

Ultimate Upper Bound (Biggest Size possible):

O(n log n )

O(n)

Wednesday 5 January 2011



Why to bother about Size? 

Wednesday 5 January 2011



Why to bother about Size? 
Voronoi Diagram is

Wednesday 5 January 2011



Why to bother about Size? 
Voronoi Diagram is Planar Subdivision

Wednesday 5 January 2011



Why to bother about Size? 
Voronoi Diagram is

Want to do Planar point Location to get closest point Efficiently 

Planar Subdivision

Wednesday 5 January 2011



Why to bother about Size? 
Voronoi Diagram is

Want to do Planar point Location to get closest point Efficiently 

Preprocessing Time:

Preprocessing space requirement:

Query Time:

O(n log n) 

O(n) 

O(log n) 

Planar Subdivision

For Planar point Location:

Wednesday 5 January 2011



Why to bother about Size? 
Voronoi Diagram is

Want to do Planar point Location to get closest point Efficiently 

Preprocessing Time:

Preprocessing space requirement:

Query Time:

O(n log n) 

O(n) 

O(log n) 

But there is a big if, What is that if?

Planar Subdivision

For Planar point Location:

Wednesday 5 January 2011



Why to bother about Size? 
Voronoi Diagram is

The size of planar subdivision=

Want to do Planar point Location to get closest point Efficiently 

Preprocessing Time:

Preprocessing space requirement:

Query Time:

O(n log n) 

O(n) 

O(log n) 

But there is a big if, What is that if?

Planar Subdivision

For Planar point Location:

Wednesday 5 January 2011
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Voronoi Diagram is

The size of planar subdivision=

Want to do Planar point Location to get closest point Efficiently 

Preprocessing Time:

Preprocessing space requirement:

Query Time:

O(n log n) 

O(n) 

O(log n) 

But there is a big if, What is that if? O(n) 

Planar Subdivision

For Planar point Location:
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Summary 
P  →  A set of n distinct points (Geometric Objects) in the plane.

We can Preprocess P such that closest point x ∈ P of any query point q can be 
found in O(log n) time Using Planar point location

q
x

Preprocess structure is called Voronoi Diagram V(P)

V(P) can be constructed in O( n log n) time and can be stored in O(n) space
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Other Kind of Voronoi Diagrams
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Furthest Point Voronoi Diagram
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Furthest Point Voronoi Diagram

FV(P): the partition of                                                                             
the plane formed by                                                                                 
the farthest point                                                                               
Voronoi regions, their                                                                         
edges, and vertices
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Furthest Point Voronoi Diagram

FV(P): the partition of                                                                             
the plane formed by                                                                                 
the farthest point                                                                               
Voronoi regions, their                                                                         
edges, and vertices

V-1(pi): the set of point of 

the plane farther from  

pi than from any other site
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Voronoi diagram for line segments
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Voronoi diagram for line segments

Moving a disk from s to t in the presence of barriers
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2. Generic Definition

3. Some Technical Details

4. Conclusion
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Conclusion
Voronoi Diagram is a very Fundamental Interesting Geometric Structure

This has wide range of application to solve different problem in 
Geometry, Facility Location, Engineering Sciences, Biological Sciences, 
Nano Sciences to name a few

The Applications of this structure are so wide that

There is dedicated Symposiums on Voronoi Diagram:

INTERNATIONAL SYMPOSIUM on VORONOI DIAGRAMS in science and engineering
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