
Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Introduction to Randomized Algorithms

Arijit Bishnu
(arijit@isical.ac.in)

Advanced Computing and Microelectronics Unit
Indian Statistical Institute

Kolkata 700108, India.

Talk at NIT, Warangal

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Organization

1 Introduction

2 Some basic ideas from Probability

3 Coupon Collection

4 Quick Sort

5 Min Cut

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Introduction

INPUT OUTPUT
ALGORITHM

Goal of a Deterministic Algorithm

The solution produced by the algorithm is correct, and

the number of computational steps is same for different
runs of the algorithm with the same input.

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Randomized Algorithm

INPUT OUTPUT
ALGORITHM

Random Number

Randomized Algorithm

In addition to the input, the algorithm uses a source of pseudo
random numbers. During execution, it takes random choices
depending on those random numbers.

The behavior (output) can vary if the algorithm is run
multiple times on the same input.

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Advantage of Randomized Algorithm

The Paradigm

Instead of making a guaranteed good choice, make a random
choice and hope that it is good. This helps because guaranteeing a
good choice becomes difficult sometimes.

Randomized Algorithms

make random choices. The
expected running time depends
on the random choices, not on
any input distribution.

Average Case Analysis

analyzes the expected running
time of deterministic algorithms
assuming a suitable random
distribution on the input.

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Advantage of Randomized Algorithm

The Paradigm

Instead of making a guaranteed good choice, make a random
choice and hope that it is good. This helps because guaranteeing a
good choice becomes difficult sometimes.

Randomized Algorithms

make random choices. The
expected running time depends
on the random choices, not on
any input distribution.

Average Case Analysis

analyzes the expected running
time of deterministic algorithms
assuming a suitable random
distribution on the input.

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Advantage of Randomized Algorithm

The Paradigm

Instead of making a guaranteed good choice, make a random
choice and hope that it is good. This helps because guaranteeing a
good choice becomes difficult sometimes.

Randomized Algorithms

make random choices. The
expected running time depends
on the random choices, not on
any input distribution.

Average Case Analysis

analyzes the expected running
time of deterministic algorithms
assuming a suitable random
distribution on the input.

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Pros and Cons of Randomized Algorithms

Pros

Making a random choice is fast.

An adversary is powerless; randomized algorithms have no
worst case inputs.

Randomized algorithms are often simpler and faster than their
deterministic counterparts.

Cons

In the worst case, a randomized algorithm may be very slow.

There is a finite probability of getting incorrect answer.
However, the probability of getting a wrong answer can be
made arbitrarily small by the repeated employment of
randomness.

Getting true random numbers is almost impossible.

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Pros and Cons of Randomized Algorithms

Pros

Making a random choice is fast.

An adversary is powerless; randomized algorithms have no
worst case inputs.

Randomized algorithms are often simpler and faster than their
deterministic counterparts.

Cons

In the worst case, a randomized algorithm may be very slow.

There is a finite probability of getting incorrect answer.
However, the probability of getting a wrong answer can be
made arbitrarily small by the repeated employment of
randomness.

Getting true random numbers is almost impossible.

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Pros and Cons of Randomized Algorithms

Pros

Making a random choice is fast.

An adversary is powerless; randomized algorithms have no
worst case inputs.

Randomized algorithms are often simpler and faster than their
deterministic counterparts.

Cons

In the worst case, a randomized algorithm may be very slow.

There is a finite probability of getting incorrect answer.
However, the probability of getting a wrong answer can be
made arbitrarily small by the repeated employment of
randomness.

Getting true random numbers is almost impossible.

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Pros and Cons of Randomized Algorithms

Pros

Making a random choice is fast.

An adversary is powerless; randomized algorithms have no
worst case inputs.

Randomized algorithms are often simpler and faster than their
deterministic counterparts.

Cons

In the worst case, a randomized algorithm may be very slow.

There is a finite probability of getting incorrect answer.
However, the probability of getting a wrong answer can be
made arbitrarily small by the repeated employment of
randomness.

Getting true random numbers is almost impossible.

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Pros and Cons of Randomized Algorithms

Pros

Making a random choice is fast.

An adversary is powerless; randomized algorithms have no
worst case inputs.

Randomized algorithms are often simpler and faster than their
deterministic counterparts.

Cons

In the worst case, a randomized algorithm may be very slow.

There is a finite probability of getting incorrect answer.
However, the probability of getting a wrong answer can be
made arbitrarily small by the repeated employment of
randomness.

Getting true random numbers is almost impossible.

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Pros and Cons of Randomized Algorithms

Pros

Making a random choice is fast.

An adversary is powerless; randomized algorithms have no
worst case inputs.

Randomized algorithms are often simpler and faster than their
deterministic counterparts.

Cons

In the worst case, a randomized algorithm may be very slow.

There is a finite probability of getting incorrect answer.
However, the probability of getting a wrong answer can be
made arbitrarily small by the repeated employment of
randomness.

Getting true random numbers is almost impossible.

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Pros and Cons of Randomized Algorithms

Pros

Making a random choice is fast.

An adversary is powerless; randomized algorithms have no
worst case inputs.

Randomized algorithms are often simpler and faster than their
deterministic counterparts.

Cons

In the worst case, a randomized algorithm may be very slow.

There is a finite probability of getting incorrect answer.
However, the probability of getting a wrong answer can be
made arbitrarily small by the repeated employment of
randomness.

Getting true random numbers is almost impossible.

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Pros and Cons of Randomized Algorithms

Pros

Making a random choice is fast.

An adversary is powerless; randomized algorithms have no
worst case inputs.

Randomized algorithms are often simpler and faster than their
deterministic counterparts.

Cons

In the worst case, a randomized algorithm may be very slow.

There is a finite probability of getting incorrect answer.
However, the probability of getting a wrong answer can be
made arbitrarily small by the repeated employment of
randomness.

Getting true random numbers is almost impossible.

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Types of Randomized Algorithms

Definition

Las Vegas: a randomized algorithm that always returns a correct
result. But the running time may vary between executions.

Example: Randomized QUICKSORT Algorithm

Definition

Monte Carlo: a randomized algorithm that terminates in
polynomial time, but might produce erroneous result.

Example: Randomized MINCUT Algorithm

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Some basic ideas
from Probability

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Expectation

Random variable

A function defined on a sample space is called a random variable.
Given a random variable X , Pr [X = j] means X ’s probability of
taking the value j .

Expectation – “the average value”

The expectation of a random variable X is defined as:
E [X] =

∑∞
j=0 j · Pr [X = j]

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Waiting for the first success

Let p be the probability of success and 1− p be the
probability of failure of a random experiment.

If we continue the random experiment till we get success, what
is the expected number of experiments we need to perform?

Let X : random variable that equals the number of
experiments performed.

For the process to perform exactly j experiments, the first
j − 1 experiments should be failures and the j-th one should
be a success. So, we have Pr [X = j] = (1− p)(j−1) · p.

So, the expectation of X , E [X] =
∑∞

j=0 j · Pr [X = j] = 1
p .

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Waiting for the first success

Let p be the probability of success and 1− p be the
probability of failure of a random experiment.

If we continue the random experiment till we get success, what
is the expected number of experiments we need to perform?

Let X : random variable that equals the number of
experiments performed.

For the process to perform exactly j experiments, the first
j − 1 experiments should be failures and the j-th one should
be a success. So, we have Pr [X = j] = (1− p)(j−1) · p.

So, the expectation of X , E [X] =
∑∞

j=0 j · Pr [X = j] = 1
p .

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Waiting for the first success

Let p be the probability of success and 1− p be the
probability of failure of a random experiment.

If we continue the random experiment till we get success, what
is the expected number of experiments we need to perform?

Let X : random variable that equals the number of
experiments performed.

For the process to perform exactly j experiments, the first
j − 1 experiments should be failures and the j-th one should
be a success. So, we have Pr [X = j] = (1− p)(j−1) · p.

So, the expectation of X , E [X] =
∑∞

j=0 j · Pr [X = j] = 1
p .

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Waiting for the first success

Let p be the probability of success and 1− p be the
probability of failure of a random experiment.

If we continue the random experiment till we get success, what
is the expected number of experiments we need to perform?

Let X : random variable that equals the number of
experiments performed.

For the process to perform exactly j experiments, the first
j − 1 experiments should be failures and the j-th one should
be a success. So, we have Pr [X = j] = (1− p)(j−1) · p.

So, the expectation of X , E [X] =
∑∞

j=0 j · Pr [X = j] = 1
p .

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Waiting for the first success

Let p be the probability of success and 1− p be the
probability of failure of a random experiment.

If we continue the random experiment till we get success, what
is the expected number of experiments we need to perform?

Let X : random variable that equals the number of
experiments performed.

For the process to perform exactly j experiments, the first
j − 1 experiments should be failures and the j-th one should
be a success. So, we have Pr [X = j] = (1− p)(j−1) · p.

So, the expectation of X , E [X] =
∑∞

j=0 j · Pr [X = j] = 1
p .

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Conditional Probability and Independent Event

Conditional Probability

The conditional probability of X given Y is

Pr [X = x | Y = y] =
Pr [(X = x) ∩ (Y = y)]

Pr [Y = y]

An Equivalent Statement

Pr [(X = x) ∩ (Y = y)] = Pr [X = x | Y = y] · Pr [Y = y]

Independent Events

Two events X and Y are independent, if
Pr [(X = x) ∩ (Y = y)] = Pr [X = x] · Pr [Y = y]. In particular, if
X and Y are independent, then

Pr [X = x | Y = y] = Pr [X = x]

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Conditional Probability and Independent Event

Conditional Probability

The conditional probability of X given Y is

Pr [X = x | Y = y] =
Pr [(X = x) ∩ (Y = y)]

Pr [Y = y]

An Equivalent Statement

Pr [(X = x) ∩ (Y = y)] = Pr [X = x | Y = y] · Pr [Y = y]

Independent Events

Two events X and Y are independent, if
Pr [(X = x) ∩ (Y = y)] = Pr [X = x] · Pr [Y = y]. In particular, if
X and Y are independent, then

Pr [X = x | Y = y] = Pr [X = x]

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Conditional Probability and Independent Event

Conditional Probability

The conditional probability of X given Y is

Pr [X = x | Y = y] =
Pr [(X = x) ∩ (Y = y)]

Pr [Y = y]

An Equivalent Statement

Pr [(X = x) ∩ (Y = y)] = Pr [X = x | Y = y] · Pr [Y = y]

Independent Events

Two events X and Y are independent, if
Pr [(X = x) ∩ (Y = y)] = Pr [X = x] · Pr [Y = y]. In particular, if
X and Y are independent, then

Pr [X = x | Y = y] = Pr [X = x]

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

A Result on Intersection of events

Let η1, η2, . . . , ηn be n events not necessarily independent. Then,

Pr [∩n
i=1ηi] = Pr [η1]·Pr [η2 | η1]·Pr [η3 | η1∩η2] · · ·Pr [ηn | η1∩. . .∩ηn−1].

The proof is by induction on n.

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Coupon Collection

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Coupon Collection

The Problem

A company selling jeans gives a coupon with each jeans. There are
n different coupons. Collecting n different coupons would give you
a free jeans. How many jeans do you expect to buy before you get
a free jeans?

The coupon collection process is in phase j when you have
already collected j different coupons and are buying to get a
new type.

A new type of coupon ends phase j and you enter phase j + 1.

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Coupon Collection

The Problem

A company selling jeans gives a coupon with each jeans. There are
n different coupons. Collecting n different coupons would give you
a free jeans. How many jeans do you expect to buy before you get
a free jeans?

The coupon collection process is in phase j when you have
already collected j different coupons and are buying to get a
new type.

A new type of coupon ends phase j and you enter phase j + 1.

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Coupon Collection

The Problem

A company selling jeans gives a coupon with each jeans. There are
n different coupons. Collecting n different coupons would give you
a free jeans. How many jeans do you expect to buy before you get
a free jeans?

The coupon collection process is in phase j when you have
already collected j different coupons and are buying to get a
new type.

A new type of coupon ends phase j and you enter phase j + 1.

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Coupon Collection

Let Xj be the random variable equal to the number of jeans
you buy in phase j .

Then, X =
∑n−1

j=0 Xj is the number of jeans bought to have n
different coupons.

Lemma

The expected number of jeans bought in phase j , E [Xj] = n
n−j .

The success probability, p in the j-th phase is n−j
n .

By the bound on waiting for success, the expected number of
jeans bought E [Xj] is 1

p = n
n−j .

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Coupon Collection

Let Xj be the random variable equal to the number of jeans
you buy in phase j .

Then, X =
∑n−1

j=0 Xj is the number of jeans bought to have n
different coupons.

Lemma

The expected number of jeans bought in phase j , E [Xj] = n
n−j .

The success probability, p in the j-th phase is n−j
n .

By the bound on waiting for success, the expected number of
jeans bought E [Xj] is 1

p = n
n−j .

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Coupon Collection

Let Xj be the random variable equal to the number of jeans
you buy in phase j .

Then, X =
∑n−1

j=0 Xj is the number of jeans bought to have n
different coupons.

Lemma

The expected number of jeans bought in phase j , E [Xj] = n
n−j .

The success probability, p in the j-th phase is n−j
n .

By the bound on waiting for success, the expected number of
jeans bought E [Xj] is 1

p = n
n−j .

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Coupon Collection

Let Xj be the random variable equal to the number of jeans
you buy in phase j .

Then, X =
∑n−1

j=0 Xj is the number of jeans bought to have n
different coupons.

Lemma

The expected number of jeans bought in phase j , E [Xj] = n
n−j .

The success probability, p in the j-th phase is n−j
n .

By the bound on waiting for success, the expected number of
jeans bought E [Xj] is 1

p = n
n−j .

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Coupon Collection

Let Xj be the random variable equal to the number of jeans
you buy in phase j .

Then, X =
∑n−1

j=0 Xj is the number of jeans bought to have n
different coupons.

Lemma

The expected number of jeans bought in phase j , E [Xj] = n
n−j .

The success probability, p in the j-th phase is n−j
n .

By the bound on waiting for success, the expected number of
jeans bought E [Xj] is 1

p = n
n−j .

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

The expectation

Theorem

The expected number of jeans bought before all n types of
coupons are collected is E [X] = nHn = Θ(n log n).

Proof

X =
n−1∑
j=0

Xj . So, we have E [X] = E

[
n−1∑
j=0

Xj

]
. Use linearity of

expectations,

E [X] =
n−1∑
j=0

E [Xj] = n
n−1∑
j=0

1

n − j
= n

n∑
i=1

1

i
= nHn = Θ(n log n)

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

The expectation

Theorem

The expected number of jeans bought before all n types of
coupons are collected is E [X] = nHn = Θ(n log n).

Proof

X =
n−1∑
j=0

Xj . So, we have E [X] = E

[
n−1∑
j=0

Xj

]
. Use linearity of

expectations,

E [X] =
n−1∑
j=0

E [Xj] = n
n−1∑
j=0

1

n − j
= n

n∑
i=1

1

i
= nHn = Θ(n log n)

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Randomized Quick Sort

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Deterministic Quick Sort

The Problem:

Given an array A[1 . . . n] containing n (comparable) elements, sort
them in increasing/decreasing order.

QSORT(A, p, q)

If p ≥ q, EXIT.

Compute s ← correct position of A[p] in the sorted order of
the elements of A from p-th location to q-th location.

Move the pivot A[p] into position A[s].

Move the remaining elements of A[p − q] into appropriate
sides.

QSORT(A, p, s − 1);

QSORT(A, s + 1, q).

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Complexity Results of QSORT

An INPLACE algorithm

The worst case time complexity is O(n2).

The average case time complexity is O(n log n).

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Randomized Quick Sort

An Useful Concept - The Central Splitter

It is an index s such that the number of elements
less (resp. greater) than A[s] is at least n

4 .

The algorithm randomly chooses a key, and checks whether it
is a central splitter or not.

If it is a central splitter, then the array is split with that key as
was done in the QSORT algorithm.

It can be shown that the expected number of trials needed to
get a central splitter is constant.

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Randomized Quick Sort

RandQSORT(A, p, q)

1: If p ≥ q, then EXIT.

2: While no central splitter has been found, execute the following
steps:

2.1: Choose uniformly at random a number r ∈ {p, p + 1, . . . , q}.
2.2: Compute s = number of elements in A that are less than A[r],

and
t = number of elements in A that are greater than A[r].

2.3: If s ≥ q−p
4 and t ≥ q−p

4 , then A[r] is a central splitter.

3: Position A[r] in A[s + 1], put the members in A that are
smaller than the central splitter in A[p . . . s] and the members
in A that are larger than the central splitter in A[s + 2 . . . q].

4: RandQSORT(A, p, s);

5: RandQSORT(A, s + 2, q).

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Analysis of RandQSORT

Fact: One execution of Step 2 needs O(q − p) time.

Question: How many times Step 2 is executed for finding a
central splitter ?

Result:

The probability that the randomly chosen element is a central
splitter is 1

2 .

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Recall “Waiting for success”

If p be the probability of success of a random experiment, and we
continue the random experiment till we get success, the expected
number of experiments we need to perform is 1

p .

Implication in Our Case

The expected number of times Step 2 needs to be repeated to
get a central splitter (success) is 2 as the corresponding
success probability is 1

2 .

Thus, the expected time complexity of Step 2 is O(n)

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Analysis of RandQSORT

Time Complexity

The expected running time for the algorithm on a set A,
excluding the time spent on recursive calls, is O(|A|).

Worst case size of each partition in j-th level of recursion is
n · (3

4)j , So, the expected time spent excluding recursive calls
is O(n · (3

4)j) for each partition.

The number of partitions of size n · (3
4)j is O((4

3)j).

By linearity of expectations, the expected time for all
partitions of size n · (3

4)j is O(n).

Number of levels of recursion = log 4
3
n = O(log n).

Thus, the expected running time is O(n log n).

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Analysis of RandQSORT

Time Complexity

The expected running time for the algorithm on a set A,
excluding the time spent on recursive calls, is O(|A|).

Worst case size of each partition in j-th level of recursion is
n · (3

4)j , So, the expected time spent excluding recursive calls
is O(n · (3

4)j) for each partition.

The number of partitions of size n · (3
4)j is O((4

3)j).

By linearity of expectations, the expected time for all
partitions of size n · (3

4)j is O(n).

Number of levels of recursion = log 4
3
n = O(log n).

Thus, the expected running time is O(n log n).

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Analysis of RandQSORT

Time Complexity

The expected running time for the algorithm on a set A,
excluding the time spent on recursive calls, is O(|A|).

Worst case size of each partition in j-th level of recursion is
n · (3

4)j , So, the expected time spent excluding recursive calls
is O(n · (3

4)j) for each partition.

The number of partitions of size n · (3
4)j is O((4

3)j).

By linearity of expectations, the expected time for all
partitions of size n · (3

4)j is O(n).

Number of levels of recursion = log 4
3
n = O(log n).

Thus, the expected running time is O(n log n).

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Analysis of RandQSORT

Time Complexity

The expected running time for the algorithm on a set A,
excluding the time spent on recursive calls, is O(|A|).

Worst case size of each partition in j-th level of recursion is
n · (3

4)j , So, the expected time spent excluding recursive calls
is O(n · (3

4)j) for each partition.

The number of partitions of size n · (3
4)j is O((4

3)j).

By linearity of expectations, the expected time for all
partitions of size n · (3

4)j is O(n).

Number of levels of recursion = log 4
3
n = O(log n).

Thus, the expected running time is O(n log n).

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Analysis of RandQSORT

Time Complexity

The expected running time for the algorithm on a set A,
excluding the time spent on recursive calls, is O(|A|).

Worst case size of each partition in j-th level of recursion is
n · (3

4)j , So, the expected time spent excluding recursive calls
is O(n · (3

4)j) for each partition.

The number of partitions of size n · (3
4)j is O((4

3)j).

By linearity of expectations, the expected time for all
partitions of size n · (3

4)j is O(n).

Number of levels of recursion = log 4
3
n = O(log n).

Thus, the expected running time is O(n log n).

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Analysis of RandQSORT

Time Complexity

The expected running time for the algorithm on a set A,
excluding the time spent on recursive calls, is O(|A|).

Worst case size of each partition in j-th level of recursion is
n · (3

4)j , So, the expected time spent excluding recursive calls
is O(n · (3

4)j) for each partition.

The number of partitions of size n · (3
4)j is O((4

3)j).

By linearity of expectations, the expected time for all
partitions of size n · (3

4)j is O(n).

Number of levels of recursion = log 4
3
n = O(log n).

Thus, the expected running time is O(n log n).

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Finding the k-th largest

Median Finding

Similar ideas of getting a central splitter and waiting for success
bound applies for finding the median in O(n) time.

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Global Mincut Problem
for an Undirected Graph

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Global Mincut Problem

Problem Statement

Given a connected undirected graph G = (V ,E), find a cut (A,B)
of minimum cardinality.

A

B

G = (V, E)

Applications:

Clustering and partitioning items,

Network reliability, network design, circuit design, etc.

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

A Simple Randomized Algorithm

Contraction of an Edge

Contraction of an edge e = (x , y) implies merging the two vertices
x , y ∈ V into a single vertex, and remove the self loop. The
contracted graph is denoted by G/xy .

x

y xy

xy

222

G = (V, E) ContractedGraph

Contractedsimpleweightedgraph

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Results on Contraction of Edges

Result - 1

As long as G/xy has at least one edge,

The size of the minimum cut in the (weighted) graph G/xy is
at least as large as the size of the minimum cut in G .

Result - 2

Let e1, e2, . . . , en−2 be a sequence of edges in G , such that

none of them is in the minimum cut of G , and

G ′ = G/{e1, e2, . . . , en−2} is a single multiedge.

Then this multiedge corresponds to the minimum cut in G .

Problem: Which edge sequence is to be chosen for contraction?

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Analysis

Algorithm MINCUT(G)

G0 ← G ; i = 0
while Gi has more than two vertices do

Pick randomly an edge ei from the edges in Gi

Gi+1 ← Gi/ei

i ← i + 1
(S ,V − S) is the cut in the original graph

corresponding to the single edge in Gi .

Theorem

Time Complexity: O(n2)

A Trivial Observation: The algorithm outputs a cut whose size is
no smaller than the mincut.

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Demonstration of the Algorithm

The given graph:

Stages of Contraction:

2 2 2
2

2 2

2 2

3 2 3 2

4 4
5

9

The corresponding output:

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Quality Analysis: How good is the solution?

Result 3: Lower bounding |E |
If a graph G = (V ,E) has a minimum cut F of size k , and it has n
vertices, then |E | ≥ kn

2 .

Proof

If any node v has degree less than k, then the
cut({v},V − {v}) will have size less than k .

This contradicts the fact that (A,B) is a global min-cut.

Thus, every node in G has degree at least k . So, |E | ≥ 1
2kn.

So, the probability that an edge in F is contracted is at most
k

(kn)/2 = 2
n

But, we don’t know the min cut.

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Quality Analysis: How good is the solution?

Result 3: Lower bounding |E |
If a graph G = (V ,E) has a minimum cut F of size k , and it has n
vertices, then |E | ≥ kn

2 .

Proof

If any node v has degree less than k, then the
cut({v},V − {v}) will have size less than k .

This contradicts the fact that (A,B) is a global min-cut.

Thus, every node in G has degree at least k . So, |E | ≥ 1
2kn.

So, the probability that an edge in F is contracted is at most
k

(kn)/2 = 2
n

But, we don’t know the min cut.

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Quality Analysis: How good is the solution?

Result 3: Lower bounding |E |
If a graph G = (V ,E) has a minimum cut F of size k , and it has n
vertices, then |E | ≥ kn

2 .

Proof

If any node v has degree less than k, then the
cut({v},V − {v}) will have size less than k .

This contradicts the fact that (A,B) is a global min-cut.

Thus, every node in G has degree at least k . So, |E | ≥ 1
2kn.

So, the probability that an edge in F is contracted is at most
k

(kn)/2 = 2
n

But, we don’t know the min cut.

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Quality Analysis: How good is the solution?

Result 3: Lower bounding |E |
If a graph G = (V ,E) has a minimum cut F of size k , and it has n
vertices, then |E | ≥ kn

2 .

Proof

If any node v has degree less than k, then the
cut({v},V − {v}) will have size less than k .

This contradicts the fact that (A,B) is a global min-cut.

Thus, every node in G has degree at least k . So, |E | ≥ 1
2kn.

So, the probability that an edge in F is contracted is at most
k

(kn)/2 = 2
n

But, we don’t know the min cut.

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Quality Analysis: How good is the solution?

Result 3: Lower bounding |E |
If a graph G = (V ,E) has a minimum cut F of size k , and it has n
vertices, then |E | ≥ kn

2 .

Proof

If any node v has degree less than k, then the
cut({v},V − {v}) will have size less than k .

This contradicts the fact that (A,B) is a global min-cut.

Thus, every node in G has degree at least k . So, |E | ≥ 1
2kn.

So, the probability that an edge in F is contracted is at most
k

(kn)/2 = 2
n

But, we don’t know the min cut.

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Quality Analysis: How good is the solution?

Result 3: Lower bounding |E |
If a graph G = (V ,E) has a minimum cut F of size k , and it has n
vertices, then |E | ≥ kn

2 .

Proof

If any node v has degree less than k, then the
cut({v},V − {v}) will have size less than k .

This contradicts the fact that (A,B) is a global min-cut.

Thus, every node in G has degree at least k . So, |E | ≥ 1
2kn.

So, the probability that an edge in F is contracted is at most
k

(kn)/2 = 2
n

But, we don’t know the min cut.

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Summing up: Result 4

If we pick a random edge e from the graph G , then the probability
of e belonging in the mincut is at most 2

n .

Continuing Contraction

After i iterations, there are n − i supernodes in the current
graph G ′ and suppose no edge in the cut F has been
contracted.

Every cut of G ′ is a cut of G . So, there are at least k edges
incident on every supernode of G ′.

Thus, G ′ has at least 1
2k(n − i) edges.

So, the probability that an edge in F is contracted in iteration
i + 1 is at most k

1
2
k(n−i)

= 2
n−i .

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Summing up: Result 4

If we pick a random edge e from the graph G , then the probability
of e belonging in the mincut is at most 2

n .

Continuing Contraction

After i iterations, there are n − i supernodes in the current
graph G ′ and suppose no edge in the cut F has been
contracted.

Every cut of G ′ is a cut of G . So, there are at least k edges
incident on every supernode of G ′.

Thus, G ′ has at least 1
2k(n − i) edges.

So, the probability that an edge in F is contracted in iteration
i + 1 is at most k

1
2
k(n−i)

= 2
n−i .

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Summing up: Result 4

If we pick a random edge e from the graph G , then the probability
of e belonging in the mincut is at most 2

n .

Continuing Contraction

After i iterations, there are n − i supernodes in the current
graph G ′ and suppose no edge in the cut F has been
contracted.

Every cut of G ′ is a cut of G . So, there are at least k edges
incident on every supernode of G ′.

Thus, G ′ has at least 1
2k(n − i) edges.

So, the probability that an edge in F is contracted in iteration
i + 1 is at most k

1
2
k(n−i)

= 2
n−i .

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Summing up: Result 4

If we pick a random edge e from the graph G , then the probability
of e belonging in the mincut is at most 2

n .

Continuing Contraction

After i iterations, there are n − i supernodes in the current
graph G ′ and suppose no edge in the cut F has been
contracted.

Every cut of G ′ is a cut of G . So, there are at least k edges
incident on every supernode of G ′.

Thus, G ′ has at least 1
2k(n − i) edges.

So, the probability that an edge in F is contracted in iteration
i + 1 is at most k

1
2
k(n−i)

= 2
n−i .

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Summing up: Result 4

If we pick a random edge e from the graph G , then the probability
of e belonging in the mincut is at most 2

n .

Continuing Contraction

After i iterations, there are n − i supernodes in the current
graph G ′ and suppose no edge in the cut F has been
contracted.

Every cut of G ′ is a cut of G . So, there are at least k edges
incident on every supernode of G ′.

Thus, G ′ has at least 1
2k(n − i) edges.

So, the probability that an edge in F is contracted in iteration
i + 1 is at most k

1
2
k(n−i)

= 2
n−i .

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Summing up: Result 4

If we pick a random edge e from the graph G , then the probability
of e belonging in the mincut is at most 2

n .

Continuing Contraction

After i iterations, there are n − i supernodes in the current
graph G ′ and suppose no edge in the cut F has been
contracted.

Every cut of G ′ is a cut of G . So, there are at least k edges
incident on every supernode of G ′.

Thus, G ′ has at least 1
2k(n − i) edges.

So, the probability that an edge in F is contracted in iteration
i + 1 is at most k

1
2
k(n−i)

= 2
n−i .

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Correctness

Theorem

The procedure MINCUT outputs the mincut with probability
≥ 2

n(n−1) .

Proof:
The correct cut(A,B) will be returned by MINCUT if no edge of
F is contracted in any of the iterations 1, 2, . . . , n − 2.
Let ηi ⇒ the event that an edge of F is not contracted in the ith
iteration.
We have already shown that

Pr [η1] ≥ 1− 2
n .

Pr [ηi+1 | η1 ∩ η2 ∩ · · · ∩ ηi] ≥ 1− 2
n−i

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Lower Bounding the Intersection of Events

We want to lower bound Pr [η1 ∩ · · · ∩ ηn−2].
We use the earlier result

Pr [∩n
i=1ηi] = Pr [η1]·Pr [η2 | η1]·Pr [η3 | η1∩η2] · · ·Pr [ηn | η1∩. . .∩ηn−1].

So, we have Pr [η1] · Pr [η1 | η2] · · ·Pr [ηn−2 | η1 ∩ η2 · · · ∩ ηn−3]

≥
(
1− 2

n

) (
1− 2

n−1

)
· · ·
(

1− 2
n−i

)
· · ·
(
1− 2

3

)
=
(n
2

)−1

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Bounding the Error Probability

We know that a single run of the contraction algorithm fails
to find a global min-cut with probability at most 1− 1

(n
2)
≈ 1.

We can amplify our success probability by repeatedly running
the algorithm with independent random choices and taking
the best cut.

If we run the algorithm
(n
2

)
times, then the probability that we

fail to find a global min-cut in any run is at most(
1− 1(n

2

))(n
2)

≤ 1

e
.

Result

By spending O(n4) time, we can reduce the failure probability
from 1− 2

n2 to a reasonably small constant value 1
e .

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Bounding the Error Probability

We know that a single run of the contraction algorithm fails
to find a global min-cut with probability at most 1− 1

(n
2)
≈ 1.

We can amplify our success probability by repeatedly running
the algorithm with independent random choices and taking
the best cut.

If we run the algorithm
(n
2

)
times, then the probability that we

fail to find a global min-cut in any run is at most(
1− 1(n

2

))(n
2)

≤ 1

e
.

Result

By spending O(n4) time, we can reduce the failure probability
from 1− 2

n2 to a reasonably small constant value 1
e .

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Bounding the Error Probability

We know that a single run of the contraction algorithm fails
to find a global min-cut with probability at most 1− 1

(n
2)
≈ 1.

We can amplify our success probability by repeatedly running
the algorithm with independent random choices and taking
the best cut.

If we run the algorithm
(n
2

)
times, then the probability that we

fail to find a global min-cut in any run is at most(
1− 1(n

2

))(n
2)

≤ 1

e
.

Result

By spending O(n4) time, we can reduce the failure probability
from 1− 2

n2 to a reasonably small constant value 1
e .

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Bounding the Error Probability

We know that a single run of the contraction algorithm fails
to find a global min-cut with probability at most 1− 1

(n
2)
≈ 1.

We can amplify our success probability by repeatedly running
the algorithm with independent random choices and taking
the best cut.

If we run the algorithm
(n
2

)
times, then the probability that we

fail to find a global min-cut in any run is at most(
1− 1(n

2

))(n
2)

≤ 1

e
.

Result

By spending O(n4) time, we can reduce the failure probability
from 1− 2

n2 to a reasonably small constant value 1
e .

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Probability helps in counting

The number of global minimum cuts

Given an undirected graph G = (V ,E) with |V | = n, what is the
maximum number of global minimum cuts?

What is your hunch? – exponential in n or polynomial in n?

Consider Cn, a cycle on n nodes. How many global minimum
cuts are possible?

Cut out any two edges to have
(n
2

)
such cuts.

Is this the bound?

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Probability helps in counting

The number of global minimum cuts

Given an undirected graph G = (V ,E) with |V | = n, what is the
maximum number of global minimum cuts?

What is your hunch? – exponential in n or polynomial in n?

Consider Cn, a cycle on n nodes. How many global minimum
cuts are possible?

Cut out any two edges to have
(n
2

)
such cuts.

Is this the bound?

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Probability helps in counting

The number of global minimum cuts

Given an undirected graph G = (V ,E) with |V | = n, what is the
maximum number of global minimum cuts?

What is your hunch? – exponential in n or polynomial in n?

Consider Cn, a cycle on n nodes. How many global minimum
cuts are possible?

Cut out any two edges to have
(n
2

)
such cuts.

Is this the bound?

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Probability helps in counting

The number of global minimum cuts

Given an undirected graph G = (V ,E) with |V | = n, what is the
maximum number of global minimum cuts?

What is your hunch? – exponential in n or polynomial in n?

Consider Cn, a cycle on n nodes. How many global minimum
cuts are possible?

Cut out any two edges to have
(n
2

)
such cuts.

Is this the bound?

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Probability helps in counting

The number of global minimum cuts

Given an undirected graph G = (V ,E) with |V | = n, what is the
maximum number of global minimum cuts?

What is your hunch? – exponential in n or polynomial in n?

Consider Cn, a cycle on n nodes. How many global minimum
cuts are possible?

Cut out any two edges to have
(n
2

)
such cuts.

Is this the bound?

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

The proof

Let there be r such cuts, C1, . . . ,Cr

Let Ei be the event that Ci is returned by the earlier algorithm.

E = ∪r
i=1Ei is the event that the algorithm returns any global

minimum cut.

The earlier algorithm basically shows that Pr[Ei] ≥ 1

(n
2)

.

Each pair of events Ei and Ej are disjoint since only one cut is
returned by any run of the algorithm.

By the union bound for disjoint events, we have
Pr[E] = Pr[∪r

i=1Ei] =
∑r

i=1 Pr[Ei] ≥ r

(n
2)

.

Surely, Pr[E] ≤ 1. So, r ≤
(n
2

)
.

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

The proof

Let there be r such cuts, C1, . . . ,Cr

Let Ei be the event that Ci is returned by the earlier algorithm.

E = ∪r
i=1Ei is the event that the algorithm returns any global

minimum cut.

The earlier algorithm basically shows that Pr[Ei] ≥ 1

(n
2)

.

Each pair of events Ei and Ej are disjoint since only one cut is
returned by any run of the algorithm.

By the union bound for disjoint events, we have
Pr[E] = Pr[∪r

i=1Ei] =
∑r

i=1 Pr[Ei] ≥ r

(n
2)

.

Surely, Pr[E] ≤ 1. So, r ≤
(n
2

)
.

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

The proof

Let there be r such cuts, C1, . . . ,Cr

Let Ei be the event that Ci is returned by the earlier algorithm.

E = ∪r
i=1Ei is the event that the algorithm returns any global

minimum cut.

The earlier algorithm basically shows that Pr[Ei] ≥ 1

(n
2)

.

Each pair of events Ei and Ej are disjoint since only one cut is
returned by any run of the algorithm.

By the union bound for disjoint events, we have
Pr[E] = Pr[∪r

i=1Ei] =
∑r

i=1 Pr[Ei] ≥ r

(n
2)

.

Surely, Pr[E] ≤ 1. So, r ≤
(n
2

)
.

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

The proof

Let there be r such cuts, C1, . . . ,Cr

Let Ei be the event that Ci is returned by the earlier algorithm.

E = ∪r
i=1Ei is the event that the algorithm returns any global

minimum cut.

The earlier algorithm basically shows that Pr[Ei] ≥ 1

(n
2)

.

Each pair of events Ei and Ej are disjoint since only one cut is
returned by any run of the algorithm.

By the union bound for disjoint events, we have
Pr[E] = Pr[∪r

i=1Ei] =
∑r

i=1 Pr[Ei] ≥ r

(n
2)

.

Surely, Pr[E] ≤ 1. So, r ≤
(n
2

)
.

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

The proof

Let there be r such cuts, C1, . . . ,Cr

Let Ei be the event that Ci is returned by the earlier algorithm.

E = ∪r
i=1Ei is the event that the algorithm returns any global

minimum cut.

The earlier algorithm basically shows that Pr[Ei] ≥ 1

(n
2)

.

Each pair of events Ei and Ej are disjoint since only one cut is
returned by any run of the algorithm.

By the union bound for disjoint events, we have
Pr[E] = Pr[∪r

i=1Ei] =
∑r

i=1 Pr[Ei] ≥ r

(n
2)

.

Surely, Pr[E] ≤ 1. So, r ≤
(n
2

)
.

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

The proof

Let there be r such cuts, C1, . . . ,Cr

Let Ei be the event that Ci is returned by the earlier algorithm.

E = ∪r
i=1Ei is the event that the algorithm returns any global

minimum cut.

The earlier algorithm basically shows that Pr[Ei] ≥ 1

(n
2)

.

Each pair of events Ei and Ej are disjoint since only one cut is
returned by any run of the algorithm.

By the union bound for disjoint events, we have
Pr[E] = Pr[∪r

i=1Ei] =
∑r

i=1 Pr[Ei] ≥ r

(n
2)

.

Surely, Pr[E] ≤ 1. So, r ≤
(n
2

)
.

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

The proof

Let there be r such cuts, C1, . . . ,Cr

Let Ei be the event that Ci is returned by the earlier algorithm.

E = ∪r
i=1Ei is the event that the algorithm returns any global

minimum cut.

The earlier algorithm basically shows that Pr[Ei] ≥ 1

(n
2)

.

Each pair of events Ei and Ej are disjoint since only one cut is
returned by any run of the algorithm.

By the union bound for disjoint events, we have
Pr[E] = Pr[∪r

i=1Ei] =
∑r

i=1 Pr[Ei] ≥ r

(n
2)

.

Surely, Pr[E] ≤ 1. So, r ≤
(n
2

)
.

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Conclusions

Employing randomness leads to improved simplicity and
improved efficiency in solving the problem.

It assumes the availability of a perfect source of independent
and unbiased random bits.

Access to truly unbiased and independent sequence of random
bits is expensive.
So, it should be considered as an expensive resource like time
and space.

There are ways to reduce the randomness from several
algorithms while maintaining the efficiency nearly the same.

Introduction Some basic ideas from Probability Coupon Collection Quick Sort Min Cut

Books

Jon Kleinberg and Éva Tardos, Algorithm Design, Pearson
Education.

Rajeev Motwani and Prabhakar Raghavan, Randomized
Algorithms, Cambridge University Press, Cambridge, UK, 2004.

Michael Mitzenmacher and Eli Upfal, Probability and
Computing: Randomized Algorithms and Probabilistic
Analysis, Cambridge University Press, New York, USA, 2005..

	Introduction
	Some basic ideas from Probability
	Coupon Collection
	Quick Sort
	Min Cut

