Singular Value Decomposition and its Applications in Computer Vision

Subhashis Banerjee
Department of Computer Science and Engineering IIT Delhi
Graphs and Geometry Workshop, NIT Warangal October 24, 2013

Overview

- Linear algebra basics
- Singular value decomposition
- Linear equations and least squares
- Principal component analysis
- Latent semantics and topic discovery
- Clustering?

Linear systems

- m equations in n unknowns. $A \mathbf{x}=\mathbf{b} . A \in \mathbb{R}^{m \times n}, \mathbf{x} \in \mathbb{R}^{n}$ and $\mathbf{b} \in \mathbb{R}^{m}$.
- Two reasons usually offered for importance of linearity: Superposition: If \mathbf{f}_{1} produces \mathbf{a}_{1} and \mathbf{f}_{2} produces \mathbf{a}_{2}, then a combined force $\mathbf{f}_{1}+\alpha \mathbf{f}_{2}$ produces $\mathbf{a}_{1}+\alpha \mathbf{a}_{2}$.
Pragmatics: $\quad f(x, y)=0$ and $g(x, y)=0$ yields $F(x)=0$ by elimination.
- Degree of $F=$ degree of $f \times$ degree of g.
- A system of m quadratic equation gives a polynomial of degree 2^{m}.
- The only case in which the exponential is harmless is when the base is 1 (linear).

Linear (in)dependence

- Given vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$ and scalars x_{1}, \ldots, x_{n}, the vector

$$
\mathbf{b}=\sum_{j=1}^{n} x_{j} \mathbf{a}_{j}
$$

is a linear combination of the vectors.

- The vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$ are linearly dependent iff at least one of them is a linear combination of the others (ones that precedes it).
- A set of vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$ is a basis for a set B of vectors if they are linearly independent and every vector in B can be expressed as a linear combination of $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$.
- Two different bases for the same vector space B have the same number of vectors (dimension).

Inner product and orthogonality

- 2-norm:

$$
\|\mathbf{b}\|^{2}=b_{1}^{2}+\left\|\sum_{j=2}^{m} b_{j} \mathbf{e}_{j}\right\|^{2}=\sum_{j=1}^{m} b_{j}^{2}=\mathbf{b}^{T} \mathbf{b}
$$

- inner product: $\mathbf{b}^{T} \mathbf{c}=\|\mathbf{b}\|\|\mathbf{c}\| \cos \theta$
- orthogonal: $\mathbf{b}^{T} \mathbf{c}=0$
- projection of \mathbf{b} onto \mathbf{c} :

$$
\frac{\mathbf{c c}^{T}}{\mathbf{c}^{T} \mathbf{c}} \mathbf{b}
$$

Orthogonal subspaces and rank

- Any basis $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$ for a subspace A of \mathbb{R}^{m} can be extended to a basis for \mathbb{R}^{m} by adding $m-n$ vectors $\mathbf{a}_{n+1}, \ldots, \mathbf{a}_{m}$
- If vector space A is a subspace of \mathbb{R}^{m} for some m, then the orthogonal complement (A^{\perp}) of A is the set of all vectors in \mathbb{R}^{m} that are orthogonal to all the vectors in A.
- $\operatorname{dim}(A)+\operatorname{dim}\left(A^{\perp}\right)=m$
- $\operatorname{null}(A)=\{\mathbf{x}: A \mathbf{x}=\mathbf{0}\} . \operatorname{dim}(\operatorname{null}(A))=h($ nullity $)$.
- $\operatorname{range}(A)=\{\mathbf{b}: A \mathbf{x}=\mathbf{b}$ for some $\mathbf{x}\} . \operatorname{dim}(\operatorname{range}(A))=r$ (rank).
- $r=n-h$.
- Number of linearly independent rows of A is equal to its number of linearly independent columns.

Solutions of a linear system: $\mathbf{A x}=\mathbf{b}$

- $\operatorname{range}(A)$; dimension $r=\operatorname{rank}(A)$
- $\operatorname{null}(A)$; dimension $h=\operatorname{nullity}(A)$
- range $(A)^{\perp}$; dimension $m-r$
- $\operatorname{null}(A)^{\perp}$; dimension $n-h$

$$
\begin{aligned}
\operatorname{null}(A)^{\perp} & =\operatorname{range}\left(A^{T}\right) \\
\operatorname{range}(A)^{\perp} & =\operatorname{null}\left(A^{T}\right)
\end{aligned}
$$

- $\mathbf{b} \notin \operatorname{range}(A) \Longrightarrow$ no solutions
- $\mathbf{b} \in \operatorname{range}(A)$
- $r=n=m$. Invertible. Unique solution.
- $r=n, m>n$. Redundant. Unique solution.
- $r<n$. Under determined. ∞^{n-r} solutions.

Orthogonal matrices

- A set of vectors V is orthogonal if its elements are pairwise orthogonal. Orthonormal, if in addition for each $x \in V$, $\|\mathbf{x}\|=1$.
- Vectors in an orthonormal set are linearly independent.
- $V=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right]$ is an orthogonal matrix.
- $V^{-1} V=V^{T} V=V^{-1} V=V V^{\top}=\mathbf{I}$.
- The norm of a vector \mathbf{x} is not changed by multiplication by an orthogonal matrix:

$$
\|V \mathbf{x}\|^{2}=\mathbf{x}^{T} V^{T} V \mathbf{x}=\mathbf{x}^{T} \mathbf{x}=\|\mathbf{x}\|^{2}
$$

Vector norms

$$
\begin{aligned}
& \|x\|_{1}=\sum_{i=1}^{m}\left|x_{i}\right| \\
& \|x\|_{2}=\left(\sum_{i=1}^{m}\left|x_{i}\right|^{2}\right)^{1 / 2}=\sqrt{x^{*} x} \\
& \|x\|_{\infty}=\max _{1 \leq i \leq m}\left|x_{i}\right| \\
& \|x\|_{p}=\left(\sum_{i=1}^{m}\left|x_{i}\right|^{p}\right)^{1 / p} \quad(1 \leq p<\infty) .
\end{aligned}
$$

$$
\rightarrow
$$

Matrix norms

$$
A=\left[\begin{array}{ll}
1 & 2 \\
0 & 2
\end{array}\right]
$$

Overview

- Linear algebra basics
- Singular value decomposition (Golub and Van Loan, 1996, Golub and Kahan, 1965)
- Linear equations and least squares
- Principal component analysis
- Latent semantics and topic discovery
- Clustering?

Singular value decomposition

Geometric view: An $m \times n$ matrix A of rank r maps the r-dimensional unit hypersphere in rowspace (A) into an r-dimensional hyperellipse in range (A).
Algebraic view: If A is a real $m \times n$ matrix then there exists orthogonal matrices

$$
\begin{aligned}
U & =\left[\mathbf{u}_{1} \cdots \mathbf{u}_{m}\right] \in \mathbb{R}^{m \times m} \\
V & =\left[\mathbf{v}_{1} \cdots \mathbf{v}_{n}\right] \in \mathbb{R}^{n \times n}
\end{aligned}
$$

such that

$$
U^{T} A V=\Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{p}\right) \in \mathbb{R}^{m \times n}
$$

where $p=\min (m, n)$, and $\sigma_{1} \geqslant \sigma_{2} \geqslant \ldots \geqslant \sigma_{p} \geqslant 0$ Equivalently,

$$
A=U \Sigma V^{T}
$$

Proof (sketch):

- Consider all vectors of the form $A \mathbf{x}=\mathbf{b}$ for \mathbf{x} on the unit hypersphere $\|\mathbf{x}\|=1$. Consider the scalar function $\|A \mathbf{x}\|$. Let \mathbf{v}_{1} be a vector on the unit sphere in \mathbb{R}^{n} where the scalar function is maximised.
- Let $\sigma_{1} \mathbf{u}_{1}$ be the corresponding vector with $\sigma_{1} \mathbf{u}_{1}=A \mathbf{v}_{1}$ and $\left\|\mathbf{u}_{1}\right\|=1$. Let \mathbf{u}_{1} and \mathbf{v}_{1} be extended to orthonormal bases for \mathbb{R}^{m} and \mathbb{R}^{n} respectively. Let the corresponding matrices be U_{1} and V_{1}.
- We have $U_{1}^{T} A V_{1}=S_{1}=\left[\begin{array}{cc}\sigma_{1} & \mathbf{w}^{T} \\ \mathbf{0} & A_{1}\end{array}\right]$
- Consider the length of the vector

$$
\frac{1}{\sqrt{\sigma_{1}^{2}+\mathbf{w}^{T} \mathbf{w}}} S_{1}\left[\begin{array}{c}
\sigma_{1} \\
\mathbf{w}
\end{array}\right]=\frac{1}{\sqrt{\sigma_{1}^{2}+\mathbf{w}^{T} \mathbf{w}}}\left[\begin{array}{c}
\sigma_{1}^{2}+\mathbf{w}^{T} \mathbf{w} \\
A_{1} \mathbf{w}
\end{array}\right]
$$

- Conclude $\mathbf{w}=\mathbf{0}$ and induct.

SVD geometry:

1. $\xi=V^{T} \mathbf{x}$, where $V=\left[\begin{array}{ll}\mathbf{v}_{1} & \mathbf{v}_{2}\end{array}\right]$
2. $\eta=\Sigma \xi$, where $\Sigma=\left[\begin{array}{cc}\sigma_{1} & 0 \\ 0 & \sigma_{2} \\ 0 & 0\end{array}\right]$
3. Finally, $\mathbf{b}=U \eta$.

SVD: structure of a matrix

- Suppose $\sigma_{1} \geqslant \ldots \geqslant \sigma_{r}>\sigma_{r+1}=0$. Then,

$$
\begin{aligned}
\operatorname{rank}(A) & =r \\
\operatorname{null}(A) & =\operatorname{span}\left\{\mathbf{v}_{r+1}, \ldots, \mathbf{v}_{n}\right\} \\
\operatorname{range}(A) & =\operatorname{span}\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}\right\}
\end{aligned}
$$

- Setting $U_{r}=U(:, 1: r), \Sigma_{r}=\Sigma(1: r, 1: r)$, and $V_{r}=V(:, 1: r)$, we have $A=U_{r} \Sigma_{r} V_{r}=\sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T}$

- $\|A\|_{F}=\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n}\left|a_{i j}\right|^{2}}=\sigma_{1}^{2}+\ldots+\sigma_{p}^{2}$
- $\|A\|_{2}=\sigma_{1}$

SVD: low rank approximation

For any ν with $0 \leqslant \nu \leqslant r$, define $A_{\nu}=\sum_{i=1}^{\nu} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T}$. If $\nu=p=\min (m, n)$, define $\sigma_{\nu+1}=0$. Then,

$$
\left\|A-A_{\nu}\right\|_{2}=\inf _{B \in \mathbb{R}^{m \times n}, \operatorname{rank}(B) \leqslant \nu}\|A-B\|_{2}=\sigma_{\nu+1}
$$

Proof (sketch):

- Aw is maximised by that \mathbf{w} which is closest in direction to most of the rows of A.
- The projections of the rows of A onto \mathbf{v}_{1} is given by $A \mathbf{v}_{1} \mathbf{v}_{1}^{T}$. This is indeed the best rank 1 approximation:

$$
\left\|A-A \mathbf{v}_{1} \mathbf{v}_{1}^{T}\right\|_{2}=\left\|A-\sigma_{1} \mathbf{u}_{1} \mathbf{v}_{1}^{T}\right\|_{2}
$$

is the smallest over $\|A-B\|_{2}$ where B is any rank 1 matrix.

Overview

- Linear algebra basics
- Singular value decomposition
- Linear equations and least squares
- Principal component analysis
- Latent semantics and topic discovery
- Clustering?

Least squares

The minimum-norm least squares solution to a linear system $A \mathbf{x}=\mathbf{b}$, that is, the shortest vector \mathbf{x} that achieves

$$
\min _{\mathbf{x}}\|A \mathbf{x}-\mathbf{b}\|
$$

is unique and is given by

$$
\mathbf{x}=V \Sigma^{\dagger} U^{T} \mathbf{b}
$$

where $\Sigma^{\dagger}=\operatorname{diag}\left(1 / \sigma_{1}, \ldots, 1 / \sigma_{r}, \mathbf{0}\right)$ is a $n \times m$ diagonal matrix. The matrix

$$
A^{\dagger}=V \Sigma^{\dagger} U^{T}
$$

is called the pseudoinverse of A.

Pseudoinverse proof (sketch):

$$
\begin{aligned}
& \min _{\mathrm{x}}\|A \mathbf{x}-\mathbf{b}\|=\min _{\mathrm{x}}\left\|U \Sigma V^{T} x-\mathbf{b}\right\|=\min _{\mathrm{x}}\left\|U\left(\Sigma V^{T} \mathbf{x}-U^{T} \mathbf{b}\right)\right\| \\
& =\min _{\mathbf{x}}\left\|\Sigma V^{T} \mathbf{x}-U^{T} \mathbf{b}\right\|
\end{aligned}
$$

- Setting $\mathbf{y}=V^{T} \mathbf{x}$ and $\mathbf{c}=U^{T} \mathbf{b}$, we have

$$
\min _{\mathbf{x}}\|A \mathbf{x}-\mathbf{b}\|=\min _{\mathbf{y}}\|\Sigma \mathbf{y}-\mathbf{c}\|
$$

$$
\left[\begin{array}{ccccc}
\sigma_{1} & 0 & & \cdots & \\
0 & \ddots & & \cdots & \\
& & \sigma_{r} & & \\
\vdots & & & 0 & \\
& & & & \ddots
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
\vdots \\
0
\end{array}\right.
$$

Least squares for homogenous systems

The solution to

$$
\min _{\|\mathbf{x}\|=1}\|A \mathbf{x}\|
$$

is given by \mathbf{v}_{n}, the last column of V.
Proof:

$$
\min _{\|\mathbf{x}\|=1}\|A \mathbf{x}\|=\min _{\|\mathbf{x}\|=1}\left\|U \Sigma V^{T} \mathbf{x}\right\|=\min _{\|\mathbf{x}\|=1}\left\|\Sigma V^{T} \mathbf{x}\right\|=\min _{\|\mathbf{y}\|=1}\|\Sigma \mathbf{y}\|
$$

where $\mathbf{y}=V^{T} \mathbf{x}$.
Clearly this is minimised by the vector $\mathbf{y}=[0, \ldots, 0,1]^{T}$.

A couple of other least squares problems

- Given an $m \times n$ matrix A with $m \geqslant n$, find the vector \mathbf{x} that minimises $\|A \mathbf{x}\|$ subject to $\|\mathbf{x}\|=1$ and $C \mathbf{x}=\mathbf{0}$.
- Given an $m \times n$ matrix A with $m \geqslant n$, find the vector \mathbf{x} that minimises $\|A \mathbf{x}\|$ subject to $\|\mathbf{x}\|=1$ and $\mathbf{x} \in \operatorname{range}(G)$.

Overview

- Linear algebra basics
- Singular value decomposition
- Linear equations and least squares
- Principal component analysis (Pearson, 1901, Schlens 2003)
- Latent semantics and topic discovery
- Clustering?

PCA: A toy problem

$X(t)=\left[\begin{array}{lll}x_{A}(t) & y_{A}(t) & X_{B}(t) \\ y_{B}(t) & x_{C}(t) & y_{C}(t)\end{array}\right]^{T}$,
$X=\left[\begin{array}{llll}X(1) & X(2) & \cdots & X(n)\end{array}\right]^{T}$.

Is there another basis, which is a linear combination of the original basis, that best expresses our data set?

$$
P X=Y
$$

PCA Issues: noise and redundancy

Noise

$$
\mathrm{SNR}=\frac{\sigma_{\text {signal }}^{2}}{\sigma_{\text {noise }}^{2}} \gg 1
$$

Redundancy

Covariance

- Consider zero mean vectors $\mathbf{a}=\left[\begin{array}{llll}a_{1} & a_{2} & \ldots & a_{n}\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{llll}b_{1} & b_{2} & \ldots & b_{n}\end{array}\right]$.
- Variance: $\sigma_{\mathbf{a}}^{2}=\left\langle a_{i} a_{i}\right\rangle_{i}$ and $\sigma_{\mathbf{b}}^{2}=\left\langle b_{i} b_{i}\right\rangle_{i}$
- Covariance: $\sigma_{\mathbf{a b}}^{2}=\left\langle a_{i} b_{i}\right\rangle_{i}=\frac{1}{n-1} \mathbf{a b}^{T}$.
- If $X=\left[\begin{array}{llll}\mathbf{x}_{1} & \mathbf{x}_{2} & \ldots & \mathbf{x}_{m}\end{array}\right]^{T}(m \times n)$ then the covariance matrix is:

$$
S_{X}=\frac{1}{n-1} X X^{T}
$$

- ij ${ }^{\text {th }}$ value of S_{X} is obtained by substituting \mathbf{x}_{i} for \mathbf{a} and \mathbf{x}_{j} for b.
- S_{X} is square, symmetric, $m \times m$.
- Diagonal entries of S_{X} are the variance of particular measurement types.
- The off-diagonal entries of S_{X} are the covariance between measurement types.

Solving PCA

$$
S_{Y}=\frac{1}{n-1} Y Y^{T}=\frac{1}{n-1}(P X)(P X)^{T}=\frac{1}{n-1} P X X^{T} P^{T}
$$

- Writing $X=U \Sigma V^{T}$, we have

$$
X X^{T}=U \Sigma U^{T}
$$

- Setting $P=U^{T}$, we have

$$
S_{Y}=\frac{1}{n-1} \Sigma
$$

- Data is maximally uncorrelated.
- Effective rank r of Σ gives dimensionality reduction.

PCA: tacit assumptions

- Linearity.
- Mean and variance are sufficient statistics \Longrightarrow Gaussian distribution.
- Large variances have important dynamics.
- The principal components are orthogonal.

Application: eigenfaces (Turk and Pentland, 1991)

- Obtain a set S of M face images:

$$
S=\left\{\Gamma_{1}, \ldots, \Gamma_{M}\right\}
$$

- Obtain the mean image Ψ :

$$
\psi=\frac{1}{M} \sum_{j=1}^{M} \Gamma_{j}
$$

Application: eigenfaces (Turk and Pentland, 1991)

- Compute centered images

$$
\Phi_{i}=\Gamma_{i}-\psi
$$

- The covariance matrix is

$$
C=\frac{1}{M} \sum_{j=1}^{M} \Phi_{j} \Phi_{j}^{T}=A A^{T}
$$

Size is $N^{2} \times N^{2}$. Intractable.

- If \mathbf{v}_{i} is an eigenvector of $A^{T} A(M \times M)$, then $A \mathbf{v}_{i}$ an eigenvector of $A A^{T}$.

$$
A^{T} A \mathbf{v}_{i}=\mu_{i} \mathbf{v}_{i} \Leftrightarrow A A^{T} A \mathbf{v}_{i}=\mu_{i} A \mathbf{v}_{i}
$$

Application: eigenfaces (Turk and Pentland, 1991)

Recognition:

- $\omega_{k}=\mathbf{u}_{k}(\Gamma-\Psi)$
- Compute minimum distance to database of faces

Overview

- Linear algebra basics
- Singular value decomposition
- Linear equations and least squares
- Principal component analysis
- Latent semantics and topic discovery (Scott et. al. 1990, Papadimitriou et. al. 1998)
- Clustering?

Latent semantics and topic discovery

- Consider a $m \times n$ matrix A where the $i j^{\text {th }}$ entry denotes the marks obtained by the $i^{\text {th }}$ student in the $j^{\text {th }}$ test (Naveen Garg, Abhiram Ranade).
- Are the marks obtained by the $i^{\text {th }}$ student in various tests correlated?
- What are the capabilities of the $i^{\text {th }}$ student?
- What does the $j^{\text {th }}$ test evaluate?
- What is the expected rank of A ?

Latent semantics and topic discovery

- Suppose there are really only three abilities (topics) that determine a student's marks in tests: verbal, logical and quantitative.
- Suppose v_{i}, l_{i} and q_{i} characterise these abilities of the $i^{t h}$ student; let V_{j}, L_{j} and Q_{j} characterise the extent to which the $j^{\text {th }}$ test evaluates these abilities.
- A generative model for the $i j^{\text {th }}$ entry of A may be given as

$$
v_{i} V_{j}+l_{i} L_{j}+q_{i} Q_{j}
$$

Latent semantics and topic discovery

- A new $m \times 1$ term vector t can be projected in to the LSI space as:

$$
\hat{t}=t^{T} U_{k} \Sigma_{k}^{-1}
$$

- A new $1 \times n$ document vector d can be projected in to the LSI space as:

$$
\hat{d}=d V_{k} \Sigma_{k}^{-1}
$$

Topic discovery example

- An example with more than 2000 images and with 12 topics (LDA)

[^0]SVD and its Applications in Computer Vision

Overview

- Linear algebra basics
- Singular value decomposition
- Linear equations and least squares
- Principal component analysis
- Latent semantics and topic discovery
- Clustering (Drineas et. al. 1999)

Clustering

- Partition rows of a matrix so that "similar" rows (points in n dimensional space) are clustered together.
- Given points $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m} \in \mathbb{R}^{m}$, find $c_{1}, \ldots, c_{k} \in \mathbb{R}^{m}$ so as to minimize

$$
\sum_{i} d\left(\mathbf{a}_{i},\left\{c_{1}, \ldots, c_{k}\right\}\right)^{2}
$$

where $d(\mathbf{a}, S)$ is the smallest distance from a point a to any of the points in S. (k-means)

- k is a constant. Consider $k=2$ for simplicity. Even then the problem is NP-complete for arbitrary n.
- We have k centres. If $n=k$ then the problem can be solved in polynomial time.

Clustering

- The points belonging to the two clusters can be separated by the perpendicular bisector of the line joining the two centres.
- The centre selected for a group must be its centroid.
- There are only a polynomial number of lines to consider (Each set of cluster centres define a Voronoi diagram. Each cell is a polyhedron and the total number of faces in k cells is no more than $\binom{k}{2}$. Enumerate all sets of hyperplanes (faces) each of which contains k independent points of A such that they define exactly k cells. Assign each point of A lying on a hyperplane to one of the sides.)
- The best k dimensional subspace can be found using SVD.
- Gives a 2-approximation.

Other applications

- High dimensional matching
- Graph partitioning
- Metric embedding
- Image compression
- ... Learn SVD well

Learn SVD well

[^0]: Graphs and Geometry Workshop, NIT Warangal

