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Overview

§ Linear algebra basics

§ Singular value decomposition

§ Linear equations and least squares

§ Principal component analysis

§ Latent semantics and topic discovery

§ Clustering?
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Linear systems

§ m equations in n unknowns. Ax “ b. A P Rmˆn, x P Rn and
b P Rm.

§ Two reasons usually offered for importance of linearity:

Superposition: If f1 produces a1 and f2 produces a2, then a
combined force f1 ` αf2 produces a1 ` αa2.

Pragmatics: § f px , yq “ 0 and gpx , yq “ 0 yields F pxq “ 0 by
elimination.

§ Degree of F = degree of f ˆ degree of g .
§ A system of m quadratic equation gives a

polynomial of degree 2m.
§ The only case in which the exponential is

harmless is when the base is 1 (linear).
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Linear (in)dependence

§ Given vectors a1, . . . , an and scalars x1, . . . , xn, the vector

b “
n
ÿ

j“1

xjaj

is a linear combination of the vectors.

§ The vectors a1, . . . , an are linearly dependent iff at least one
of them is a linear combination of the others (ones that
precedes it).

§ A set of vectors a1, . . . , an is a basis for a set B of vectors if
they are linearly independent and every vector in B can be
expressed as a linear combination of a1, . . . , an.

§ Two different bases for the same vector space B have the
same number of vectors (dimension).
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Inner product and orthogonality

§ 2-norm:

}b}2 “ b2
1 ` }

m
ÿ

j“2

bjej}
2 “

m
ÿ

j“1

b2
j “ bTb

§ inner product: bTc “ }b}}c} cos θ
§ orthogonal: bTc “ 0
§ projection of b onto c:

ccT

cTc
b
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Orthogonal subspaces and rank

§ Any basis a1, . . . , an for a subspace A of Rm can be extended
to a basis for Rm by adding m ´ n vectors an`1, . . . , am

§ If vector space A is a subspace of Rm for some m, then the
orthogonal complement (AK) of A is the set of all vectors in
Rm that are orthogonal to all the vectors in A.

§ dimpAq ` dimpAKq “ m

§ nullpAq “ tx : Ax “ 0u. dimpnullpAqq “ h (nullity).

§ rangepAq “ tb : Ax “ b for some xu. dimprangepAqq “ r
(rank).

§ r “ n ´ h.

§ Number of linearly independent rows of A is equal to its
number of linearly independent columns.
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Solutions of a linear system: Ax “ b

§ rangepAq; dimension r “ rankpAq

§ nullpAq; dimension h “ nullitypAq

§ rangepAqK; dimension m ´ r

§ nullpAqK; dimension n ´ h

§

nullpAqK “ rangepAT q

rangepAqK “ nullpAT q

§ b R rangepAq ùñ no solutions
§ b P rangepAq

§ r “ n “ m. Invertible. Unique solution.
§ r “ n, m ą n. Redundant. Unique solution.
§ r ă n. Under determined. 8n´r solutions.
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Orthogonal matrices

§ A set of vectors V is orthogonal if its elements are pairwise
orthogonal. Orthonormal, if in addition for each x P V ,
}x} “ 1.

§ Vectors in an orthonormal set are linearly independent.

§ V “ rv1, . . . , vns is an orthogonal matrix.

§ V´1V “ V TV “ V´1V “ VV T “ I.

§ The norm of a vector x is not changed by multiplication by an
orthogonal matrix:

}V x}2 “ xTV TV x “ xTx “ }x}2
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Vector norms

Graphs and Geometry Workshop, NIT Warangal SVD and its Applications in Computer Vision



iitlogo

Matrix norms

A “

„

1 2
0 2


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Overview

§ Linear algebra basics

§ Singular value decomposition (Golub and Van Loan, 1996,
Golub and Kahan, 1965)

§ Linear equations and least squares

§ Principal component analysis

§ Latent semantics and topic discovery

§ Clustering?
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Singular value decomposition

Geometric view: An m ˆ n matrix A of rank r maps the
r -dimensional unit hypersphere in rowspacepAq into
an r -dimensional hyperellipse in rangepAq.

Algebraic view: If A is a real m ˆ n matrix then there exists
orthogonal matrices

U “ ru1 ¨ ¨ ¨ums P Rmˆm

V “ rv1 ¨ ¨ ¨ vns P Rnˆn

such that

UTAV “ Σ “ diagpσ1, . . . , σpq P Rmˆn

where p “ minpm, nq, and σ1 ě σ2 ě . . . ě σp ě 0
Equivalently,

A “ UΣV T
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Proof (sketch):

§ Consider all vectors of the form Ax “ b for x on the unit
hypersphere }x} “ 1. Consider the scalar function }Ax}. Let
v1 be a vector on the unit sphere in Rn where the scalar
function is maximised.

§ Let σ1u1 be the corresponding vector with σ1u1 “ Av1 and
}u1} “ 1. Let u1 and v1 be extended to orthonormal bases for
Rm and Rn respectively. Let the corresponding matrices be
U1 and V1.

§ We have UT
1 AV1 “ S1 “

„

σ1 wT

0 A1



§ Consider the length of the vector

1
b

σ21 `wTw
S1

„

σ1
w



“
1

b

σ21 `wTw

„

σ21 `wTw
A1w



§ Conclude w “ 0 and induct.
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SVD geometry:

1. ξ “ V Tx, where V “ rv1 v2s

2. η “ Σξ, where Σ “

»

–

σ1 0
0 σ2
0 0

fi

fl

3. Finally, b “ Uη.
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SVD: structure of a matrix

§ Suppose σ1 ě . . . ě σr ą σr`1 “ 0. Then,

rankpAq “ r
nullpAq “ spantvr`1, . . . , vnu

rangepAq “ spantu1, . . . ,uru

§ Setting Ur “ Up:, 1 : rq, Σr “ Σp1 : r , 1 : rq, and
Vr “ V p:, 1 : rq, we have A “ UrΣrVr “

řr
i“1 σiuiv

T
i

§ }A}F “
b

řm
i“1

řn
j“1 |aij |

2 “ σ21 ` . . .` σ
2
p

§ }A}2 “ σ1
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SVD: low rank approximation

For any ν with 0 ď ν ď r , define Aν “
řν

i“1 σiuiv
T
i . If

ν “ p “ minpm, nq, define σν`1 “ 0. Then,

}A´ Aν}2 “ inf
BPRmˆn,rankpBqďν

}A´ B}2 “ σν`1

Proof (sketch):

§ Aw is maximised by that w which is closest in direction to
most of the rows of A.

§ The projections of the rows of A onto v1 is given by Av1vT1 .
This is indeed the best rank 1 approximation:

}A´ Av1v
T
1 }2 “ }A´ σ1u1v

T
1 }2

is the smallest over }A´ B}2 where B is any rank 1 matrix.
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Overview

§ Linear algebra basics

§ Singular value decomposition

§ Linear equations and least squares

§ Principal component analysis

§ Latent semantics and topic discovery

§ Clustering?
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Least squares

The minimum-norm least squares solution to a linear system
Ax “ b, that is, the shortest vector x that achieves

min
x
}Ax´ b}

is unique and is given by

x “ V Σ:UTb

where Σ: “ diagp1{σ1, . . . , 1{σr , 0q is a n ˆm diagonal matrix.
The matrix

A: “ V Σ:UT

is called the pseudoinverse of A.
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Pseudoinverse proof (sketch):

§

minx }Ax´ b} “ minx }UΣV T x ´ b} “ minx }UpΣV Tx´ UTbq}
“ minx }ΣV Tx´ UTb}

§ Setting y “ V Tx and c “ UTb, we have

min
x
}Ax´ b} “ min

y
}Σy ´ c}

§
»

—

—

—

—

—

—

—

—

—

–

σ1 0 ¨ ¨ ¨ 0

0
. . . ¨ ¨ ¨ 0

σr
... 0

...
. . .

0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

—

–

y1
...

yr
yr`1

...
yn

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

´

»

—

—

—

—

—

—

—

—

–

c1
...

cr
cr`1

...
cm

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl
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Least squares for homogenous systems

The solution to
min
}x}“1

}Ax}

is given by vn, the last column of V .
Proof:

min
}x}“1

}Ax} “ min
}x}“1

}UΣV Tx} “ min
}x}“1

}ΣV Tx} “ min
}y}“1

}Σy}

where y “ V Tx.
Clearly this is minimised by the vector y “ r0, . . . , 0, 1sT .
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A couple of other least squares problems

§ Given an m ˆ n matrix A with m ě n, find the vector x that
minimises }Ax} subject to }x} “ 1 and Cx “ 0.

§ Given an m ˆ n matrix A with m ě n, find the vector x that
minimises }Ax} subject to }x} “ 1 and x P rangepG q.
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Overview

§ Linear algebra basics

§ Singular value decomposition

§ Linear equations and least squares

§ Principal component analysis (Pearson, 1901, Schlens 2003)

§ Latent semantics and topic discovery

§ Clustering?
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PCA: A toy problem

X ptq “ rxAptq yAptq xBptq yBptq xC ptq yC ptqs
T ,

X “ rX p1q X p2q ¨ ¨ ¨ X pnqsT .

Is there another basis, which is a linear combination of the original
basis, that best expresses our data set?

PX “ Y
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PCA Issues: noise and redundancy

Noise

SNR “
σ2

signal
σ2

noise
" 1

Redundancy
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Covariance

§ Consider zero mean vectors a “ ra1 a2 . . . ans and
b “ rb1 b2 . . . bns.

§ Variance: σ2a “ 〈aiai 〉i and σ2b “ 〈bibi 〉i
§ Covariance: σ2ab “ 〈aibi 〉i “

1
n´1ab

T .

§ If X “ rx1 x2 . . . xms
T (mˆ n) then the covariance matrix is:

SX “
1

n ´ 1
XXT

§ ij th value of SX is obtained by substituting xi for a and xj for
b.

§ SX is square, symmetric, m ˆm.
§ Diagonal entries of SX are the variance of particular

measurement types.
§ The off-diagonal entries of SX are the covariance between

measurement types.
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Solving PCA

§

SY “
1

n ´ 1
YY T “

1

n ´ 1
pPX qpPX qT “

1

n ´ 1
PXXTPT

§ Writing X “ UΣV T , we have

XXT “ UΣUT

§ Setting P “ UT , we have

SY “
1

n ´ 1
Σ

§ Data is maximally uncorrelated.

§ Effective rank r of Σ gives dimensionality reduction.
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PCA: tacit assumptions

§ Linearity.

§ Mean and variance are sufficient statistics ùñ Gaussian
distribution.

§ Large variances have important dynamics.

§ The principal components are orthogonal.
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Application: eigenfaces (Turk and Pentland, 1991)

§ Obtain a set S of M face images:

S “ tΓ1, . . . , ΓMu

§ Obtain the mean image Ψ:

Ψ “
1

M

M
ÿ

j“1

Γj
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Application: eigenfaces (Turk and Pentland, 1991)

§ Compute centered images

Φi “ Γi ´Ψ

§ The covariance matrix is

C “
1

M

M
ÿ

j“1

ΦjΦ
T
j “ AAT

Size is N2 ˆ N2. Intractable.

§ If vi is an eigenvector of ATA (M ˆM), then Avi an
eigenvector of AAT .

ATAvi “ µivi ô AATAvi “ µiAvi
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Application: eigenfaces (Turk and Pentland, 1991)

Recognition:

§ ωk “ ukpΓ´Ψq

§ Compute minimum distance to database of faces
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Overview

§ Linear algebra basics

§ Singular value decomposition

§ Linear equations and least squares

§ Principal component analysis

§ Latent semantics and topic discovery (Scott et. al. 1990,
Papadimitriou et. al. 1998)

§ Clustering?
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Latent semantics and topic discovery

§ Consider a m ˆ n matrix A where the ij th entry denotes the
marks obtained by the i th student in the j th test (Naveen
Garg, Abhiram Ranade).

§ Are the marks obtained by the i th student in various tests
correlated?

§ What are the capabilities of the i th student?

§ What does the j th test evaluate?

§ What is the expected rank of A?

Graphs and Geometry Workshop, NIT Warangal SVD and its Applications in Computer Vision



iitlogo

Latent semantics and topic discovery

§ Suppose there are really only three abilities (topics) that
determine a student’s marks in tests: verbal, logical and
quantitative.

§ Suppose vi , li and qi characterise these abilities of the i th

student; let Vj , Lj and Qj characterise the extent to which the
j th test evaluates these abilities.

§ A generative model for the ij th entry of A may be given as

viVj ` liLj ` qiQj
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Latent semantics and topic discovery

§

§ A new m ˆ 1 term vector t can be projected in to the LSI
space as:

t̂ “ tTUkΣ´1k

§ A new 1ˆ n document vector d can be projected in to the
LSI space as:

d̂ “ dVkΣ´1k
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Topic discovery example

§ An example with more than 2000 images and with 12 topics
(LDA)
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Overview

§ Linear algebra basics

§ Singular value decomposition

§ Linear equations and least squares

§ Principal component analysis

§ Latent semantics and topic discovery

§ Clustering (Drineas et. al. 1999)
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Clustering

§ Partition rows of a matrix so that “similar” rows (points in n
dimensional space) are clustered together.

§ Given points a1, . . . , am P Rm, find c1, . . . , ck P Rm so as to
minimize

ÿ

i

dpai , tc1, . . . , ckuq
2

where dpa,Sq is the smallest distance from a point a to any
of the points in S . (k-means)

§ k is a constant. Consider k “ 2 for simplicity. Even then the
problem is NP-complete for arbitrary n.

§ We have k centres. If n “ k then the problem can be solved
in polynomial time.
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Clustering

§ The points belonging to the two clusters can be separated by
the perpendicular bisector of the line joining the two centres.

§ The centre selected for a group must be its centroid.

§ There are only a polynomial number of lines to consider (Each
set of cluster centres define a Voronoi diagram. Each cell is a
polyhedron and the total number of faces in k cells is no more

than

ˆ

k
2

˙

. Enumerate all sets of hyperplanes (faces) each

of which contains k independent points of A such that they
define exactly k cells. Assign each point of A lying on a
hyperplane to one of the sides.)

§ The best k dimensional subspace can be found using SVD.

§ Gives a 2-approximation.
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Other applications

§ High dimensional matching

§ Graph partitioning

§ Metric embedding

§ Image compression

§ ... Learn SVD well

Learn SVD well
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