Singular Value Decomposition and its Applications in Computer Vision

Subhashis Banerjee

Department of Computer Science and Engineering IIT Delhi

Graphs and Geometry Workshop, NIT Warangal October 24, 2013

- 4 同 6 4 日 6 4 日 6

Linear algebra basics

- Singular value decomposition
- Linear equations and least squares
- Principal component analysis
- Latent semantics and topic discovery
- Clustering?

- *m* equations in *n* unknowns. $A\mathbf{x} = \mathbf{b}$. $A \in \mathbb{R}^{m \times n}$, $\mathbf{x} \in \mathbb{R}^{n}$ and $\mathbf{b} \in \mathbb{R}^{m}$.
- Two reasons usually offered for importance of linearity: Superposition: If f₁ produces a₁ and f₂ produces a₂, then a combined force f₁ + αf₂ produces a₁ + αa₂.
 - Pragmatics:
- f(x,y) = 0 and g(x,y) = 0 yields F(x) = 0 by elimination.
- Degree of F = degree of $f \times$ degree of g.
- A system of *m* quadratic equation gives a polynomial of degree 2^{*m*}.
- The only case in which the exponential is harmless is when the base is 1 (linear).

イロト イポト イヨト イヨト

Linear (in)dependence

• Given vectors $\mathbf{a}_1, \ldots, \mathbf{a}_n$ and scalars x_1, \ldots, x_n , the vector

$$\mathbf{b} = \sum_{j=1}^n x_j \mathbf{a}_j$$

is a *linear combination* of the vectors.

- The vectors a₁,..., a_n are *linearly dependent iff* at least one of them is a linear combination of the others (ones that precedes it).
- ► A set of vectors a₁,..., a_n is a *basis* for a set B of vectors if they are linearly independent and every vector in B can be expressed as a linear combination of a₁,..., a_n.
- Two different bases for the same vector space *B* have the same number of vectors (*dimension*).

(D) (A) (A) (A) (A)

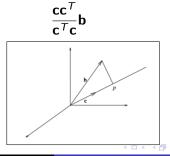
Inner product and orthogonality

▶ 2-*norm*:

$$\|\mathbf{b}\|^2 = b_1^2 + \|\sum_{j=2}^m b_j \mathbf{e}_j\|^2 = \sum_{j=1}^m b_j^2 = \mathbf{b}^T \mathbf{b}$$

- inner product: $\mathbf{b}^T \mathbf{c} = \|\mathbf{b}\| \|\mathbf{c}\| \cos \theta$
- orthogonal: $\mathbf{b}^T \mathbf{c} = 0$

projection of b onto c:



Orthogonal subspaces and rank

- Any basis a₁,..., a_n for a subspace A of ℝ^m can be extended to a basis for ℝ^m by adding m − n vectors a_{n+1},..., a_m
- If vector space A is a subspace of ℝ^m for some m, then the orthogonal complement (A[⊥]) of A is the set of all vectors in ℝ^m that are orthogonal to all the vectors in A.
- $dim(A) + dim(A^{\perp}) = m$
- $\operatorname{null}(A) = \{ \mathbf{x} : A\mathbf{x} = \mathbf{0} \}$. $\operatorname{dim}(\operatorname{null}(A)) = h$ (*nullity*).
- range(A) = {b : Ax = b for some x}. dim(range(A)) = r (rank).
- r = n h.
- Number of linearly independent rows of A is equal to its number of linearly independent columns.

Solutions of a linear system: $A\mathbf{x} = \mathbf{b}$

- range(A); dimension r = rank(A)
- null(A); dimension h = nullity(A)
- range(A)^{\perp}; dimension m r
- null(A)^{\perp}; dimension n h

$$\operatorname{null}(A)^{\perp} = \operatorname{range}(A^{T})$$

 $\operatorname{range}(A)^{\perp} = \operatorname{null}(A^{T})$

• $\mathbf{b} \notin \operatorname{range}(A) \implies$ no solutions

r

- $\mathbf{b} \in \operatorname{range}(A)$
 - r = n = m. Invertible. Unique solution.
 - r = n, m > n. Redundant. Unique solution.
 - r < n. Under determined. ∞^{n-r} solutions.

ヨット イヨット イヨッ

- A set of vectors V is orthogonal if its elements are pairwise orthogonal. Orthonormal, if in addition for each x ∈ V, ||x|| = 1.
- Vectors in an orthonormal set are linearly independent.
- $V = [\mathbf{v}_1, \dots, \mathbf{v}_n]$ is an orthogonal matrix.

•
$$V^{-1}V = V^T V = V^{-1}V = VV^T = \mathbf{I}.$$

The norm of a vector x is not changed by multiplication by an orthogonal matrix:

$$\|V\mathbf{x}\|^2 = \mathbf{x}^T V^T V \mathbf{x} = \mathbf{x}^T \mathbf{x} = \|\mathbf{x}\|^2$$

- 4 周 ト 4 日 ト 4 日 ト - 日

$$\|x\|_{1} = \sum_{i=1}^{m} |x_{i}|,$$

$$\|x\|_{2} = \left(\sum_{i=1}^{m} |x_{i}|^{2}\right)^{1/2} = \sqrt{x^{*}x},$$

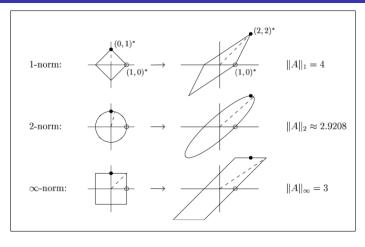
$$\|x\|_{\infty} = \max_{1 \le i \le m} |x_{i}|,$$

$$\|x\|_{p} = \left(\sum_{i=1}^{m} |x_{i}|^{p}\right)^{1/p} \quad (1 \le p < \infty).$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○

æ

Matrix norms



$$A = \left[\begin{array}{rrr} 1 & 2 \\ 0 & 2 \end{array} \right]$$

æ

Graphs and Geometry Workshop, NIT Warangal SVD and its Applications in Computer Vision

- Linear algebra basics
- Singular value decomposition (Golub and Van Loan, 1996, Golub and Kahan, 1965)
- Linear equations and least squares
- Principal component analysis
- Latent semantics and topic discovery
- Clustering?

向下 イヨト イヨト

Geometric view: An $m \times n$ matrix A of rank r maps the *r*-dimensional unit hypersphere in rowspace(A) into an *r*-dimensional hyperellipse in range(A).

Algebraic view: If A is a real $m \times n$ matrix then there exists orthogonal matrices

$$U = [\mathbf{u}_1 \cdots \mathbf{u}_m] \in \mathbb{R}^{m \times m}$$
$$V = [\mathbf{v}_1 \cdots \mathbf{v}_n] \in \mathbb{R}^{n \times n}$$

such that

$$U^{\mathsf{T}} A V = \Sigma = \operatorname{diag}(\sigma_1, \dots, \sigma_p) \in \mathbb{R}^{m \times n}$$

where $p = \min(m, n)$, and $\sigma_1 \ge \sigma_2 \ge \ldots \ge \sigma_p \ge 0$ Equivalently,

$$A = U \Sigma V^T$$

Proof (sketch):

- Consider all vectors of the form Ax = b for x on the unit hypersphere ||x|| = 1. Consider the scalar function ||Ax||. Let v₁ be a vector on the unit sphere in ℝⁿ where the scalar function is maximised.
- Let $\sigma_1 \mathbf{u}_1$ be the corresponding vector with $\sigma_1 \mathbf{u}_1 = A\mathbf{v}_1$ and $\|\mathbf{u}_1\| = 1$. Let \mathbf{u}_1 and \mathbf{v}_1 be extended to orthonormal bases for \mathbb{R}^m and \mathbb{R}^n respectively. Let the corresponding matrices be U_1 and V_1 .

• We have
$$U_1^T A V_1 = S_1 = \begin{bmatrix} \sigma_1 & \mathbf{w}^T \\ \mathbf{0} & A_1 \end{bmatrix}$$

Consider the length of the vector

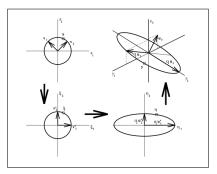
$$\frac{1}{\sqrt{\sigma_1^2 + \mathbf{w}^T \mathbf{w}}} S_1 \begin{bmatrix} \sigma_1 \\ \mathbf{w} \end{bmatrix} = \frac{1}{\sqrt{\sigma_1^2 + \mathbf{w}^T \mathbf{w}}} \begin{bmatrix} \sigma_1^2 + \mathbf{w}^T \mathbf{w} \\ A_1 \mathbf{w} \end{bmatrix}$$

• Conclude $\mathbf{w} = \mathbf{0}$ and induct.

Graphs and Geometry Workshop, NIT Warangal

イロト イポト イヨト イヨト

SVD geometry:



1.
$$\xi = V^T \mathbf{x}$$
, where $V = [\mathbf{v}_1 \ \mathbf{v}_2]$
2. $\eta = \Sigma \xi$, where $\Sigma = \begin{bmatrix} \sigma_1 & 0 \\ 0 & \sigma_2 \\ 0 & 0 \end{bmatrix}$
3. Finally, $\mathbf{b} = U\eta$.

▲□→ ▲圖→ ▲厘→ ▲厘→

æ

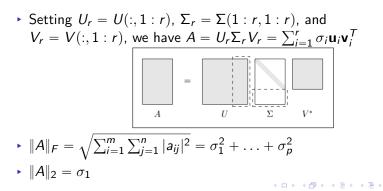
SVD: structure of a matrix

• Suppose $\sigma_1 \ge \ldots \ge \sigma_r > \sigma_{r+1} = 0$. Then,

$$rank(A) = r$$

$$null(A) = span{v_{r+1},...,v_n}$$

$$range(A) = span{u_1,...,u_r}$$



Graphs and Geometry Workshop, NIT Warangal SVD and its Applications in Computer Vision

SVD: low rank approximation

For any ν with $0 \leq \nu \leq r$, define $A_{\nu} = \sum_{i=1}^{\nu} \sigma_i \mathbf{u}_i \mathbf{v}_i^T$. If $\nu = \rho = \min(m, n)$, define $\sigma_{\nu+1} = 0$. Then,

$$\|A - A_{\nu}\|_{2} = \inf_{B \in \mathbb{R}^{m \times n}, \operatorname{rank}(B) \leqslant \nu} \|A - B\|_{2} = \sigma_{\nu+1}$$

Proof (sketch):

- Aw is maximised by that w which is closest in direction to most of the rows of A.
- The projections of the rows of A onto v₁ is given by Av₁v₁^T. This is indeed the best rank 1 approximation:

$$\|\boldsymbol{A} - \boldsymbol{A} \mathbf{v}_1 \mathbf{v}_1^T\|_2 = \|\boldsymbol{A} - \sigma_1 \mathbf{u}_1 \mathbf{v}_1^T\|_2$$

向下 イヨト イヨト

is the smallest over $||A - B||_2$ where B is any rank 1 matrix.

- Linear algebra basics
- Singular value decomposition
- Linear equations and least squares
- Principal component analysis
- Latent semantics and topic discovery
- Clustering?

The minimum-norm least squares solution to a linear system $A\mathbf{x} = \mathbf{b}$, that is, the shortest vector \mathbf{x} that achieves

$$\min_{\mathbf{x}} \|A\mathbf{x} - \mathbf{b}\|$$

is unique and is given by

$$\mathbf{x} = V \Sigma^{\dagger} U^{T} \mathbf{b}$$

where $\Sigma^\dagger={\rm diag}(1/\sigma_1,\ldots,1/\sigma_r,{\bf 0})$ is a $n\times m$ diagonal matrix. The matrix

$$A^{\dagger} = V \Sigma^{\dagger} U^{T}$$

is called the *pseudoinverse* of A.

ヨット イヨット イヨッ

$$\min_{\mathbf{x}} \|A\mathbf{x} - \mathbf{b}\| = \min_{\mathbf{x}} \|U\Sigma V^{T} \mathbf{x} - \mathbf{b}\| = \min_{\mathbf{x}} \|U(\Sigma V^{T} \mathbf{x} - U^{T} \mathbf{b})\|$$

= min_x $\|\Sigma V^{T} \mathbf{x} - U^{T} \mathbf{b}\|$
Setting $\mathbf{y} = V^{T} \mathbf{x}$ and $\mathbf{c} = U^{T} \mathbf{b}$, we have
$$\min_{\mathbf{x}} \|A\mathbf{x} - \mathbf{b}\| = \min_{\mathbf{y}} \|\Sigma \mathbf{y} - \mathbf{c}\|$$

$$\begin{bmatrix} \sigma_{1} & 0 & \cdots & 0 \\ 0 & \ddots & \cdots & 0 \\ \sigma_{r} & & \\ \vdots & 0 & \vdots \\ 0 & & & 0 \end{bmatrix} \begin{bmatrix} y_{1} \\ \vdots \\ y_{r} \\ y_{r+1} \\ \vdots \\ y_{n} \end{bmatrix} - \begin{bmatrix} c_{1} \\ \vdots \\ c_{r} \\ c_{r+1} \\ \vdots \\ c_{m} \end{bmatrix}$$

Graphs and Geometry Workshop, NIT Warangal SVD and its Applications in Computer Vision

The solution to

$$\min_{\|\mathbf{x}\|=1} \|A\mathbf{x}\|$$

is given by \mathbf{v}_n , the last column of *V*. *Proof:*

$$\min_{\|\mathbf{x}\|=1} \|A\mathbf{x}\| = \min_{\|\mathbf{x}\|=1} \|U\Sigma V^{\mathsf{T}}\mathbf{x}\| = \min_{\|\mathbf{x}\|=1} \|\Sigma V^{\mathsf{T}}\mathbf{x}\| = \min_{\|\mathbf{y}\|=1} \|\Sigma \mathbf{y}\|$$

where $\mathbf{y} = V^T \mathbf{x}$. Clearly this is minimised by the vector $\mathbf{y} = [0, \dots, 0, 1]^T$.

向下 イヨト イヨト

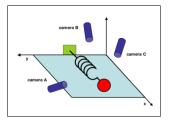
- Given an m× n matrix A with m≥ n, find the vector x that minimises ||Ax|| subject to ||x|| = 1 and Cx = 0.
- Given an m× n matrix A with m≥ n, find the vector x that minimises ||Ax|| subject to ||x|| = 1 and x ∈ range(G).

(1) マン・ション・

- Linear algebra basics
- Singular value decomposition
- Linear equations and least squares
- Principal component analysis (Pearson, 1901, Schlens 2003)
- Latent semantics and topic discovery
- Clustering?

向下 イヨト イヨト

PCA: A toy problem

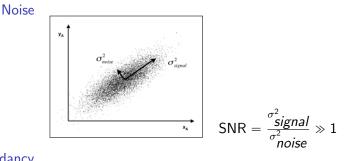


$$X(t) = [x_A(t) \ y_A(t) \ x_B(t) \ y_B(t) \ x_C(t) \ y_C(t)]^T, X = [X(1) \ X(2) \ \cdots \ X(n)]^T.$$

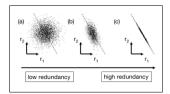
Is there another basis, which is a linear combination of the original basis, that <u>best</u> expresses our data set?

$$PX = Y$$

PCA Issues: noise and redundancy



Redundancy



Graphs and Geometry Workshop, NIT Warangal SVD and its Applications in Computer Vision

- < ≣ →

Covariance

- Consider zero mean vectors $\mathbf{a} = [a_1 \ a_2 \ \dots \ a_n]$ and $\mathbf{b} = [b_1 \ b_2 \ \dots \ b_n]$.
- Variance: $\sigma_{\mathbf{a}}^2 = \langle a_i a_i \rangle_i$ and $\sigma_{\mathbf{b}}^2 = \langle b_i b_i \rangle_i$
- Covariance: $\sigma_{\mathbf{ab}}^2 = \langle a_i b_i \rangle_i = \frac{1}{n-1} \mathbf{ab}^T$.
- If $X = [\mathbf{x}_1 \ \mathbf{x}_2 \ \dots \ \mathbf{x}_m]^T \ (m \times n)$ then the *covariance matrix* is:

$$S_X = \frac{1}{n-1} X X^T$$

- ij^{th} value of S_X is obtained by substituting \mathbf{x}_i for \mathbf{a} and \mathbf{x}_j for \mathbf{b} .
- S_X is square, symmetric, $m \times m$.
- Diagonal entries of S_X are the variance of particular measurement types.
- The off-diagonal entries of S_X are the covariance between measurement types.

Solving PCA

•

$$S_Y = \frac{1}{n-1}YY^T = \frac{1}{n-1}(PX)(PX)^T = \frac{1}{n-1}PXX^TP^T$$

• Writing $X = U \Sigma V^T$, we have

$$XX^T = U\Sigma U^T$$

• Setting $P = U^T$, we have

$$S_Y = \frac{1}{n-1}\Sigma$$

・ 同 ト ・ ヨ ト ・ ヨ ト

3

- Data is maximally uncorrelated.
- Effective rank r of Σ gives dimensionality reduction.

- Linearity.
- Mean and variance are sufficient statistics → Gaussian distribution.
- Large variances have important dynamics.
- The principal components are orthogonal.

向下 イヨト イヨト

Application: eigenfaces (Turk and Pentland, 1991)

• Obtain a set S of M face images:

$$S = \{\Gamma_1, \ldots, \Gamma_M\}$$

Obtain the mean image Ψ:

$$\Psi = rac{1}{M}\sum_{j=1}^M {\sf \Gamma}_j$$

Graphs and Geometry Workshop, NIT Warangal SVD and its Applications in Computer Vision

Application: eigenfaces (Turk and Pentland, 1991)

Compute centered images

$$\Phi_i = \Gamma_i - \Psi$$

The covariance matrix is

$$C = \frac{1}{M} \sum_{j=1}^{M} \Phi_j \Phi_j^T = A A^T$$

Size is $N^2 \times N^2$. Intractable.

• If \mathbf{v}_i is an eigenvector of $A^T A$ ($M \times M$), then $A \mathbf{v}_i$ an eigenvector of $A A^T$.

$$A^{\mathsf{T}}A\mathbf{v}_{i}=\mu_{i}\mathbf{v}_{i} \Leftrightarrow AA^{\mathsf{T}}A\mathbf{v}_{i}=\mu_{i}A\mathbf{v}_{i}$$

向下 イヨト イヨト

Application: eigenfaces (Turk and Pentland, 1991)

Recognition:

- $\omega_k = \mathbf{u}_k(\Gamma \Psi)$
- Compute minimum distance to database of faces

- Linear algebra basics
- Singular value decomposition
- Linear equations and least squares
- Principal component analysis
- Latent semantics and topic discovery (Scott et. al. 1990, Papadimitriou et. al. 1998)
- Clustering?

- Consider a m × n matrix A where the *ijth* entry denotes the marks obtained by the *ith* student in the *jth* test (Naveen Garg, Abhiram Ranade).
- Are the marks obtained by the *i*th student in various tests correlated?
- What are the capabilities of the *ith* student?
- What does the jth test evaluate?
- What is the expected rank of A?

ヨト イヨト イヨト

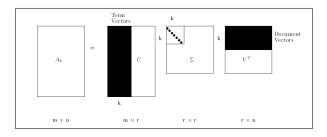
Latent semantics and topic discovery

- Suppose there are really only three abilities (topics) that determine a student's marks in tests: verbal, logical and quantitative.
- Suppose v_i, l_i and q_i characterise these abilities of the ith student; let V_j, L_j and Q_j characterise the extent to which the jth test evaluates these abilities.
- A generative model for the *ij*th entry of A may be given as

$$v_i V_j + I_i L_j + q_i Q_j$$

向下 イヨト イヨト

Latent semantics and topic discovery



►

A new m × 1 term vector t can be projected in to the LSI space as:

$$\hat{t} = t^T U_k \Sigma_k^{-1}$$

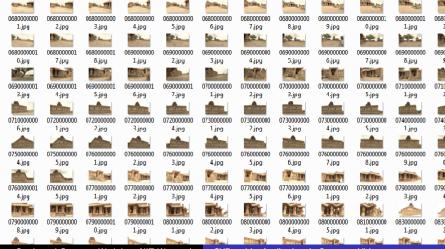
 A new 1 × n document vector d can be projected in to the LSI space as:

$$\hat{d} = dV_k \Sigma_k^{-1}$$

- ∢ ≣ >

Topic discovery example

 An example with more than 2000 images and with 12 topics (LDA)



Graphs and Geometry Workshop, NIT Warangal

SVD and its Applications in Computer Vision

- Linear algebra basics
- Singular value decomposition
- Linear equations and least squares
- Principal component analysis
- Latent semantics and topic discovery
- Clustering (Drineas et. al. 1999)

- E - N

Clustering

- Partition rows of a matrix so that "similar" rows (points in n dimensional space) are clustered together.
- Given points $\mathbf{a}_1, \ldots, \mathbf{a}_m \in \mathbb{R}^m$, find $c_1, \ldots, c_k \in \mathbb{R}^m$ so as to minimize

$$\sum_i d(\mathbf{a}_i, \{c_1, \ldots, c_k\})^2$$

where $d(\mathbf{a}, S)$ is the smallest distance from a point \mathbf{a} to any of the points in *S*. (*k*-means)

- k is a constant. Consider k = 2 for simplicity. Even then the problem is NP-complete for arbitrary n.
- ▶ We have k centres. If n = k then the problem can be solved in polynomial time.

Clustering

- The points belonging to the two clusters can be separated by the perpendicular bisector of the line joining the two centres.
- The centre selected for a group must be its centroid.
- The best k dimensional subspace can be found using SVD.
- Gives a 2-approximation.

・ロン ・回 と ・ ヨ と ・ ヨ と

- High dimensional matching
- Graph partitioning
- Metric embedding
- Image compression
- … Learn SVD well

Learn SVD well

向下 イヨト イヨト

æ