Singular Value Decomposition and its
Applications in Computer Vision

Subhashis Banerjee

Department of Computer Science and Engineering
IIT Delhi

Graphs and Geometry Workshop, NIT Warangal
October 24, 2013

Graphs and Geometry Workshop, NIT Warangal SVD and its Applications in Computer Vision



Overview

» Linear algebra basics

» Singular value decomposition

» Linear equations and least squares

» Principal component analysis

» Latent semantics and topic discovery

» Clustering?
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Linear systems

» m equations in n unknowns. Ax =b. Ae R™*" xe R" and
beR™.
» Two reasons usually offered for importance of linearity:

Superposition: If f1 produces a; and f, produces ay, then a
combined force f; + afy produces a; + «as.
Pragmatics: > f(x,y) =0 and g(x,y) = 0 yields F(x) = 0 by
elimination.
» Degree of F = degree of f x degree of g.
» A system of m quadratic equation gives a
polynomial of degree 2™.
» The only case in which the exponential is
harmless is when the base is 1 (linear).
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Linear (in)dependence

» Given vectors ay,...,a, and scalars xq,..., x,, the vector

n
b=, xaj
Jj=1

is a linear combination of the vectors.

» The vectors as,...,a, are linearly dependent iff at least one
of them is a linear combination of the others (ones that
precedes it).

» A set of vectors ay,...,a, is a basis for a set B of vectors if
they are linearly independent and every vector in B can be
expressed as a linear combination of aj, ..., an.

» Two different bases for the same vector space B have the
same number of vectors (dimension).
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Inner product and orthogonality
» 2-norm:

[b]> = b + | ), bjej[> = > b7 =b"b
j=2 j=1

» inner product: bTc = ||b||c| cos
» orthogonal: b'c =0
» projection of b onto c:
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Orthogonal subspaces and rank

Any basis aj,...,a, for a subspace A of R™ can be extended
to a basis for R™ by adding m — n vectors a,41,...,am

If vector space A is a subspace of R for some m, then the
orthogonal complement (A*) of A is the set of all vectors in
R™ that are orthogonal to all the vectors in A.

dim(A) + dim(At) = m

null(A) = {x : Ax = 0}. dim(null(A)) = h (nullity).
range(A) = {b : Ax = b for some x}. dim(range(A)) = r
(rank).

r=n-—h.

Number of linearly independent rows of A is equal to its
number of linearly independent columns.
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Solutions of a linear system: Ax = b

» range(A); dimension r = rank(A)
» null(A); dimension h = nullity(A)
» range(A)*L; dimension m — r

> null(A)*; dimension n — h

null(A)X = range(AT)
range(A)t = null(AT)

» b ¢ range(A) = no solutions
» b € range(A)
» r = n = m. Invertible. Unique solution.

» r=n, m> n. Redundant. Unique solution.
» r < n. Under determined. o0"~" solutions.
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Orthogonal matrices

» A set of vectors V is orthogonal if its elements are pairwise
orthogonal. Orthonormal, if in addition for each x € V,
x| = 1.

» Vectors in an orthonormal set are linearly independent.
» V =[vy,...,v,] is an orthogonal matrix.
» VIV =VTV=v1lv=wT=l

» The norm of a vector x is not changed by multiplication by an
orthogonal matrix:

Vx| =xTVTVx =x"x = |x|?
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Vector norms
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Matrix norms
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Overview

» Linear algebra basics

» Singular value decomposition (Golub and Van Loan, 1996,
Golub and Kahan, 1965)

» Linear equations and least squares
» Principal component analysis
» Latent semantics and topic discovery

» Clustering?
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Singular value decomposition

Geometric view: An m x n matrix A of rank r maps the
r-dimensional unit hypersphere in rowspace(A) into
an r-dimensional hyperellipse in range(A).

Algebraic view: If A is a real m x n matrix then there exists
orthogonal matrices

U = [ur:- -uy|eRmMm
V. = [vi---v,] eR™"

such that
UTAV = ¥ = diag(o,...,0,) € R™"

where p = min(m,n), and 01 > 02> ... >0, >0
Equivalently,
A=UzvT
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Proof (sketch):

» Consider all vectors of the form Ax = b for x on the unit
hypersphere ||x| = 1. Consider the scalar function |Ax|. Let
vi be a vector on the unit sphere in R” where the scalar
function is maximised.

» Let opuy be the corresponding vector with oju; = Av; and
Jui| = 1. Let u; and vy be extended to orthonormal bases for
R™ and R" respectively. Let the corresponding matrices be

U1 and V1.
r T
g1 W
>WehaveU1TAV1251=_0 Al}
» Consider the length of the vector
1 51[01_: 1 [U%-I-WTW]
o? +wlw W \/m Aw

» Conclude w = 0 and induct.

Graphs and Geometry Workshop, NIT Warangal SVD and its Applications in Computer Vision



SVD geometry:

2. n=X&, where X = 0 oo

3. Finally, b = Un.

Graphs and Geometry Workshop, NIT Warangal SVD and its Applications in Computer Vision



SVD: structure of a matrix

» Suppose 01 = ... =0, > 0,41 = 0. Then,

rank(A)
null(A)
range(A)

» Setting U, = U(:,1:r),

= r
= span{V,i1,...,Vp}
= span{ug,...,u,}

Y,=%(1:r,1:r), and

V,=V(,1:r), wehave A= UX,V, =" ouv|

A

- AlE = /S S a2 = 0 4.+ 02

v

IAll2 = o1
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SVD: low rank approximation

For any v with 0 < v < r, define A, = Z'i’:l aiu,-v,-T. If
v = p = min(m, n), define 0,41 = 0. Then,

A=Az = inf |A=Bl2 = 0u41
BeRm™xn rank(B)<v

Proof (sketch):

» Aw is maximised by that w which is closest in direction to
most of the rows of A.

» The projections of the rows of A onto v; is given by AvlvlT.
This is indeed the best rank 1 approximation:

|A = Aviv] |2 = |A = o1urv] |2

is the smallest over |[A — B||2 where B is any rank 1 matrix.
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Overview

» Linear algebra basics

» Singular value decomposition

» Linear equations and least squares
» Principal component analysis

» Latent semantics and topic discovery

» Clustering?
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Least squares

The minimum-norm least squares solution to a linear system
Ax = b, that is, the shortest vector x that achieves

min ||Ax — b|
X
is unique and is given by
x=VIuTb

where ¥ = diag(1/o1,...,1/0,,0) is a n x m diagonal matrix.
The matrix
Al = vEtyT

is called the pseudoinverse of A.
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Pseudoinverse proof (sketch):

miny || Ax — b| = miny [UZV T x — b|| = min, [UZVTx — UTb)|
= miny [ZVTx — UTb|

» Settingy = V' x and ¢ = U”b, we have

min ||Ax — b|| = min ||Zy — c||
x y

[ o1 0 Ol wm ] [ a]
0 . 0 :
gr Yr o Cr
0 Yr+1 Cr+1
0 0 | Yn ] | Cm |
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Least squares for homogenous systems

The solution to

min 4]

is given by v, the last column of V.
Proof:

mir in [ Ax] = min, |UzV x| = min in [ZV7x| = i, IZy|

where y = V Tx.
Clearly this is minimised by the vector y = [0,...,0, 1]T.
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A couple of other least squares problems

» Given an m x n matrix A with m > n, find the vector x that
minimises |Ax|| subject to |x|| =1 and Cx = 0.

» Given an m x n matrix A with m > n, find the vector x that
minimises ||Ax| subject to |x| = 1 and x € range(G).
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Overview

» Linear algebra basics

» Singular value decomposition

» Linear equations and least squares

» Principal component analysis (Pearson, 1901, Schlens 2003)
» Latent semantics and topic discovery

» Clustering?
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PCA: A toy problem

~—

X(t) = [xa(t) ya(t) xg(t) ys(t) xc(t) ye(t)]”,
X =[X(1) X(2) - X(nm]".

—

Is there another basis, which is a linear combination of the original
basis, that best expresses our data set?

PX =Y
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PCA Issues: noise and redundancy

Noise
0'2 . /
* SNR = :}ﬂ > 1
noise
Redundancy

|Iow redundancy ‘ ‘h\gh redundancy
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Covariance

» Consider zero mean vectors a = [a; a2 ... a,| and
b={[b1 by ... byl
» Variance: 02 = (a;a;); and o = (bib;);

» Covariance: 02, = (ajb;); = nilabT.
» If X =[xy X2 ... xm]" (m x n) then the covariance matrix is:
1
Sx = ol
n—1

» ijth value of Sx is obtained by substituting x; for a and x; for
b.

» Sx is square, symmetric, m x m.

» Diagonal entries of Sx are the variance of particular
measurement types.

» The off-diagonal entries of Sx are the covariance between
measurement types.
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Solving PCA

1 1 1
Sy = YyT = l(PX)(PX)T = lPXXTPT

n—1 n— n—
» Writing X = U VT, we have
xxT =uzu’

» Setting P = UT, we have

Sy =

» Data is maximally uncorrelated.

» Effective rank r of ¥ gives dimensionality reduction.
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PCA: tacit assumptions

» Linearity.

» Mean and variance are sufficient statistics = Gaussian
distribution.

» Large variances have important dynamics.

» The principal components are orthogonal.
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Application: eigenfaces (Turk and Pentland, 1991)

» Obtain a set S of M face images:
S={l1,....,Tm}

» Obtain the mean image V:

1 M
V=
Jj=1
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Application: eigenfaces (Turk and Pentland, 1991)

» Compute centered images
o, =r;—-v

» The covariance matrix is
1 M
T T
C=4 Do = AA
j=1

Size is N2 x N2. Intractable.

» If v; is an eigenvector of ATA (M x M), then Av; an
eigenvector of AAT.

ATAv; = pivi < AAT Av; = piAv;

Graphs and Geometry Workshop, NIT Warangal SVD and its Applications in Computer Vision



Application: eigenfaces (Turk and Pentland, 1991)

Recognition:
> Wi = uk(F — \U)

» Compute minimum distance to database of faces




Overview

» Linear algebra basics

» Singular value decomposition

» Linear equations and least squares
» Principal component analysis

» Latent semantics and topic discovery (Scott et. al. 1990,
Papadimitriou et. al. 1998)

» Clustering?
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Latent semantics and topic discovery

» Consider a m x n matrix A where the ij'" entry denotes the
marks obtained by the i*" student in the j test (Naveen
Garg, Abhiram Ranade).

» Are the marks obtained by the i*" student in various tests
correlated?

» What are the capabilities of the it student?
» What does the j test evaluate?
» What is the expected rank of A?
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Latent semantics and topic discovery

» Suppose there are really only three abilities (topics) that
determine a student’s marks in tests: verbal, logical and
quantitative.

» Suppose v;, /; and g; characterise these abilities of the it
student; let Vj, L; and Q; characterise the extent to which the
Jjt test evaluates these abilities.

» A generative model for the jjt" entry of A may be given as

viVi + ;L + q,-QJ-
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Latent semantics and topic discovery

Term
Vectors k

Document
Vectors

m x n m X X rxn

>

» A new m x 1 term vector t can be projected in to the LSI

Space as:
t=tT Ut

» A new 1 x n document vector d can be projected in to the
LSI space as:
d=dVeX, !
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Topic discovery example

» An example with more than 2000 images and with 12 topics

(LDA)
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Overview

» Linear algebra basics

» Singular value decomposition

» Linear equations and least squares

» Principal component analysis

» Latent semantics and topic discovery
» Clustering (Drineas et. al. 1999)
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Clustering

» Partition rows of a matrix so that “similar” rows (points in n
dimensional space) are clustered together.

» Given points a1, ...,am € R™, find ¢1,...,cx € R™ so as to
minimize
2
2 d(ah {Cla cee Ck})
i

where d(a, S) is the smallest distance from a point a to any
of the points in S. (k-means)

» k is a constant. Consider k = 2 for simplicity. Even then the
problem is NP-complete for arbitrary n.

» We have k centres. If n = k then the problem can be solved
in polynomial time.
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Clustering

» The points belonging to the two clusters can be separated by
the perpendicular bisector of the line joining the two centres.

» The centre selected for a group must be its centroid.

» There are only a polynomial number of lines to consider (Each
set of cluster centres define a Voronoi diagram. Each cell is a
polyhedron and the total number of faces in k cells is no more

than 12( > Enumerate all sets of hyperplanes (faces) each

of which contains k independent points of A such that they
define exactly k cells. Assign each point of A lying on a
hyperplane to one of the sides.)

» The best k dimensional subspace can be found using SVD.

» Gives a 2-approximation.
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Other applications

» High dimensional matching
» Graph partitioning
» Metric embedding
» Image compression
» ... Learn SVD well

Learn SVD well
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