
INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

Introduction to Geometric Data Structures

Partha P. Goswami
(ppg.rpe@caluniv.ac.in)

Institute of Radio Physics and Electronics
University of Calcutta

92, APC Road, Kolkata - 700009, West Bengal, India.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

OUTLINE

INTRODUCTION

RANGE SEARCHING

SEGMENT SEARCHING

CONCLUSION

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

INTRODUCTION

I In computer science, a data structure is a particular way of
storing and organizing data in a computer so that it can be
used efficiently. Usually efficient data structures are a key
to designing efficient algorithms.

I Different kinds of data structure are suited to different
kinds of application, and some are highly specialized to
specific tasks.

I Computational geometry often require preprocessing
geometric objects into a simple and space-efficient
structure so that the operations on the geometric objects
can be performed repeatedly in an efficient manner.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

INTRODUCTION

I In computer science, a data structure is a particular way of
storing and organizing data in a computer so that it can be
used efficiently. Usually efficient data structures are a key
to designing efficient algorithms.

I Different kinds of data structure are suited to different
kinds of application, and some are highly specialized to
specific tasks.

I Computational geometry often require preprocessing
geometric objects into a simple and space-efficient
structure so that the operations on the geometric objects
can be performed repeatedly in an efficient manner.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

INTRODUCTION

I In computer science, a data structure is a particular way of
storing and organizing data in a computer so that it can be
used efficiently. Usually efficient data structures are a key
to designing efficient algorithms.

I Different kinds of data structure are suited to different
kinds of application, and some are highly specialized to
specific tasks.

I Computational geometry often require preprocessing
geometric objects into a simple and space-efficient
structure so that the operations on the geometric objects
can be performed repeatedly in an efficient manner.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

INTRODUCTION

I Classic data structures like lists, trees, and graphs are by
themselves not sufficient to represent geometric objects as
either they are generally one dimensional in nature or do
not capture the rich structural properties of the geometric
objects in the domain.

I Therefore, researchers designed a number of different data
structures to solve various geometric problems.

I In this lecture we introduce a few simple and basic
geometric data structures.

I In our discussion, we consider several problems which we
want to solve in repetitive query mode. This means, data
set is given a priori and we are allowed to preprocess the
data-set. Queries come repetitively and we want to answer
them efficiently. Various data structures will be introduced
whose use lead efficient solution of the problems
considered.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

INTRODUCTION

I Classic data structures like lists, trees, and graphs are by
themselves not sufficient to represent geometric objects as
either they are generally one dimensional in nature or do
not capture the rich structural properties of the geometric
objects in the domain.

I Therefore, researchers designed a number of different data
structures to solve various geometric problems.

I In this lecture we introduce a few simple and basic
geometric data structures.

I In our discussion, we consider several problems which we
want to solve in repetitive query mode. This means, data
set is given a priori and we are allowed to preprocess the
data-set. Queries come repetitively and we want to answer
them efficiently. Various data structures will be introduced
whose use lead efficient solution of the problems
considered.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

INTRODUCTION

I Classic data structures like lists, trees, and graphs are by
themselves not sufficient to represent geometric objects as
either they are generally one dimensional in nature or do
not capture the rich structural properties of the geometric
objects in the domain.

I Therefore, researchers designed a number of different data
structures to solve various geometric problems.

I In this lecture we introduce a few simple and basic
geometric data structures.

I In our discussion, we consider several problems which we
want to solve in repetitive query mode. This means, data
set is given a priori and we are allowed to preprocess the
data-set. Queries come repetitively and we want to answer
them efficiently. Various data structures will be introduced
whose use lead efficient solution of the problems
considered.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

INTRODUCTION

I Classic data structures like lists, trees, and graphs are by
themselves not sufficient to represent geometric objects as
either they are generally one dimensional in nature or do
not capture the rich structural properties of the geometric
objects in the domain.

I Therefore, researchers designed a number of different data
structures to solve various geometric problems.

I In this lecture we introduce a few simple and basic
geometric data structures.

I In our discussion, we consider several problems which we
want to solve in repetitive query mode. This means, data
set is given a priori and we are allowed to preprocess the
data-set. Queries come repetitively and we want to answer
them efficiently. Various data structures will be introduced
whose use lead efficient solution of the problems
considered.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

OUTLINE

INTRODUCTION

RANGE SEARCHING

SEGMENT SEARCHING

CONCLUSION

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

1-DIMENSIONAL RANGE SEARCHING

Problem
Given a set P of n points p1, p2, . . . , pn on the real line, report points
of P that lie in the range [a, b], a ≤ b.

a b

I Using array for storing P, we can use binary search on the
array to answer such a query in O(log n + k) time where k
is the number of points of P reported.

I Problems with this solution are that it can’t be generalized
to higher dimensions and it does not allow for efficient
updates.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

1-DIMENSIONAL RANGE SEARCHING

Problem
Given a set P of n points p1, p2, . . . , pn on the real line, report points
of P that lie in the range [a, b], a ≤ b.

a b

I Using array for storing P, we can use binary search on the
array to answer such a query in O(log n + k) time where k
is the number of points of P reported.

I Problems with this solution are that it can’t be generalized
to higher dimensions and it does not allow for efficient
updates.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

1-DIMENSIONAL RANGE SEARCHING

Problem
Given a set P of n points p1, p2, . . . , pn on the real line, report points
of P that lie in the range [a, b], a ≤ b.

a b

I Using array for storing P, we can use binary search on the
array to answer such a query in O(log n + k) time where k
is the number of points of P reported.

I Problems with this solution are that it can’t be generalized
to higher dimensions and it does not allow for efficient
updates.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

1-DIMENSIONAL RANGE SEARCHING

I A better solution would be to use a balanced binary search
tree T in the following way:

I The leaves store the points of P and the internal nodes store
splitting values.

I Let v be an internal node of T and xv be the splitting value
stored at V.

I We assume that the left subtree of a node v contains all the
points smaller than or equal to xv.

I Here is an example.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

1-DIMENSIONAL RANGE SEARCHING

I A better solution would be to use a balanced binary search
tree T in the following way:

I The leaves store the points of P and the internal nodes store
splitting values.

I Let v be an internal node of T and xv be the splitting value
stored at V.

I We assume that the left subtree of a node v contains all the
points smaller than or equal to xv.

I Here is an example.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

1-DIMENSIONAL RANGE SEARCHING

I A better solution would be to use a balanced binary search
tree T in the following way:

I The leaves store the points of P and the internal nodes store
splitting values.

I Let v be an internal node of T and xv be the splitting value
stored at V.

I We assume that the left subtree of a node v contains all the
points smaller than or equal to xv.

I Here is an example.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

1-DIMENSIONAL RANGE SEARCHING

I A better solution would be to use a balanced binary search
tree T in the following way:

I The leaves store the points of P and the internal nodes store
splitting values.

I Let v be an internal node of T and xv be the splitting value
stored at V.

I We assume that the left subtree of a node v contains all the
points smaller than or equal to xv.

I Here is an example.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

1-DIMENSIONAL RANGE SEARCHING

I A better solution would be to use a balanced binary search
tree T in the following way:

I The leaves store the points of P and the internal nodes store
splitting values.

I Let v be an internal node of T and xv be the splitting value
stored at V.

I We assume that the left subtree of a node v contains all the
points smaller than or equal to xv.

I Here is an example.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

1-DIMENSIONAL RANGE SEARCHING

3 10 19 23 30 37 49 59 6270 80 89 100 105

49

23 80

10 37

3 19 30 49

62 100

59 70 89 105

I Such a balanced binary search tree T on n points can be
constructed in n log n time and it uses n storage.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

1-DIMENSIONAL RANGE SEARCHING

3 10 19 23 30 37 49 59 6270 80 89 100 105

49

23 80

10 37

3 19 30 49

62 100

59 70 89 105

I Such a balanced binary search tree T on n points can be
constructed in n log n time and it uses n storage.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

1-DIMENSIONAL RANGE SEARCHING
I Let the query range be [a, b]. To report all points in the

query range, we proceed as follows.

I We start search with a and b at the root of T and find out
the node, say vsplit, where the paths to a and b split. This
particular node is called the split node.

I Starting from vsplit we first follow the
search path of a. At each node where
the path goes left, we report all the
leaves in the right subtree because this
is in between the two search paths.

I Similarly, we follow the path of b and
we report the leaves in the left subtree
of nodes where the path goes right.

I Finally we check the points stored at
the leaves where paths end; we may or
may not need to report them.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

1-DIMENSIONAL RANGE SEARCHING
I Let the query range be [a, b]. To report all points in the

query range, we proceed as follows.
I We start search with a and b at the root of T and find out

the node, say vsplit, where the paths to a and b split. This
particular node is called the split node.

I Starting from vsplit we first follow the
search path of a. At each node where
the path goes left, we report all the
leaves in the right subtree because this
is in between the two search paths.

I Similarly, we follow the path of b and
we report the leaves in the left subtree
of nodes where the path goes right.

I Finally we check the points stored at
the leaves where paths end; we may or
may not need to report them.

vsplit

root(T)

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

1-DIMENSIONAL RANGE SEARCHING
I Let the query range be [a, b]. To report all points in the

query range, we proceed as follows.
I We start search with a and b at the root of T and find out

the node, say vsplit, where the paths to a and b split. This
particular node is called the split node.

I Starting from vsplit we first follow the
search path of a. At each node where
the path goes left, we report all the
leaves in the right subtree because this
is in between the two search paths.

I Similarly, we follow the path of b and
we report the leaves in the left subtree
of nodes where the path goes right.

I Finally we check the points stored at
the leaves where paths end; we may or
may not need to report them.

vsplit

root(T)

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

1-DIMENSIONAL RANGE SEARCHING
I Let the query range be [a, b]. To report all points in the

query range, we proceed as follows.
I We start search with a and b at the root of T and find out

the node, say vsplit, where the paths to a and b split. This
particular node is called the split node.

I Starting from vsplit we first follow the
search path of a. At each node where
the path goes left, we report all the
leaves in the right subtree because this
is in between the two search paths.

I Similarly, we follow the path of b and
we report the leaves in the left subtree
of nodes where the path goes right.

I Finally we check the points stored at
the leaves where paths end; we may or
may not need to report them.

vsplit

root(T)

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

1-DIMENSIONAL RANGE SEARCHING
I Let the query range be [a, b]. To report all points in the

query range, we proceed as follows.
I We start search with a and b at the root of T and find out

the node, say vsplit, where the paths to a and b split. This
particular node is called the split node.

I Starting from vsplit we first follow the
search path of a. At each node where
the path goes left, we report all the
leaves in the right subtree because this
is in between the two search paths.

I Similarly, we follow the path of b and
we report the leaves in the left subtree
of nodes where the path goes right.

I Finally we check the points stored at
the leaves where paths end; we may or
may not need to report them.

vsplit

root(T)

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

1-DIMENSIONAL RANGE SEARCHING

3 10 19 23 30 37 49 59 6270 80 89 100 105

3

100

89 105

49

23

10

19

37

30 49

80

62

59 70

18 77
Searching with the query range [18, 77].

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

1-DIMENSIONAL RANGE SEARCHING

3 10 19 23 30 37 49 59 6270 80 89 100 105

3

100

89 105

49

23

10

19

37

30 49

80

62

59 70

18 77
Searching with the query range [18, 77].

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

1-DIMENSIONAL RANGE SEARCHING

3 10 19 23 30 37 49 59 6270 80 89 100 105

3

100

89 105

49

23

10

19

37

30 49

80

62

59 70

18 77
Searching with the query range [18, 77].

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

1-DIMENSIONAL RANGE SEARCHING

3 10 19 23 30 37 49 59 6270 80 89 100 105

3

100

89 105

49

23

10

19

37

30 49

80

62

59 70

18 77
Searching with the query range [18, 77].

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

1-DIMENSIONAL RANGE SEARCHING

3 10 19 23 30 37 49 59 6270 80 89 100 105

3

100

89 105

49

23

10

19

37

30 49

80

62

59 70

18 77
Searching with the query range [18, 77].

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

1-DIMENSIONAL RANGE SEARCHING

I To analyze the query time, we note that in the worst case
all the points could be in the query range, implying a
query time to be Θ(n).

I But it seems bad! Because, to achieve this query time, we
do not need any data structure! Simply check each point
against the query range.

I But this query time can not be avoided if we really have to
report all the points.

I Actually, it can be seen that our algorithm is
output-sensitive, meaning that its running time is sensitive
to the size of the output.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

1-DIMENSIONAL RANGE SEARCHING

I To analyze the query time, we note that in the worst case
all the points could be in the query range, implying a
query time to be Θ(n).

I But it seems bad! Because, to achieve this query time, we
do not need any data structure! Simply check each point
against the query range.

I But this query time can not be avoided if we really have to
report all the points.

I Actually, it can be seen that our algorithm is
output-sensitive, meaning that its running time is sensitive
to the size of the output.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

1-DIMENSIONAL RANGE SEARCHING

I To analyze the query time, we note that in the worst case
all the points could be in the query range, implying a
query time to be Θ(n).

I But it seems bad! Because, to achieve this query time, we
do not need any data structure! Simply check each point
against the query range.

I But this query time can not be avoided if we really have to
report all the points.

I Actually, it can be seen that our algorithm is
output-sensitive, meaning that its running time is sensitive
to the size of the output.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

1-DIMENSIONAL RANGE SEARCHING

I To analyze the query time, we note that in the worst case
all the points could be in the query range, implying a
query time to be Θ(n).

I But it seems bad! Because, to achieve this query time, we
do not need any data structure! Simply check each point
against the query range.

I But this query time can not be avoided if we really have to
report all the points.

I Actually, it can be seen that our algorithm is
output-sensitive, meaning that its running time is sensitive
to the size of the output.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

1-DIMENSIONAL RANGE SEARCHING

I We note that in the reporting phase the algorithm takes, for
each subtree, linear time in the number of points reported.
So total time spent in the reporting phase is O(k), if k
points are reported.

I Since the tree we have used is balanced binary, length of
maximum search is O(log n), Total query time is
O(log n + k).

I To summarize, we have the result:

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

1-DIMENSIONAL RANGE SEARCHING

I We note that in the reporting phase the algorithm takes, for
each subtree, linear time in the number of points reported.
So total time spent in the reporting phase is O(k), if k
points are reported.

I Since the tree we have used is balanced binary, length of
maximum search is O(log n), Total query time is
O(log n + k).

I To summarize, we have the result:

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

1-DIMENSIONAL RANGE SEARCHING

I We note that in the reporting phase the algorithm takes, for
each subtree, linear time in the number of points reported.
So total time spent in the reporting phase is O(k), if k
points are reported.

I Since the tree we have used is balanced binary, length of
maximum search is O(log n), Total query time is
O(log n + k).

I To summarize, we have the result:

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

RESULT

Theorem
Let P be a set of n points in 1-dimensional space. The set P can be
stored in a balanced binary search tree, which uses O(n) storage and
has O(n log n) construction time, such that the points in a query
range can be reported in time O(k + log n), where k is the number of
points reported.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

2-DIMENSIONAL RANGE SEARCHING

I We now move on to 2-dimensional rectangular range
searching problem. The problem is defined as follows.

Problem
Given a set P of n points in the plane, report
points inside a query rectangle
Q := [x : x′]× [y : y′] whose sides are parallel to
the axes.

I For the example shown in the Figure,
the answer is 14, 12, and 17.

I We assume that no two points in P have
the same x-coordinate and no two
points have the same y-coordinate.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

2-DIMENSIONAL RANGE SEARCHING

I We now move on to 2-dimensional rectangular range
searching problem. The problem is defined as follows.

Problem
Given a set P of n points in the plane, report
points inside a query rectangle
Q := [x : x′]× [y : y′] whose sides are parallel to
the axes.

I For the example shown in the Figure,
the answer is 14, 12, and 17.

I We assume that no two points in P have
the same x-coordinate and no two
points have the same y-coordinate.

1

2
3

4

5
6

7

8

9

10

11

16

17
12

13

14

15

Q

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

2-DIMENSIONAL RANGE SEARCHING

I We now move on to 2-dimensional rectangular range
searching problem. The problem is defined as follows.

Problem
Given a set P of n points in the plane, report
points inside a query rectangle
Q := [x : x′]× [y : y′] whose sides are parallel to
the axes.

I For the example shown in the Figure,
the answer is 14, 12, and 17.

I We assume that no two points in P have
the same x-coordinate and no two
points have the same y-coordinate.

1

2
3

4

5
6

7

8

9

10

11

16

17
12

13

14

15

Q

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

2-DIMENSIONAL RANGE SEARCHING

I We now move on to 2-dimensional rectangular range
searching problem. The problem is defined as follows.

Problem
Given a set P of n points in the plane, report
points inside a query rectangle
Q := [x : x′]× [y : y′] whose sides are parallel to
the axes.

I For the example shown in the Figure,
the answer is 14, 12, and 17.

I We assume that no two points in P have
the same x-coordinate and no two
points have the same y-coordinate.

1

2
3

4

5
6

7

8

9

10

11

16

17
12

13

14

15

Q

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

2-DIMENSIONAL RANGE SEARCHING
I We observe that

I A point p := (px, py) lies inside a query rectangle
Q := [x : x′]× [y : y′] if and only if

px ∈ [x : x′] and py ∈ [y : y′]

I A 2-dimensional rectangular range query is composed of
two 1-dimensional sub-queries, one on the x-coordinate of
the points and one on the y-coordinate.

I Direct application of the method
suggested by the second observation
may lead to a cost which exceed the
actual output size of the 2-d range
query.

I We, however, can try splitting both x-
and y-coordinates alternatively. This
leads to a data structure called Kd-tree.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

2-DIMENSIONAL RANGE SEARCHING
I We observe that

I A point p := (px, py) lies inside a query rectangle
Q := [x : x′]× [y : y′] if and only if

px ∈ [x : x′] and py ∈ [y : y′]

I A 2-dimensional rectangular range query is composed of
two 1-dimensional sub-queries, one on the x-coordinate of
the points and one on the y-coordinate.

I Direct application of the method
suggested by the second observation
may lead to a cost which exceed the
actual output size of the 2-d range
query.

I We, however, can try splitting both x-
and y-coordinates alternatively. This
leads to a data structure called Kd-tree.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

2-DIMENSIONAL RANGE SEARCHING
I We observe that

I A point p := (px, py) lies inside a query rectangle
Q := [x : x′]× [y : y′] if and only if

px ∈ [x : x′] and py ∈ [y : y′]

I A 2-dimensional rectangular range query is composed of
two 1-dimensional sub-queries, one on the x-coordinate of
the points and one on the y-coordinate.

I Direct application of the method
suggested by the second observation
may lead to a cost which exceed the
actual output size of the 2-d range
query.

I We, however, can try splitting both x-
and y-coordinates alternatively. This
leads to a data structure called Kd-tree.

1

2
3

4

5
6

7

8

9

10

11

16

17
12

13

14

15

Q

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

2-DIMENSIONAL RANGE SEARCHING
I We observe that

I A point p := (px, py) lies inside a query rectangle
Q := [x : x′]× [y : y′] if and only if

px ∈ [x : x′] and py ∈ [y : y′]

I A 2-dimensional rectangular range query is composed of
two 1-dimensional sub-queries, one on the x-coordinate of
the points and one on the y-coordinate.

I Direct application of the method
suggested by the second observation
may lead to a cost which exceed the
actual output size of the 2-d range
query.

I We, however, can try splitting both x-
and y-coordinates alternatively. This
leads to a data structure called Kd-tree.

1

2
3

4

5
6

7

8

9

10

11

16

17
12

13

14

15

Q

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

2-DIMENSIONAL RANGE SEARCHING
I We observe that

I A point p := (px, py) lies inside a query rectangle
Q := [x : x′]× [y : y′] if and only if

px ∈ [x : x′] and py ∈ [y : y′]

I A 2-dimensional rectangular range query is composed of
two 1-dimensional sub-queries, one on the x-coordinate of
the points and one on the y-coordinate.

I Direct application of the method
suggested by the second observation
may lead to a cost which exceed the
actual output size of the 2-d range
query.

I We, however, can try splitting both x-
and y-coordinates alternatively. This
leads to a data structure called Kd-tree.

1

2
3

4

5
6

7

8

9

10

11

16

17
12

13

14

15

Q

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

KD-TREE
I Kd-tree is defined as follows

I At the root we split the set P with a vertical line l into two
subsets of roughly equal size and the splitting line is stored
at the root.

I Pleft, the subset of points to the left or on l, is stored in the
left subtree. Pright, the subset to the right of l, is stored in the
right subtree.

I At the left child of the root we split Pleft into two subsets
with a horizontal line; the points below or on it are stored
in the left subtree of the left child, and the points above it
are stored in the right subtree. The left child itself stores the
splitting line.

I Similarly the set Pright is split with a horizontal line into two
subsets, which are stored in the left and right subtree of the
right child.

I At the grand children of the root, we split again by a
vertical line.

I We split vertically at even depths and split horizontally at
odd depths.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

KD-TREE
I Kd-tree is defined as follows

I At the root we split the set P with a vertical line l into two
subsets of roughly equal size and the splitting line is stored
at the root.

I Pleft, the subset of points to the left or on l, is stored in the
left subtree. Pright, the subset to the right of l, is stored in the
right subtree.

I At the left child of the root we split Pleft into two subsets
with a horizontal line; the points below or on it are stored
in the left subtree of the left child, and the points above it
are stored in the right subtree. The left child itself stores the
splitting line.

I Similarly the set Pright is split with a horizontal line into two
subsets, which are stored in the left and right subtree of the
right child.

I At the grand children of the root, we split again by a
vertical line.

I We split vertically at even depths and split horizontally at
odd depths.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

KD-TREE
I Kd-tree is defined as follows

I At the root we split the set P with a vertical line l into two
subsets of roughly equal size and the splitting line is stored
at the root.

I Pleft, the subset of points to the left or on l, is stored in the
left subtree. Pright, the subset to the right of l, is stored in the
right subtree.

I At the left child of the root we split Pleft into two subsets
with a horizontal line; the points below or on it are stored
in the left subtree of the left child, and the points above it
are stored in the right subtree. The left child itself stores the
splitting line.

I Similarly the set Pright is split with a horizontal line into two
subsets, which are stored in the left and right subtree of the
right child.

I At the grand children of the root, we split again by a
vertical line.

I We split vertically at even depths and split horizontally at
odd depths.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

KD-TREE
I Kd-tree is defined as follows

I At the root we split the set P with a vertical line l into two
subsets of roughly equal size and the splitting line is stored
at the root.

I Pleft, the subset of points to the left or on l, is stored in the
left subtree. Pright, the subset to the right of l, is stored in the
right subtree.

I At the left child of the root we split Pleft into two subsets
with a horizontal line; the points below or on it are stored
in the left subtree of the left child, and the points above it
are stored in the right subtree. The left child itself stores the
splitting line.

I Similarly the set Pright is split with a horizontal line into two
subsets, which are stored in the left and right subtree of the
right child.

I At the grand children of the root, we split again by a
vertical line.

I We split vertically at even depths and split horizontally at
odd depths.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

KD-TREE
I Kd-tree is defined as follows

I At the root we split the set P with a vertical line l into two
subsets of roughly equal size and the splitting line is stored
at the root.

I Pleft, the subset of points to the left or on l, is stored in the
left subtree. Pright, the subset to the right of l, is stored in the
right subtree.

I At the left child of the root we split Pleft into two subsets
with a horizontal line; the points below or on it are stored
in the left subtree of the left child, and the points above it
are stored in the right subtree. The left child itself stores the
splitting line.

I Similarly the set Pright is split with a horizontal line into two
subsets, which are stored in the left and right subtree of the
right child.

I At the grand children of the root, we split again by a
vertical line.

I We split vertically at even depths and split horizontally at
odd depths.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

KD-TREE
I Kd-tree is defined as follows

I At the root we split the set P with a vertical line l into two
subsets of roughly equal size and the splitting line is stored
at the root.

I Pleft, the subset of points to the left or on l, is stored in the
left subtree. Pright, the subset to the right of l, is stored in the
right subtree.

I At the left child of the root we split Pleft into two subsets
with a horizontal line; the points below or on it are stored
in the left subtree of the left child, and the points above it
are stored in the right subtree. The left child itself stores the
splitting line.

I Similarly the set Pright is split with a horizontal line into two
subsets, which are stored in the left and right subtree of the
right child.

I At the grand children of the root, we split again by a
vertical line.

I We split vertically at even depths and split horizontally at
odd depths.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

KD-TREE
I Kd-tree is defined as follows

I At the root we split the set P with a vertical line l into two
subsets of roughly equal size and the splitting line is stored
at the root.

I Pleft, the subset of points to the left or on l, is stored in the
left subtree. Pright, the subset to the right of l, is stored in the
right subtree.

I At the left child of the root we split Pleft into two subsets
with a horizontal line; the points below or on it are stored
in the left subtree of the left child, and the points above it
are stored in the right subtree. The left child itself stores the
splitting line.

I Similarly the set Pright is split with a horizontal line into two
subsets, which are stored in the left and right subtree of the
right child.

I At the grand children of the root, we split again by a
vertical line.

I We split vertically at even depths and split horizontally at
odd depths.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

EXAMPLE

p1

p2

p3

p4 p5

p6

p7

p8

p9

p10

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

EXAMPLE

p1

p2

p3

p4 p5

p6

p7

p8

p9

p10

l1 l1

{l1 − left} {l1 − right}

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

EXAMPLE

p1

p2

p3

p4 p5

p6

p7

p8

p9

p10

l1 l1

l2

l3

l2 l3

{l2 − below} {l2 − above}{l3 − below} {l3 − above}

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

EXAMPLE

p1

p2

p3

p4 p5

p6

p7

p8

p9

p10

l1 l1

l2

l3

l2 l3

l4 l5

l5

l4

{l3 − below} {l3 − above}

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

EXAMPLE

p1

p2

p3

p4 p5

p6

p7

p8

p9

p10

l1 l1

l2

l3

l2 l3

l4 l5

l5

l4

l6 l7

l6

l7

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

EXAMPLE

p1

p2

p3

p4 p5

p6

p7

p8

p9

p10

l1 l1

l2

l3

l2 l3

l4 l5

l5

l4

l6 l7

p3
l8

l6

l7

l8

p1 p2

p4

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

EXAMPLE

p1

p2

p3

p4 p5

p6

p7

p8

p9

p10

l1 l1

l2

l3

l2 l3

l4 l5

l5

l4

l6 l7

p3
l8

l6

l7

l8

p1 p2

p4

p4
p5

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

EXAMPLE

p1

p2

p3

p4 p5

p6

p7

p8

p9

p10

l1 l1

l2

l3

l2 l3

l4 l5

l5

l4

l6 l7

p3
l8

l6

l7

l8

p1 p2

p4

p4
p5

l9

l9

p6 p7

p8

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

EXAMPLE

p1

p2

p3

p4 p5

p6

p7

p8

p9

p10

l1 l1

l2

l3

l2 l3

l4 l5

l5

l4

l6 l7

p3
l8

l6

l7

l8

p1 p2

p4

p4
p5

l9

l9

p6 p7

p8 p9 p10

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

CONSTRUCTION
Algorithm BuildKdTree(P, depth)
If P contains only one point
then return a leaf storing this point.

else if depth is even
l := vertical line through median

x-coordinates of the points in P
P1 := set of points to the left of or on l
P2 := set of points to the right of l

else
l := horizontal line through median

y-coordinates of the points in P
P1 := set of points below or on l
P2 := set of points above l

v-left = BuildKdTree(P1, depth+1)
v-right = BuildKdTree(P2, depth+1)
return a node v with value l, left child

v-left, and right child v-right

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

COMPLEXITY

I In the pseudocode, median of a set of n numbers is
assumed to be the bn/2c-th smallest number.

I Assuming that point set P is given as two lists one sorted
with respect to x-coordinates of the points in P and the
other sorted with respect to y-coordinates of the points,
construction time T(n) of the kd-tree satisfies the
recurrence relation

T(n) =

{
O(1) if n = 1
2T(dn/2e) + O(n) if n > 1

I Hence, a kd-tree for a set of n points uses O(n) storage and
can be constructed in O(n log n) time.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

COMPLEXITY

I In the pseudocode, median of a set of n numbers is
assumed to be the bn/2c-th smallest number.

I Assuming that point set P is given as two lists one sorted
with respect to x-coordinates of the points in P and the
other sorted with respect to y-coordinates of the points,
construction time T(n) of the kd-tree satisfies the
recurrence relation

T(n) =

{
O(1) if n = 1
2T(dn/2e) + O(n) if n > 1

I Hence, a kd-tree for a set of n points uses O(n) storage and
can be constructed in O(n log n) time.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

COMPLEXITY

I In the pseudocode, median of a set of n numbers is
assumed to be the bn/2c-th smallest number.

I Assuming that point set P is given as two lists one sorted
with respect to x-coordinates of the points in P and the
other sorted with respect to y-coordinates of the points,
construction time T(n) of the kd-tree satisfies the
recurrence relation

T(n) =

{
O(1) if n = 1
2T(dn/2e) + O(n) if n > 1

I Hence, a kd-tree for a set of n points uses O(n) storage and
can be constructed in O(n log n) time.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

QUERY

I We now move to the query algorithm.

I First observe that, in a kd-tree, each node corresponds to a
region of the plane.

I In general, region corresponding to a node v, which we
denote by region(v), is a rectangle which can be
unbounded on one or more sides.

I It is bounded by the splitting lines stored at its ancestors.
I Following figure makes this clear:

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

QUERY

I We now move to the query algorithm.
I First observe that, in a kd-tree, each node corresponds to a

region of the plane.

I In general, region corresponding to a node v, which we
denote by region(v), is a rectangle which can be
unbounded on one or more sides.

I It is bounded by the splitting lines stored at its ancestors.
I Following figure makes this clear:

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

QUERY

I We now move to the query algorithm.
I First observe that, in a kd-tree, each node corresponds to a

region of the plane.
I In general, region corresponding to a node v, which we

denote by region(v), is a rectangle which can be
unbounded on one or more sides.

I It is bounded by the splitting lines stored at its ancestors.
I Following figure makes this clear:

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

QUERY

I We now move to the query algorithm.
I First observe that, in a kd-tree, each node corresponds to a

region of the plane.
I In general, region corresponding to a node v, which we

denote by region(v), is a rectangle which can be
unbounded on one or more sides.

I It is bounded by the splitting lines stored at its ancestors.

I Following figure makes this clear:

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

QUERY
I We now move to the query algorithm.
I First observe that, in a kd-tree, each node corresponds to a

region of the plane.
I In general, region corresponding to a node v, which we

denote by region(v), is a rectangle which can be
unbounded on one or more sides.

I It is bounded by the splitting lines stored at its ancestors.
I Following figure makes this clear:

l1

l2

l3

l1

l2

l3

v

region(v)

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

QUERY

I Given the notion of region, we can now describe the query
algorithm:

I Given a query rectangle Q , we traverse the kd-tree but visit
only those nodes v for which region(v) ∩Q 6= φ.

I When region(v) ⊂ Q we report all the points stored in the
subtree of v.

I When the traversal reaches a leaf pi, we explicitly check
whether pi ∈ Q and, if so, report pi.

I An example follows.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

QUERY

I Given the notion of region, we can now describe the query
algorithm:

I Given a query rectangle Q , we traverse the kd-tree but visit
only those nodes v for which region(v) ∩Q 6= φ.

I When region(v) ⊂ Q we report all the points stored in the
subtree of v.

I When the traversal reaches a leaf pi, we explicitly check
whether pi ∈ Q and, if so, report pi.

I An example follows.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

QUERY

I Given the notion of region, we can now describe the query
algorithm:

I Given a query rectangle Q , we traverse the kd-tree but visit
only those nodes v for which region(v) ∩Q 6= φ.

I When region(v) ⊂ Q we report all the points stored in the
subtree of v.

I When the traversal reaches a leaf pi, we explicitly check
whether pi ∈ Q and, if so, report pi.

I An example follows.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

QUERY

I Given the notion of region, we can now describe the query
algorithm:

I Given a query rectangle Q , we traverse the kd-tree but visit
only those nodes v for which region(v) ∩Q 6= φ.

I When region(v) ⊂ Q we report all the points stored in the
subtree of v.

I When the traversal reaches a leaf pi, we explicitly check
whether pi ∈ Q and, if so, report pi.

I An example follows.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

QUERY

I Given the notion of region, we can now describe the query
algorithm:

I Given a query rectangle Q , we traverse the kd-tree but visit
only those nodes v for which region(v) ∩Q 6= φ.

I When region(v) ⊂ Q we report all the points stored in the
subtree of v.

I When the traversal reaches a leaf pi, we explicitly check
whether pi ∈ Q and, if so, report pi.

I An example follows.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

EXAMPLE

p1

p2

p3

p4 p5

p6

p7

p8

p9

p10

l1 l1

l2

l3

l2 l3

l4 l5

l5

l4

l6 l7

p3
l8

l6

l7

l8

p1 p2

p4

p4
p5

l9

l9

p6 p7

p8 p9 p10

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

EXAMPLE

p1

p2

p3

p4 p5

p6

p7

p8

p9

p10

l1 l1

l2

l3

l2 l3

l4 l5

l5

l4

l6 l7

p3
l8

l6

l7

l8

p1 p2

p4

p4
p5

l9

l9

p6 p7

p8 p9 p10

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

EXAMPLE

p1

p2

p3

p4 p5

p6

p7

p8

p9

p10

l1 l1

l2

l3

l2 l3

l4 l5

l5

l4

l6 l7

p3
l8

l6

l7

l8

p1 p2

p4

p4
p5

l9

l9

p6 p7

p8 p9 p10

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

EXAMPLE

p1

p2

p3

p4 p5

p6

p7

p8

p9

p10

l1 l1

l2

l3

l2 l3

l4 l5

l5

l4

l6 l7

p3
l8

l6

l7

l8

p1 p2

p4

p4
p5

l9

l9

p6 p7

p8 p9 p10

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

EXAMPLE

p1

p2

p3

p4 p5

p6

p7

p8

p9

p10

l1 l1

l2

l3

l2 l3

l4 l5

l5

l4

l6 l7

p3
l8

l6

l7

l8

p1 p2

p4

p4
p5

l9

l9

p6 p7

p8 p9 p10

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

PSEUDOCODE

Algorithm SearchKdTree(v, Q)
If v is a leaf
then report the point stored at v if it

lies in Q
else if region(lc(v)) is fully contained in Q
then ReportSubtree(lc(v))

else if region(lc(v)) intersects Q
then SearchKdTree(lc(v), Q)
If region(rc(v)) is fully contained in Q
then ReportSubtree(rc(v))

else if region(rc(v)) intersects Q
then SearchKdTree(rc(v), Q)

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

QUERY
I Remaining question is, for a node v how to compute and

maintain region(v) so that intersection with Q can be
tested?

Two possibilities are there:

I Compute region(v) for all nodes v
during the preprocessing phase and
store it.

I Maintain the current region through the
recursive calls using the lines stored in
the internal nodes.
For instance, the region corresponding
to the left child of a node v at even
depth can be computed as
region(lc(v)) = region(v) ∩ l(v)left

where l(v) is the splitting line stored at
v, and l(v)left is the half-plane to the left
of and including l(v).

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

QUERY
I Remaining question is, for a node v how to compute and

maintain region(v) so that intersection with Q can be
tested? Two possibilities are there:

I Compute region(v) for all nodes v
during the preprocessing phase and
store it.

I Maintain the current region through the
recursive calls using the lines stored in
the internal nodes.
For instance, the region corresponding
to the left child of a node v at even
depth can be computed as
region(lc(v)) = region(v) ∩ l(v)left

where l(v) is the splitting line stored at
v, and l(v)left is the half-plane to the left
of and including l(v).

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

QUERY
I Remaining question is, for a node v how to compute and

maintain region(v) so that intersection with Q can be
tested? Two possibilities are there:

I Compute region(v) for all nodes v
during the preprocessing phase and
store it.

I Maintain the current region through the
recursive calls using the lines stored in
the internal nodes.

For instance, the region corresponding
to the left child of a node v at even
depth can be computed as
region(lc(v)) = region(v) ∩ l(v)left

where l(v) is the splitting line stored at
v, and l(v)left is the half-plane to the left
of and including l(v).

l(v)

l(v)left

region(v)

region(v) ∩ l(v)left

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

QUERY
I Remaining question is, for a node v how to compute and

maintain region(v) so that intersection with Q can be
tested? Two possibilities are there:

I Compute region(v) for all nodes v
during the preprocessing phase and
store it.

I Maintain the current region through the
recursive calls using the lines stored in
the internal nodes.
For instance, the region corresponding
to the left child of a node v at even
depth can be computed as
region(lc(v)) = region(v) ∩ l(v)left

where l(v) is the splitting line stored at
v, and l(v)left is the half-plane to the left
of and including l(v).

l(v)

l(v)left

region(v)

region(v) ∩ l(v)left

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

COMPLEXITY

I The nodes visited by the algorithm during the search can
be classified into two groups.

I One group consists of those nodes for which the algorithm
traverses corresponding subtrees and report points stored
there.

I Total time required for processing these nodes is O(k),
where k is the total number of reported points.

I For the other group of nodes, the algorithm takes constant
time for processing each node.

I An upper bound for the number of such nodes is given by
the recurrence relation

T′(n) =

{
O(1) if n = 1
2T′(n/4) + 2 if n > 1

I Solution of this recurrence is O(
√

n).

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

COMPLEXITY

I The nodes visited by the algorithm during the search can
be classified into two groups.

I One group consists of those nodes for which the algorithm
traverses corresponding subtrees and report points stored
there.

I Total time required for processing these nodes is O(k),
where k is the total number of reported points.

I For the other group of nodes, the algorithm takes constant
time for processing each node.

I An upper bound for the number of such nodes is given by
the recurrence relation

T′(n) =

{
O(1) if n = 1
2T′(n/4) + 2 if n > 1

I Solution of this recurrence is O(
√

n).

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

COMPLEXITY

I The nodes visited by the algorithm during the search can
be classified into two groups.

I One group consists of those nodes for which the algorithm
traverses corresponding subtrees and report points stored
there.

I Total time required for processing these nodes is O(k),
where k is the total number of reported points.

I For the other group of nodes, the algorithm takes constant
time for processing each node.

I An upper bound for the number of such nodes is given by
the recurrence relation

T′(n) =

{
O(1) if n = 1
2T′(n/4) + 2 if n > 1

I Solution of this recurrence is O(
√

n).

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

COMPLEXITY

I The nodes visited by the algorithm during the search can
be classified into two groups.

I One group consists of those nodes for which the algorithm
traverses corresponding subtrees and report points stored
there.

I Total time required for processing these nodes is O(k),
where k is the total number of reported points.

I For the other group of nodes, the algorithm takes constant
time for processing each node.

I An upper bound for the number of such nodes is given by
the recurrence relation

T′(n) =

{
O(1) if n = 1
2T′(n/4) + 2 if n > 1

I Solution of this recurrence is O(
√

n).

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

COMPLEXITY

I The nodes visited by the algorithm during the search can
be classified into two groups.

I One group consists of those nodes for which the algorithm
traverses corresponding subtrees and report points stored
there.

I Total time required for processing these nodes is O(k),
where k is the total number of reported points.

I For the other group of nodes, the algorithm takes constant
time for processing each node.

I An upper bound for the number of such nodes is given by
the recurrence relation

T′(n) =

{
O(1) if n = 1
2T′(n/4) + 2 if n > 1

I Solution of this recurrence is O(
√

n).

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

COMPLEXITY

I The nodes visited by the algorithm during the search can
be classified into two groups.

I One group consists of those nodes for which the algorithm
traverses corresponding subtrees and report points stored
there.

I Total time required for processing these nodes is O(k),
where k is the total number of reported points.

I For the other group of nodes, the algorithm takes constant
time for processing each node.

I An upper bound for the number of such nodes is given by
the recurrence relation

T′(n) =

{
O(1) if n = 1
2T′(n/4) + 2 if n > 1

I Solution of this recurrence is O(
√

n).

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

RESULT

Theorem
A kd-tree for a set P of n points in the plane uses O(n) space and can
be built in O(n log n) time. A rectangular range query on the kd-tree
takes O(

√
n + k) time, where k is the number of reported points.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

RANGE TREE

I To further improve the query time of the 2-dimensional
rectangular range searching problem we introduce another
data structure called range tree.

I We have observed earlier that a 2-dimensional range query
is essentially composed of two 1-dimensional sub-queries,
one on the x-coordinate of points and one on the
y-coordinate.

I One idea from this observation leads to Kd-tree. We now
use the same observation in a different way to obtain range
tree.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

RANGE TREE

I To further improve the query time of the 2-dimensional
rectangular range searching problem we introduce another
data structure called range tree.

I We have observed earlier that a 2-dimensional range query
is essentially composed of two 1-dimensional sub-queries,
one on the x-coordinate of points and one on the
y-coordinate.

I One idea from this observation leads to Kd-tree. We now
use the same observation in a different way to obtain range
tree.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

RANGE TREE

I To further improve the query time of the 2-dimensional
rectangular range searching problem we introduce another
data structure called range tree.

I We have observed earlier that a 2-dimensional range query
is essentially composed of two 1-dimensional sub-queries,
one on the x-coordinate of points and one on the
y-coordinate.

I One idea from this observation leads to Kd-tree. We now
use the same observation in a different way to obtain range
tree.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

RANGE TREE

I Let P be a set of n points in the plane that we want to
preprocess for rectangular range query. Let
Q := [x : x′]× [y : y′] be the query range.

I If we only care about the x-coordinate
then the query is a 1-dimensional range
query.

I Recall that our algorithm for this is to
first locate the split node and then
traverse along two search paths
towards the leaves. While traversing
the search paths, our algorithm also
reported fully all the subtrees lying
between the search paths.

I For any query range, O(log n) mutually
disjoint subtrees are selected.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

RANGE TREE

I Let P be a set of n points in the plane that we want to
preprocess for rectangular range query. Let
Q := [x : x′]× [y : y′] be the query range.

I If we only care about the x-coordinate
then the query is a 1-dimensional range
query.

I Recall that our algorithm for this is to
first locate the split node and then
traverse along two search paths
towards the leaves. While traversing
the search paths, our algorithm also
reported fully all the subtrees lying
between the search paths.

I For any query range, O(log n) mutually
disjoint subtrees are selected.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

RANGE TREE

I Let P be a set of n points in the plane that we want to
preprocess for rectangular range query. Let
Q := [x : x′]× [y : y′] be the query range.

I If we only care about the x-coordinate
then the query is a 1-dimensional range
query.

I Recall that our algorithm for this is to
first locate the split node and then
traverse along two search paths
towards the leaves. While traversing
the search paths, our algorithm also
reported fully all the subtrees lying
between the search paths.

I For any query range, O(log n) mutually
disjoint subtrees are selected.

vsplit

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

RANGE TREE

I Let P be a set of n points in the plane that we want to
preprocess for rectangular range query. Let
Q := [x : x′]× [y : y′] be the query range.

I If we only care about the x-coordinate
then the query is a 1-dimensional range
query.

I Recall that our algorithm for this is to
first locate the split node and then
traverse along two search paths
towards the leaves. While traversing
the search paths, our algorithm also
reported fully all the subtrees lying
between the search paths.

I For any query range, O(log n) mutually
disjoint subtrees are selected.

vsplit

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

RANGE TREE

I Let us call the subset of points stored in the leaves of the
subtree rooted at a node v the canonical subset of v,
denoted by P(v).

I Hence, the subset of points whose x-coordinate lies in a
query range can be expressed as the disjoint union of
O(log n) canonical subsets. Of these points, those having
y-coordinate in the interval [y : y′] are to be reported.

I This implies that, after performing 1-dimensional query on
x-coordinate, we have to perform O(log n) 1-dimensional
query on y-coordinate each on an appropriate P(v).

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

RANGE TREE

I Let us call the subset of points stored in the leaves of the
subtree rooted at a node v the canonical subset of v,
denoted by P(v).

I Hence, the subset of points whose x-coordinate lies in a
query range can be expressed as the disjoint union of
O(log n) canonical subsets. Of these points, those having
y-coordinate in the interval [y : y′] are to be reported.

I This implies that, after performing 1-dimensional query on
x-coordinate, we have to perform O(log n) 1-dimensional
query on y-coordinate each on an appropriate P(v).

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

RANGE TREE

I Let us call the subset of points stored in the leaves of the
subtree rooted at a node v the canonical subset of v,
denoted by P(v).

I Hence, the subset of points whose x-coordinate lies in a
query range can be expressed as the disjoint union of
O(log n) canonical subsets. Of these points, those having
y-coordinate in the interval [y : y′] are to be reported.

I This implies that, after performing 1-dimensional query on
x-coordinate, we have to perform O(log n) 1-dimensional
query on y-coordinate each on an appropriate P(v).

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

RANGE TREE

I We are thus lead to the following data structure for
rectangular range queries on a set P of n points in the
plane.

I The main tree is a balanced binary tree
T built on the x-coordinate of the points
in P.

I For any internal or leaf node v in T , the
canonical subset P(v) is stored in a
balanced binary search tree Tassoc(v) on
the y-coordinate of the points. The node
v stores a pointer to the root of Tassoc(v),
which is called the associated structure
of v.
I This multi-level data structure is called range tree.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

RANGE TREE

I We are thus lead to the following data structure for
rectangular range queries on a set P of n points in the
plane.

I The main tree is a balanced binary tree
T built on the x-coordinate of the points
in P.

I For any internal or leaf node v in T , the
canonical subset P(v) is stored in a
balanced binary search tree Tassoc(v) on
the y-coordinate of the points. The node
v stores a pointer to the root of Tassoc(v),
which is called the associated structure
of v.
I This multi-level data structure is called range tree.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

RANGE TREE

I We are thus lead to the following data structure for
rectangular range queries on a set P of n points in the
plane.

I The main tree is a balanced binary tree
T built on the x-coordinate of the points
in P.

I For any internal or leaf node v in T , the
canonical subset P(v) is stored in a
balanced binary search tree Tassoc(v) on
the y-coordinate of the points. The node
v stores a pointer to the root of Tassoc(v),
which is called the associated structure
of v.

T

v P (v)

P (v)

Tassoc(v)

I This multi-level data structure is called range tree.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

RANGE TREE

I We are thus lead to the following data structure for
rectangular range queries on a set P of n points in the
plane.

I The main tree is a balanced binary tree
T built on the x-coordinate of the points
in P.

I For any internal or leaf node v in T , the
canonical subset P(v) is stored in a
balanced binary search tree Tassoc(v) on
the y-coordinate of the points. The node
v stores a pointer to the root of Tassoc(v),
which is called the associated structure
of v.

T

v P (v)

P (v)

Tassoc(v)

I This multi-level data structure is called range tree.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

CONSTRUCTION

Algorithm Build2dRangeTree(P)
Build the associated BBST Tassoc on the set Py

of y-coordinates of the points in P. Leaves
of Tassoc stores both the points and their
y-coordinates.

If P contain only one point
then create a leaf v storing this point and

make Tassoc the associate structure of v
else
Split P into two subsets Pleft containing

points with x-coordinates less than or
equal to median x-coordinate and Pright
containing points with x-coordinates
greater than median x-coordinate

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

CONSTRUCTION

vleft := Build2dRangeTree(Pleft)
vright := Build2dRangeTree(Pright)
Create node v containing the median

x-coordinate, vleft as left child, vright
as right child, and Tassoc as associated
structure

return v

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

COMPLEXITY

I A range tree on a set of n points in the plane requires
O(n log n) storage and can be constructed in O(n log n)
time.

I Storage complexity follows because (i) the main tree
requires O(n) storage, (ii) a point p in P is stored only in
the associated structure of nodes on the path in T towards
the leaf containing p and (iii) a path contains at most
O(log n) nodes.

I Regarding time complexity, we assume that the points are
maintained in two lists, one sorted on x-coordinate of the
points and the other on y-coordinate. Then from similar
arguments as used in storage complexity the time
complexity follows.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

COMPLEXITY

I A range tree on a set of n points in the plane requires
O(n log n) storage and can be constructed in O(n log n)
time.

I Storage complexity follows because (i) the main tree
requires O(n) storage, (ii) a point p in P is stored only in
the associated structure of nodes on the path in T towards
the leaf containing p and (iii) a path contains at most
O(log n) nodes.

I Regarding time complexity, we assume that the points are
maintained in two lists, one sorted on x-coordinate of the
points and the other on y-coordinate. Then from similar
arguments as used in storage complexity the time
complexity follows.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

COMPLEXITY

I A range tree on a set of n points in the plane requires
O(n log n) storage and can be constructed in O(n log n)
time.

I Storage complexity follows because (i) the main tree
requires O(n) storage, (ii) a point p in P is stored only in
the associated structure of nodes on the path in T towards
the leaf containing p and (iii) a path contains at most
O(log n) nodes.

I Regarding time complexity, we assume that the points are
maintained in two lists, one sorted on x-coordinate of the
points and the other on y-coordinate. Then from similar
arguments as used in storage complexity the time
complexity follows.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

QUERY

I The query algorithm first selects, by the application of our
1-dimensional query algorithm, O(log n) canonical subsets
that together contain points whose x-coordinate lie in the
range [x : x′].

I Of these subsets, we then report the points whose
y-coordinate lie in the range [y : y′]. This can be done by
applying the same 1-dimensional query algorithm on each
of the O(log n) associated structures that stores the selected
canonical subsets.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

QUERY

I The query algorithm first selects, by the application of our
1-dimensional query algorithm, O(log n) canonical subsets
that together contain points whose x-coordinate lie in the
range [x : x′].

I Of these subsets, we then report the points whose
y-coordinate lie in the range [y : y′]. This can be done by
applying the same 1-dimensional query algorithm on each
of the O(log n) associated structures that stores the selected
canonical subsets.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

COMPLEXITY

I At each node v in the main tree T we spend constant time
to decide whether to go left or right and possibly call
1-dimensional query algorithm on the associated structure.
Total time spent for v is thus O(log n + kv), where kv is the
number of points reported.

I Hence the total time spent on a search path is∑
(O(log n + kv), where the summation extends over the

nodes in the search path.
I Since there are O(log n) nodes in a search path and two

such paths are involved in each query, total time is
O(log2 n + k) where k =

∑
kv is the total number of points

reported.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

COMPLEXITY

I At each node v in the main tree T we spend constant time
to decide whether to go left or right and possibly call
1-dimensional query algorithm on the associated structure.
Total time spent for v is thus O(log n + kv), where kv is the
number of points reported.

I Hence the total time spent on a search path is∑
(O(log n + kv), where the summation extends over the

nodes in the search path.

I Since there are O(log n) nodes in a search path and two
such paths are involved in each query, total time is
O(log2 n + k) where k =

∑
kv is the total number of points

reported.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

COMPLEXITY

I At each node v in the main tree T we spend constant time
to decide whether to go left or right and possibly call
1-dimensional query algorithm on the associated structure.
Total time spent for v is thus O(log n + kv), where kv is the
number of points reported.

I Hence the total time spent on a search path is∑
(O(log n + kv), where the summation extends over the

nodes in the search path.
I Since there are O(log n) nodes in a search path and two

such paths are involved in each query, total time is
O(log2 n + k) where k =

∑
kv is the total number of points

reported.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

RESULT

Theorem
Let P be a set of n points in the plane. A range tree for P uses
O(n log n) storage and can be constructed in O(n log n) time. By
querying this range tree one can report the points in P that lie in a
rectangular query range in O(log2 n + k) time where k is the number
of reported points.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

OUTLINE

INTRODUCTION

RANGE SEARCHING

SEGMENT SEARCHING

CONCLUSION

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

SEGMENT SEARCHING PROBLEM

Problem
Given a set S of n horizontal line segments in the plane, preprocess
them such that the segments intersecting a vertical query line l can be
reported efficiently.

l

I Obviously, the problem can be solved in O(n) time and
there exists instances for which we have to report all the
segments.

I However, we are interested in an output-sensitive
algorithm which is efficient in multi-shot query scenario.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

SEGMENT SEARCHING PROBLEM

Problem
Given a set S of n horizontal line segments in the plane, preprocess
them such that the segments intersecting a vertical query line l can be
reported efficiently.

l

I Obviously, the problem can be solved in O(n) time and
there exists instances for which we have to report all the
segments.

I However, we are interested in an output-sensitive
algorithm which is efficient in multi-shot query scenario.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

SEGMENT SEARCHING PROBLEM

Problem
Given a set S of n horizontal line segments in the plane, preprocess
them such that the segments intersecting a vertical query line l can be
reported efficiently.

l

I Obviously, the problem can be solved in O(n) time and
there exists instances for which we have to report all the
segments.

I However, we are interested in an output-sensitive
algorithm which is efficient in multi-shot query scenario.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

INTERVAL SEARCHING PROBLEM

I We first reduce the segment search problem to an
1-dimensional interval searching problem.

I Let l := (x = qx) denote the query line.
I A horizontal segment s := (x, y)(x′, y) is intersected by l if

and only if x ≤ qx ≤ x′. So only x-coordinates of the
segment endpoints play a role here.

I Hence the problem becomes 1-dimensional and can be
stated as follows.

Problem
Given a set of intervals on the real line, report the ones that contain
the query point qx.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

INTERVAL SEARCHING PROBLEM

I We first reduce the segment search problem to an
1-dimensional interval searching problem.

I Let l := (x = qx) denote the query line.

I A horizontal segment s := (x, y)(x′, y) is intersected by l if
and only if x ≤ qx ≤ x′. So only x-coordinates of the
segment endpoints play a role here.

I Hence the problem becomes 1-dimensional and can be
stated as follows.

Problem
Given a set of intervals on the real line, report the ones that contain
the query point qx.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

INTERVAL SEARCHING PROBLEM

I We first reduce the segment search problem to an
1-dimensional interval searching problem.

I Let l := (x = qx) denote the query line.
I A horizontal segment s := (x, y)(x′, y) is intersected by l if

and only if x ≤ qx ≤ x′. So only x-coordinates of the
segment endpoints play a role here.

I Hence the problem becomes 1-dimensional and can be
stated as follows.

Problem
Given a set of intervals on the real line, report the ones that contain
the query point qx.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

INTERVAL SEARCHING PROBLEM

I We first reduce the segment search problem to an
1-dimensional interval searching problem.

I Let l := (x = qx) denote the query line.
I A horizontal segment s := (x, y)(x′, y) is intersected by l if

and only if x ≤ qx ≤ x′. So only x-coordinates of the
segment endpoints play a role here.

I Hence the problem becomes 1-dimensional and can be
stated as follows.

Problem
Given a set of intervals on the real line, report the ones that contain
the query point qx.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

DATA STRUCTURE

I Let I = {[x1 : x′1], [x2 : x′2], . . . , [xn : x′n]} be the set of n closed
intervals on the real line.

I Let xmid be the median of the 2n interval endpoints. So at
most half of the interval endpoints lies to the left of xmid
and at most half of the endpoints lies to the right of xmid.

I If the query value qx lies to the left of xmid then the intervals
that lie completely to the right of xmid obviously do not
contain qx.

I We construct a binary search tree based on this idea.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

DATA STRUCTURE

I Let I = {[x1 : x′1], [x2 : x′2], . . . , [xn : x′n]} be the set of n closed
intervals on the real line.

I Let xmid be the median of the 2n interval endpoints. So at
most half of the interval endpoints lies to the left of xmid
and at most half of the endpoints lies to the right of xmid.

I If the query value qx lies to the left of xmid then the intervals
that lie completely to the right of xmid obviously do not
contain qx.

I We construct a binary search tree based on this idea.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

DATA STRUCTURE

I Let I = {[x1 : x′1], [x2 : x′2], . . . , [xn : x′n]} be the set of n closed
intervals on the real line.

I Let xmid be the median of the 2n interval endpoints. So at
most half of the interval endpoints lies to the left of xmid
and at most half of the endpoints lies to the right of xmid.

I If the query value qx lies to the left of xmid then the intervals
that lie completely to the right of xmid obviously do not
contain qx.

I We construct a binary search tree based on this idea.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

DATA STRUCTURE

I Let I = {[x1 : x′1], [x2 : x′2], . . . , [xn : x′n]} be the set of n closed
intervals on the real line.

I Let xmid be the median of the 2n interval endpoints. So at
most half of the interval endpoints lies to the left of xmid
and at most half of the endpoints lies to the right of xmid.

I If the query value qx lies to the left of xmid then the intervals
that lie completely to the right of xmid obviously do not
contain qx.

I We construct a binary search tree based on this idea.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

DATA STRUCTURE

I The root of the tree contains xmid. The right subtree of the
tree stores the set Iright of the intervals lying completely to
the right of xmid, and the left subtree stores the set Ileft of
intervals completely to the right of xmid.

I The set Imid of intervals containing xmid is stored in a
separate structure and we associate that structure with the
root of our tree.

I The subtrees are constructed recursively in the same way.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

DATA STRUCTURE

I The root of the tree contains xmid. The right subtree of the
tree stores the set Iright of the intervals lying completely to
the right of xmid, and the left subtree stores the set Ileft of
intervals completely to the right of xmid.

I The set Imid of intervals containing xmid is stored in a
separate structure and we associate that structure with the
root of our tree.

Imid

Ileft Iright

I The subtrees are constructed recursively in the same way.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

DATA STRUCTURE

I The root of the tree contains xmid. The right subtree of the
tree stores the set Iright of the intervals lying completely to
the right of xmid, and the left subtree stores the set Ileft of
intervals completely to the right of xmid.

I The set Imid of intervals containing xmid is stored in a
separate structure and we associate that structure with the
root of our tree.

Imid

Ileft Iright

I The subtrees are constructed recursively in the same way.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

DATA STRUCTURE

I We must now fix the associated structure such that it
enables us to report the intervals in Imid that contain a
given qx.

I Observe that if qx is on left of Imid, then right endpoint of all
the intervals are on right of qx. Similarly, if qx is on right of
Imid all left endpoints are on its left.

I We thus maintain two sorted lists of the intervals in Imid,
one sorted on left endpoints and the on right endpoints. A
traversal of the appropriate list enable us to report
intervals containing qx in time proportional to the number
of intervals reported.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

DATA STRUCTURE
I We must now fix the associated structure such that it

enables us to report the intervals in Imid that contain a
given qx.

I Observe that if qx is on left of Imid, then right endpoint of all
the intervals are on right of qx. Similarly, if qx is on right of
Imid all left endpoints are on its left.

xmid

qx

I We thus maintain two sorted lists of the intervals in Imid,
one sorted on left endpoints and the on right endpoints. A
traversal of the appropriate list enable us to report
intervals containing qx in time proportional to the number
of intervals reported.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

DATA STRUCTURE
I We must now fix the associated structure such that it

enables us to report the intervals in Imid that contain a
given qx.

I Observe that if qx is on left of Imid, then right endpoint of all
the intervals are on right of qx. Similarly, if qx is on right of
Imid all left endpoints are on its left.

xmid

qx

I We thus maintain two sorted lists of the intervals in Imid,
one sorted on left endpoints and the on right endpoints. A
traversal of the appropriate list enable us to report
intervals containing qx in time proportional to the number
of intervals reported.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

INTERVAL TREE

I The whole data structure we thus arrived at for storing a
given set I of intervals is called an interval tree.

I Following figure shows an example.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

INTERVAL TREE

I The whole data structure we thus arrived at for storing a
given set I of intervals is called an interval tree.

I Following figure shows an example.

1

2 3

4

5

6
7

Lright := 5, 3, 4Lleft := 3, 4, 5

Lleft := 1, 2 Lleft := 6, 7Lright := 1, 2 Lright := 7, 6

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

CONSTRUCTION

Algorithm ConstructIntervalTree(I)
If I = Null
then return an empty leaf

Create a node v. Compute x-mid, the median
of the set of interval endpoints and
store x-mid with v

Compute I-mid and construct two sorted lists
for I-mid: a list L-left(v) sorted on left
endpoint and a list L-right(v) sorted on
right endpoint

Store these two lists at v
lc(v) := ConstructIntervalTree(I-left)
rc(v) := ConstructIntervalTree(I-right)
return v

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

COMPLEXITY

I Observe that each interval is only stored in a set Imid once
and, hence, only appears once in each of the two sorted
lists. So total amount of storage required for all associated
lists is bounded by O(n). The tree itself uses O(n) storage.
Hence an interval tree on n intervals requires O(n) storage.

I An interval tree on n intervals has O(log n) depth.
I We assume that the set of endpoints are presorted. So

median can be computed in constant time. Imid, Ileft, and
Iright can be computed in O(n) time. Creating the lists
Lleft(v) Lright(v) takes O(|Imid| log |Imid|) time. Hence time
spend for creating the node v (not counting the recursive
calls) is O(n + |Imid| log |Imid|). So total construction time is
O(n log n).

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

COMPLEXITY

I Observe that each interval is only stored in a set Imid once
and, hence, only appears once in each of the two sorted
lists. So total amount of storage required for all associated
lists is bounded by O(n). The tree itself uses O(n) storage.
Hence an interval tree on n intervals requires O(n) storage.

I An interval tree on n intervals has O(log n) depth.

I We assume that the set of endpoints are presorted. So
median can be computed in constant time. Imid, Ileft, and
Iright can be computed in O(n) time. Creating the lists
Lleft(v) Lright(v) takes O(|Imid| log |Imid|) time. Hence time
spend for creating the node v (not counting the recursive
calls) is O(n + |Imid| log |Imid|). So total construction time is
O(n log n).

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

COMPLEXITY

I Observe that each interval is only stored in a set Imid once
and, hence, only appears once in each of the two sorted
lists. So total amount of storage required for all associated
lists is bounded by O(n). The tree itself uses O(n) storage.
Hence an interval tree on n intervals requires O(n) storage.

I An interval tree on n intervals has O(log n) depth.
I We assume that the set of endpoints are presorted. So

median can be computed in constant time. Imid, Ileft, and
Iright can be computed in O(n) time. Creating the lists
Lleft(v) Lright(v) takes O(|Imid| log |Imid|) time. Hence time
spend for creating the node v (not counting the recursive
calls) is O(n + |Imid| log |Imid|). So total construction time is
O(n log n).

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

QUERY PSEUDOCODE

Algorithm QueryIntervalTree(v,qx)
If v is not a leaf
then if qx < x-mid(v)

then Walk along the list L-left(v),
starting at the interval with
the leftmost endpoint, reporting
all the intervals that contain
qx.

QueryIntervalTree(lc(v),qx)
else

Walk along the list L-right(v),
starting at the interval with
the rightmost endpoint, reporting
all the intervals that contain
qx.

QueryIntervalTree(rc(v),qx)

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

QUERY COMPLEXITY

I At any node v we visit, we spend O(1 + kv) time, where kv
is the number of intervals that we report at v.

I The sum of the kv’s over all visited nodes is k, total number
of intervals reported.

I Depth of the tree is O(log n).
I Hence, total query time is O(log n + k).

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

QUERY COMPLEXITY

I At any node v we visit, we spend O(1 + kv) time, where kv
is the number of intervals that we report at v.

I The sum of the kv’s over all visited nodes is k, total number
of intervals reported.

I Depth of the tree is O(log n).
I Hence, total query time is O(log n + k).

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

QUERY COMPLEXITY

I At any node v we visit, we spend O(1 + kv) time, where kv
is the number of intervals that we report at v.

I The sum of the kv’s over all visited nodes is k, total number
of intervals reported.

I Depth of the tree is O(log n).

I Hence, total query time is O(log n + k).

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

QUERY COMPLEXITY

I At any node v we visit, we spend O(1 + kv) time, where kv
is the number of intervals that we report at v.

I The sum of the kv’s over all visited nodes is k, total number
of intervals reported.

I Depth of the tree is O(log n).
I Hence, total query time is O(log n + k).

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

RESULT

Theorem
An interval tree for a set I of n intervals uses O(n) storage and can be
built in O(n log n) time. Using the interval tree we can report all
intervals that contain a query point in O(log n + k) time, where k is
the number of reported intervals.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

SEGMENT SEARCH WITH VERTICAL QUERY SEGMENT

I Let us consider a slightly more difficult segment search
problem.

Problem
Given a set S of n horizontal line segments in the plane, preprocess
them such that the segments intersecting a vertical query segment q
can be reported efficiently.

I We next show that the problem can be solved by using a
data structure which is a modified form of interval tree.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

SEGMENT SEARCH WITH VERTICAL QUERY SEGMENT

I Let us consider a slightly more difficult segment search
problem.

Problem
Given a set S of n horizontal line segments in the plane, preprocess
them such that the segments intersecting a vertical query segment q
can be reported efficiently.

I We next show that the problem can be solved by using a
data structure which is a modified form of interval tree.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

SEGMENT SEARCH WITH VERTICAL QUERY SEGMENT

I Let q be the vertical query segment qx × [qy : q′y].

I For a segment s := [sx : s′x]× sy in S, [sx : s′x] is called
x-interval of the segment.

I Suppose we have stored the segments in S in an interval
tree T according to their x intervals.

I If we use our QueryIntervalTree procedure to query T
with a vertical query segment q, we can traverse the tree
properly but problem arise when trying to report segments
from Imid containing q.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

SEGMENT SEARCH WITH VERTICAL QUERY SEGMENT

I Let q be the vertical query segment qx × [qy : q′y].
I For a segment s := [sx : s′x]× sy in S, [sx : s′x] is called

x-interval of the segment.

I Suppose we have stored the segments in S in an interval
tree T according to their x intervals.

I If we use our QueryIntervalTree procedure to query T
with a vertical query segment q, we can traverse the tree
properly but problem arise when trying to report segments
from Imid containing q.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

SEGMENT SEARCH WITH VERTICAL QUERY SEGMENT

I Let q be the vertical query segment qx × [qy : q′y].
I For a segment s := [sx : s′x]× sy in S, [sx : s′x] is called

x-interval of the segment.
I Suppose we have stored the segments in S in an interval

tree T according to their x intervals.

I If we use our QueryIntervalTree procedure to query T
with a vertical query segment q, we can traverse the tree
properly but problem arise when trying to report segments
from Imid containing q.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

SEGMENT SEARCH WITH VERTICAL QUERY SEGMENT

I Let q be the vertical query segment qx × [qy : q′y].
I For a segment s := [sx : s′x]× sy in S, [sx : s′x] is called

x-interval of the segment.
I Suppose we have stored the segments in S in an interval

tree T according to their x intervals.
I If we use our QueryIntervalTree procedure to query T

with a vertical query segment q, we can traverse the tree
properly but problem arise when trying to report segments
from Imid containing q.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

SEGMENT SEARCH WITH VERTICAL QUERY SEGMENT

I Suppose qx lies to the left of xmid. For a segment s ∈ Imid to
be intersected by q, it is not sufficient that its left endpoint
lies to the left of q, it is also required that its y-coordinate
lies in the range [qy : q′y].

I So storing the endpoints in an ordered list is not enough.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

SEGMENT SEARCH WITH VERTICAL QUERY SEGMENT

I Suppose qx lies to the left of xmid. For a segment s ∈ Imid to
be intersected by q, it is not sufficient that its left endpoint
lies to the left of q, it is also required that its y-coordinate
lies in the range [qy : q′y].

xmid

q

I So storing the endpoints in an ordered list is not enough.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

SEGMENT SEARCH WITH VERTICAL QUERY SEGMENT

I Suppose qx lies to the left of xmid. For a segment s ∈ Imid to
be intersected by q, it is not sufficient that its left endpoint
lies to the left of q, it is also required that its y-coordinate
lies in the range [qy : q′y].

xmid

q

I So storing the endpoints in an ordered list is not enough.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

SEGMENT SEARCH WITH VERTICAL QUERY SEGMENT

I We need an associated structure such that, given a query
range (−∞ : qx]× [qy : q′y], we must be able to report all the
segments whose left endpoints lies in that range.

xmid

q
(−∞ : qx]× [qy : q′y]

I Similarly, if q lies to the right of xmid, we must be able to
report all the segments whose right endpoints lies in the
range [qx : +∞)× [qy : q′y].

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

SEGMENT SEARCH WITH VERTICAL QUERY SEGMENT

I We need an associated structure such that, given a query
range (−∞ : qx]× [qy : q′y], we must be able to report all the
segments whose left endpoints lies in that range.

xmid

q
(−∞ : qx]× [qy : q′y]

I Similarly, if q lies to the right of xmid, we must be able to
report all the segments whose right endpoints lies in the
range [qx : +∞)× [qy : q′y].

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

SEGMENT SEARCH WITH VERTICAL QUERY SEGMENT

I Observe that this is nothing more than a 2-dimensional
rectangular range query on a set of points, and we have
already solved it.

I We can now spell out the modified data structure for
storing the set S of horizontal line segments.

I The main structure is an interval tree T on the x-intervals
of the segments.

I Instead of the sorted lists Lleft(v) and Lright(v), we have two
range trees: a range tree Tleft(v) on the left endpoints of the
segments in Imid(v), and a range tree Tright(v) on the right
endpoints of the segments in Imid(v).

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

SEGMENT SEARCH WITH VERTICAL QUERY SEGMENT

I Observe that this is nothing more than a 2-dimensional
rectangular range query on a set of points, and we have
already solved it.

I We can now spell out the modified data structure for
storing the set S of horizontal line segments.

I The main structure is an interval tree T on the x-intervals
of the segments.

I Instead of the sorted lists Lleft(v) and Lright(v), we have two
range trees: a range tree Tleft(v) on the left endpoints of the
segments in Imid(v), and a range tree Tright(v) on the right
endpoints of the segments in Imid(v).

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

SEGMENT SEARCH WITH VERTICAL QUERY SEGMENT

I Observe that this is nothing more than a 2-dimensional
rectangular range query on a set of points, and we have
already solved it.

I We can now spell out the modified data structure for
storing the set S of horizontal line segments.

I The main structure is an interval tree T on the x-intervals
of the segments.

I Instead of the sorted lists Lleft(v) and Lright(v), we have two
range trees: a range tree Tleft(v) on the left endpoints of the
segments in Imid(v), and a range tree Tright(v) on the right
endpoints of the segments in Imid(v).

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

SEGMENT SEARCH WITH VERTICAL QUERY SEGMENT

I Observe that this is nothing more than a 2-dimensional
rectangular range query on a set of points, and we have
already solved it.

I We can now spell out the modified data structure for
storing the set S of horizontal line segments.

I The main structure is an interval tree T on the x-intervals
of the segments.

I Instead of the sorted lists Lleft(v) and Lright(v), we have two
range trees: a range tree Tleft(v) on the left endpoints of the
segments in Imid(v), and a range tree Tright(v) on the right
endpoints of the segments in Imid(v).

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

SEGMENT SEARCH WITH VERTICAL QUERY SEGMENT

I Since storage requirement for range tree is a factor log n
larger than that of sorted list, storage requirement of the
modified structure is O(n log n).

I The construction time remains O(n log n).
I The query algorithm remains same except that instead of

walking along the sorted list of segment endpoints, we
perform query in the range tree.

I So at each of the O(log n) nodes v on the search path we
spend O(log n + kv) time, where kv is the number of
reported segments.

I The total query time therefore becomes O(log2 n + k).

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

SEGMENT SEARCH WITH VERTICAL QUERY SEGMENT

I Since storage requirement for range tree is a factor log n
larger than that of sorted list, storage requirement of the
modified structure is O(n log n).

I The construction time remains O(n log n).

I The query algorithm remains same except that instead of
walking along the sorted list of segment endpoints, we
perform query in the range tree.

I So at each of the O(log n) nodes v on the search path we
spend O(log n + kv) time, where kv is the number of
reported segments.

I The total query time therefore becomes O(log2 n + k).

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

SEGMENT SEARCH WITH VERTICAL QUERY SEGMENT

I Since storage requirement for range tree is a factor log n
larger than that of sorted list, storage requirement of the
modified structure is O(n log n).

I The construction time remains O(n log n).
I The query algorithm remains same except that instead of

walking along the sorted list of segment endpoints, we
perform query in the range tree.

I So at each of the O(log n) nodes v on the search path we
spend O(log n + kv) time, where kv is the number of
reported segments.

I The total query time therefore becomes O(log2 n + k).

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

SEGMENT SEARCH WITH VERTICAL QUERY SEGMENT

I Since storage requirement for range tree is a factor log n
larger than that of sorted list, storage requirement of the
modified structure is O(n log n).

I The construction time remains O(n log n).
I The query algorithm remains same except that instead of

walking along the sorted list of segment endpoints, we
perform query in the range tree.

I So at each of the O(log n) nodes v on the search path we
spend O(log n + kv) time, where kv is the number of
reported segments.

I The total query time therefore becomes O(log2 n + k).

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

SEGMENT SEARCH WITH VERTICAL QUERY SEGMENT

I Since storage requirement for range tree is a factor log n
larger than that of sorted list, storage requirement of the
modified structure is O(n log n).

I The construction time remains O(n log n).
I The query algorithm remains same except that instead of

walking along the sorted list of segment endpoints, we
perform query in the range tree.

I So at each of the O(log n) nodes v on the search path we
spend O(log n + kv) time, where kv is the number of
reported segments.

I The total query time therefore becomes O(log2 n + k).

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

RESULT

Theorem
Let S be a set of n horizontal segments in the plane. The segments
intersecting a vertical query segment can be reported in
O(log2 n + k) time with a data structure that uses O(n log n)
storage, where k is the number of reported segments. The structure
can be built in O(n log n) time.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

WINDOWING QUERY PROBLEM

I The tools we have thus developed can be used to solve
another important query problem, known as windowing
query problem. A simplified version of the problem is as
follows.

Problem
Let S be a set of n axis-parallel and mutually disjoint line segments in
the plane. Preprocess the segments such that segments intersecting a
query window W := [x : x′]× [y : y′] can be reported efficiently.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

WINDOWING QUERY PROBLEM

I The tools we have thus developed can be used to solve
another important query problem, known as windowing
query problem. A simplified version of the problem is as
follows.

Problem
Let S be a set of n axis-parallel and mutually disjoint line segments in
the plane. Preprocess the segments such that segments intersecting a
query window W := [x : x′]× [y : y′] can be reported efficiently.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

WINDOWING QUERY PROBLEM

I Though the segments can intersect the query window in a
variety of ways, in most of the cases intersecting segments
have at least one endpoint inside the window.

I Remaining intersecting segments cross window boundary
twice.

I First category of intersecting segments can be identified by
using the range query data structure we have developed.

I The segments that intersect window boundary twice can
be identified by the application of our modified interval
tree data structure twice: for determining horizontal
segments that intersect one of the two vertical edges of the
window and for determining vertical segments that
intersect one of the two horizontal edges of the window
(by reversing the role of x- and y-coordinates this can be
dealt with).

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

WINDOWING QUERY PROBLEM

I Though the segments can intersect the query window in a
variety of ways, in most of the cases intersecting segments
have at least one endpoint inside the window.

I Remaining intersecting segments cross window boundary
twice.

I First category of intersecting segments can be identified by
using the range query data structure we have developed.

I The segments that intersect window boundary twice can
be identified by the application of our modified interval
tree data structure twice: for determining horizontal
segments that intersect one of the two vertical edges of the
window and for determining vertical segments that
intersect one of the two horizontal edges of the window
(by reversing the role of x- and y-coordinates this can be
dealt with).

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

WINDOWING QUERY PROBLEM

I Though the segments can intersect the query window in a
variety of ways, in most of the cases intersecting segments
have at least one endpoint inside the window.

I Remaining intersecting segments cross window boundary
twice.

I First category of intersecting segments can be identified by
using the range query data structure we have developed.

I The segments that intersect window boundary twice can
be identified by the application of our modified interval
tree data structure twice: for determining horizontal
segments that intersect one of the two vertical edges of the
window and for determining vertical segments that
intersect one of the two horizontal edges of the window
(by reversing the role of x- and y-coordinates this can be
dealt with).

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

WINDOWING QUERY PROBLEM

I Though the segments can intersect the query window in a
variety of ways, in most of the cases intersecting segments
have at least one endpoint inside the window.

I Remaining intersecting segments cross window boundary
twice.

I First category of intersecting segments can be identified by
using the range query data structure we have developed.

I The segments that intersect window boundary twice can
be identified by the application of our modified interval
tree data structure twice: for determining horizontal
segments that intersect one of the two vertical edges of the
window and for determining vertical segments that
intersect one of the two horizontal edges of the window
(by reversing the role of x- and y-coordinates this can be
dealt with).

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

WINDOWING QUERY PROBLEM

I We now extend the windowing query problem to
accommodate segments of arbitrary orientations.

Problem
Let S be a set of n mutually disjoint line segments with arbitrary
orientations in the plane. Preprocess the segments such that segments
intersecting a query window W := [x : x′]× [y : y′] can be reported
efficiently.

I Though segments which have at least one endpoint inside
the window can be determined as before, interval tree can
no longer be used to find segments which intersect the
window twice.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

WINDOWING QUERY PROBLEM
I We now extend the windowing query problem to

accommodate segments of arbitrary orientations.

Problem
Let S be a set of n mutually disjoint line segments with arbitrary
orientations in the plane. Preprocess the segments such that segments
intersecting a query window W := [x : x′]× [y : y′] can be reported
efficiently.

I Though segments which have at least one endpoint inside
the window can be determined as before, interval tree can
no longer be used to find segments which intersect the
window twice.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

WINDOWING QUERY PROBLEM

I We introduce a data structure called segment tree which
helps solve the problem. Specifically, we develop
procedure to solve the following problem:

Problem
Let S be a set of n mutually disjoint line segments with arbitrary
orientations in the plane. Preprocess the segments such that segments
intersecting a vertical query segment q := qx × [qy : q′y] can be
reported efficiently.

I It can be seen that, for solving the windowing query
problem, it is sufficient to apply the procedure taking each
of the four boundary edges of the window as the query
segment.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

WINDOWING QUERY PROBLEM

I We introduce a data structure called segment tree which
helps solve the problem. Specifically, we develop
procedure to solve the following problem:

Problem
Let S be a set of n mutually disjoint line segments with arbitrary
orientations in the plane. Preprocess the segments such that segments
intersecting a vertical query segment q := qx × [qy : q′y] can be
reported efficiently.

I It can be seen that, for solving the windowing query
problem, it is sufficient to apply the procedure taking each
of the four boundary edges of the window as the query
segment.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

SEGMENT TREE

I Let I := {[x1 : x′1], [x2 : x′2], . . . , [xn : x′n]} be a set of n
intervals on the real line.

I Let p1, p2, . . . , pm be the list of distinct interval endpoints,
sorted from left to right, induced by the intervals in I. The
regions in this partitioning are called elementary intervals.
For the distinct endpoints pi, 1 ≤ i ≤ m, the elementary
intervals from left to right are

(−∞ : p1), [p1 : p1], (p1 : p2), [p2 : p2], . . . , [pm : pm], (pm : +∞]

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

SEGMENT TREE

I Let I := {[x1 : x′1], [x2 : x′2], . . . , [xn : x′n]} be a set of n
intervals on the real line.

I Let p1, p2, . . . , pm be the list of distinct interval endpoints,
sorted from left to right, induced by the intervals in I. The
regions in this partitioning are called elementary intervals.
For the distinct endpoints pi, 1 ≤ i ≤ m, the elementary
intervals from left to right are

(−∞ : p1), [p1 : p1], (p1 : p2), [p2 : p2], . . . , [pm : pm], (pm : +∞]

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

SEGMENT TREE

I Let I := {[x1 : x′1], [x2 : x′2], . . . , [xn : x′n]} be a set of n
intervals on the real line.

I Let p1, p2, . . . , pm be the list of distinct interval endpoints,
sorted from left to right, induced by the intervals in I. The
regions in this partitioning are called elementary intervals.
For the distinct endpoints pi, 1 ≤ i ≤ m, the elementary
intervals from left to right are

(−∞ : p1), [p1 : p1], (p1 : p2), [p2 : p2], . . . , [pm : pm], (pm : +∞]

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

SEGMENT TREE
I Build a binary search tree T whose leaves corresponds to

these elementary intervals. We denote the elementary
interval corresponding to a leaf µ by Int(µ).

I If all the intervals in I containing Int(µ) would be stored at
the leaf µ, then we would report the k intervals containing
qx in O(log n + k) time. So the query could be answered
efficiently.

I However, observe that in this approach
intervals that span a lot of elementary
intervals are stored at many leaves
increasing thereby the storage required.
In the worst case, amount of storage
may become quadratic.

I For this reason, instead of storing at leaf
level, intervals are stored as high as
possible.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

SEGMENT TREE
I Build a binary search tree T whose leaves corresponds to

these elementary intervals. We denote the elementary
interval corresponding to a leaf µ by Int(µ).

I If all the intervals in I containing Int(µ) would be stored at
the leaf µ, then we would report the k intervals containing
qx in O(log n + k) time. So the query could be answered
efficiently.

I However, observe that in this approach
intervals that span a lot of elementary
intervals are stored at many leaves
increasing thereby the storage required.
In the worst case, amount of storage
may become quadratic.

I For this reason, instead of storing at leaf
level, intervals are stored as high as
possible.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

SEGMENT TREE
I Build a binary search tree T whose leaves corresponds to

these elementary intervals. We denote the elementary
interval corresponding to a leaf µ by Int(µ).

I If all the intervals in I containing Int(µ) would be stored at
the leaf µ, then we would report the k intervals containing
qx in O(log n + k) time. So the query could be answered
efficiently.

I However, observe that in this approach
intervals that span a lot of elementary
intervals are stored at many leaves
increasing thereby the storage required.
In the worst case, amount of storage
may become quadratic.

I For this reason, instead of storing at leaf
level, intervals are stored as high as
possible.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

SEGMENT TREE
I Build a binary search tree T whose leaves corresponds to

these elementary intervals. We denote the elementary
interval corresponding to a leaf µ by Int(µ).

I If all the intervals in I containing Int(µ) would be stored at
the leaf µ, then we would report the k intervals containing
qx in O(log n + k) time. So the query could be answered
efficiently.

I However, observe that in this approach
intervals that span a lot of elementary
intervals are stored at many leaves
increasing thereby the storage required.
In the worst case, amount of storage
may become quadratic.

I For this reason, instead of storing at leaf
level, intervals are stored as high as
possible.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

SEGMENT TREE

I Let us now describe segment tree formally.

I The skeleton of the segment tree is a balanced binary tree
T . The leaves of T corresponds to elementary intervals
induced by the endpoints of the intervals in I in an ordered
way: the leftmost leaf corresponds to leftmost elementary
interval, and so on. The elementary interval corresponding
ti leaf µ is denoted by Int(µ).

I Internal nodes of T correspond to intervals that are the
union of the intervals of its two children, i.e., union of
elementary intervals Int(µ) of the leaves in the subtree
rooted by it.

I Each internal node or leaf v in T stores the interval Int(v)
and a set I(v) ⊆ I of intervals (e.g., in a linked list). This
canonical subset of node v contains the intervals [x : x′] ∈ I
such that Int(v) ⊆ [x : x′] and Int(parent(v)) 6⊆ [x : x′].

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

SEGMENT TREE

I Let us now describe segment tree formally.
I The skeleton of the segment tree is a balanced binary tree
T . The leaves of T corresponds to elementary intervals
induced by the endpoints of the intervals in I in an ordered
way: the leftmost leaf corresponds to leftmost elementary
interval, and so on. The elementary interval corresponding
ti leaf µ is denoted by Int(µ).

I Internal nodes of T correspond to intervals that are the
union of the intervals of its two children, i.e., union of
elementary intervals Int(µ) of the leaves in the subtree
rooted by it.

I Each internal node or leaf v in T stores the interval Int(v)
and a set I(v) ⊆ I of intervals (e.g., in a linked list). This
canonical subset of node v contains the intervals [x : x′] ∈ I
such that Int(v) ⊆ [x : x′] and Int(parent(v)) 6⊆ [x : x′].

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

SEGMENT TREE

I Let us now describe segment tree formally.
I The skeleton of the segment tree is a balanced binary tree
T . The leaves of T corresponds to elementary intervals
induced by the endpoints of the intervals in I in an ordered
way: the leftmost leaf corresponds to leftmost elementary
interval, and so on. The elementary interval corresponding
ti leaf µ is denoted by Int(µ).

I Internal nodes of T correspond to intervals that are the
union of the intervals of its two children, i.e., union of
elementary intervals Int(µ) of the leaves in the subtree
rooted by it.

I Each internal node or leaf v in T stores the interval Int(v)
and a set I(v) ⊆ I of intervals (e.g., in a linked list). This
canonical subset of node v contains the intervals [x : x′] ∈ I
such that Int(v) ⊆ [x : x′] and Int(parent(v)) 6⊆ [x : x′].

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

SEGMENT TREE

I Let us now describe segment tree formally.
I The skeleton of the segment tree is a balanced binary tree
T . The leaves of T corresponds to elementary intervals
induced by the endpoints of the intervals in I in an ordered
way: the leftmost leaf corresponds to leftmost elementary
interval, and so on. The elementary interval corresponding
ti leaf µ is denoted by Int(µ).

I Internal nodes of T correspond to intervals that are the
union of the intervals of its two children, i.e., union of
elementary intervals Int(µ) of the leaves in the subtree
rooted by it.

I Each internal node or leaf v in T stores the interval Int(v)
and a set I(v) ⊆ I of intervals (e.g., in a linked list). This
canonical subset of node v contains the intervals [x : x′] ∈ I
such that Int(v) ⊆ [x : x′] and Int(parent(v)) 6⊆ [x : x′].

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

CONSTRUCTION

I To construct a segment tree we proceed as follows.

I First we sort the endpoints of the intervals in I in
O(n log n) time. This gives us the elementary intervals.

I We then construct a balanced binary tree on the
elementary intervals, and we determine for each node v of
the tree the interval Int(v) it represents. This can be done
bottom-up in linear time.

I It remains to compute the canonical subsets for the nodes.
For this, we insert the intervals one by one into the
segment tree. Code for insertion is as follows.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

CONSTRUCTION

I To construct a segment tree we proceed as follows.
I First we sort the endpoints of the intervals in I in

O(n log n) time. This gives us the elementary intervals.

I We then construct a balanced binary tree on the
elementary intervals, and we determine for each node v of
the tree the interval Int(v) it represents. This can be done
bottom-up in linear time.

I It remains to compute the canonical subsets for the nodes.
For this, we insert the intervals one by one into the
segment tree. Code for insertion is as follows.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

CONSTRUCTION

I To construct a segment tree we proceed as follows.
I First we sort the endpoints of the intervals in I in

O(n log n) time. This gives us the elementary intervals.
I We then construct a balanced binary tree on the

elementary intervals, and we determine for each node v of
the tree the interval Int(v) it represents. This can be done
bottom-up in linear time.

I It remains to compute the canonical subsets for the nodes.
For this, we insert the intervals one by one into the
segment tree. Code for insertion is as follows.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

CONSTRUCTION

I To construct a segment tree we proceed as follows.
I First we sort the endpoints of the intervals in I in

O(n log n) time. This gives us the elementary intervals.
I We then construct a balanced binary tree on the

elementary intervals, and we determine for each node v of
the tree the interval Int(v) it represents. This can be done
bottom-up in linear time.

I It remains to compute the canonical subsets for the nodes.
For this, we insert the intervals one by one into the
segment tree. Code for insertion is as follows.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

CONSTRUCTION

Algorithm InsertSegmentTree(v,[x:x’])
If Int(v) is a subset of [x:x’]
then store [x:x’] at v

else if Int(lc(v)) and [x:x’] are not disjoint
then InsertSegmentTree(lc(v),[x:x’])
If Int(rc(v)) and [x:x’] are not disjoint
then InsertSegmentTree(rc(v),[x:x’])

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

CONSTRUCTION
I How much time it takes to insert an interval?

I At every node we visit we spend constant time (assuming
that I(v) is stored in a simple structure like a linked list).

I When we visit a node v, we either store [x : x′] at v, or
Int(v) contains an endpoint of [x : x′].

I It can be shown that: (i) an interval is stored at most twice
at each level, (ii) there is at most one node at every level
whose corresponding interval contains x, and (iii) there is
at most one node at every level whose corresponding
interval contains x′.

I These facts together imply that we visit at most 4 nodes
per level, i.e, time to insert a single interval is O(log n).
Segment tree on n intervals can have at most 4n + 1 leaves
(Prove!), which in turn imply that it has depth O(log n).

I Total time required for constructing a segment tree is
O(n log n). Space requirement is also O(n log n) (Prove!).

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

CONSTRUCTION
I How much time it takes to insert an interval?
I At every node we visit we spend constant time (assuming

that I(v) is stored in a simple structure like a linked list).

I When we visit a node v, we either store [x : x′] at v, or
Int(v) contains an endpoint of [x : x′].

I It can be shown that: (i) an interval is stored at most twice
at each level, (ii) there is at most one node at every level
whose corresponding interval contains x, and (iii) there is
at most one node at every level whose corresponding
interval contains x′.

I These facts together imply that we visit at most 4 nodes
per level, i.e, time to insert a single interval is O(log n).
Segment tree on n intervals can have at most 4n + 1 leaves
(Prove!), which in turn imply that it has depth O(log n).

I Total time required for constructing a segment tree is
O(n log n). Space requirement is also O(n log n) (Prove!).

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

CONSTRUCTION
I How much time it takes to insert an interval?
I At every node we visit we spend constant time (assuming

that I(v) is stored in a simple structure like a linked list).
I When we visit a node v, we either store [x : x′] at v, or

Int(v) contains an endpoint of [x : x′].

I It can be shown that: (i) an interval is stored at most twice
at each level, (ii) there is at most one node at every level
whose corresponding interval contains x, and (iii) there is
at most one node at every level whose corresponding
interval contains x′.

I These facts together imply that we visit at most 4 nodes
per level, i.e, time to insert a single interval is O(log n).
Segment tree on n intervals can have at most 4n + 1 leaves
(Prove!), which in turn imply that it has depth O(log n).

I Total time required for constructing a segment tree is
O(n log n). Space requirement is also O(n log n) (Prove!).

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

CONSTRUCTION
I How much time it takes to insert an interval?
I At every node we visit we spend constant time (assuming

that I(v) is stored in a simple structure like a linked list).
I When we visit a node v, we either store [x : x′] at v, or

Int(v) contains an endpoint of [x : x′].
I It can be shown that: (i) an interval is stored at most twice

at each level, (ii) there is at most one node at every level
whose corresponding interval contains x, and (iii) there is
at most one node at every level whose corresponding
interval contains x′.

I These facts together imply that we visit at most 4 nodes
per level, i.e, time to insert a single interval is O(log n).
Segment tree on n intervals can have at most 4n + 1 leaves
(Prove!), which in turn imply that it has depth O(log n).

I Total time required for constructing a segment tree is
O(n log n). Space requirement is also O(n log n) (Prove!).

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

CONSTRUCTION
I How much time it takes to insert an interval?
I At every node we visit we spend constant time (assuming

that I(v) is stored in a simple structure like a linked list).
I When we visit a node v, we either store [x : x′] at v, or

Int(v) contains an endpoint of [x : x′].
I It can be shown that: (i) an interval is stored at most twice

at each level, (ii) there is at most one node at every level
whose corresponding interval contains x, and (iii) there is
at most one node at every level whose corresponding
interval contains x′.

I These facts together imply that we visit at most 4 nodes
per level, i.e, time to insert a single interval is O(log n).
Segment tree on n intervals can have at most 4n + 1 leaves
(Prove!), which in turn imply that it has depth O(log n).

I Total time required for constructing a segment tree is
O(n log n). Space requirement is also O(n log n) (Prove!).

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

CONSTRUCTION
I How much time it takes to insert an interval?
I At every node we visit we spend constant time (assuming

that I(v) is stored in a simple structure like a linked list).
I When we visit a node v, we either store [x : x′] at v, or

Int(v) contains an endpoint of [x : x′].
I It can be shown that: (i) an interval is stored at most twice

at each level, (ii) there is at most one node at every level
whose corresponding interval contains x, and (iii) there is
at most one node at every level whose corresponding
interval contains x′.

I These facts together imply that we visit at most 4 nodes
per level, i.e, time to insert a single interval is O(log n).
Segment tree on n intervals can have at most 4n + 1 leaves
(Prove!), which in turn imply that it has depth O(log n).

I Total time required for constructing a segment tree is
O(n log n). Space requirement is also O(n log n) (Prove!).

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

EXAMPLE

s1

s2

s3
s4

s5

s1

s1 s1

s2s5

s2s5

s3

s3

s5

s4 s4s3

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

QUERY

I Query algorithm is simple:
Algorithm QuerySegmentTree(v,qx)
Report all intervals in I(v)
If v is not a leaf
then if qx belongs to Int(lc(v))

then QuerySegmentTree(lc(v),qx)
else QuerySegmentTree(rc(v),qx)

I The query algorithm visits one node per level, so O(log n)
nodes in total. At a node v we spend O(1 + kv) time, where
kv is the number of reported intervals. Hence query time is
O(log n + k), where k is total number of reported intervals.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

QUERY

I Query algorithm is simple:
Algorithm QuerySegmentTree(v,qx)
Report all intervals in I(v)
If v is not a leaf
then if qx belongs to Int(lc(v))

then QuerySegmentTree(lc(v),qx)
else QuerySegmentTree(rc(v),qx)

I The query algorithm visits one node per level, so O(log n)
nodes in total. At a node v we spend O(1 + kv) time, where
kv is the number of reported intervals. Hence query time is
O(log n + k), where k is total number of reported intervals.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

RESULT

Theorem
A segment tree for a set I of n intervals uses O(n log n) storge and
can be constructed in O(n log n) time. Using the segment tree we can
report all intervals that contain a query point in O(log n + k) time,
where k is the number of reported segments.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

WINDOWING QUERY PROBLEM

I We now go back to our windowing query problem. The
problem we wanted to solve is:

Problem
Let S be a set of n mutually disjoint line segments with arbitrary
orientations in the plane. Preprocess the segments such that segments
intersecting a vertical query segment q := qx × [qy : q′y] can be
reported efficiently.

I We now show that segment tree data structure we have
developed can be augmented to solve this problem.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

WINDOWING QUERY PROBLEM

I We now go back to our windowing query problem. The
problem we wanted to solve is:

Problem
Let S be a set of n mutually disjoint line segments with arbitrary
orientations in the plane. Preprocess the segments such that segments
intersecting a vertical query segment q := qx × [qy : q′y] can be
reported efficiently.

I We now show that segment tree data structure we have
developed can be augmented to solve this problem.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

WINDOWING QUERY PROBLEM

I Build a segment tree T on the x-intervals of the segments
in S.

I We consider a node v in T to
correspond to the vertical slab
Int(v)× [−∞ : +∞].

I A segment is in the canonical subset of
v if it completely crosses the slab
corresponding to v but not the slab
corresponding to the parent of v. We
denote this subset by S(v).

I Let us see an example.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

WINDOWING QUERY PROBLEM

I Build a segment tree T on the x-intervals of the segments
in S.

I We consider a node v in T to
correspond to the vertical slab
Int(v)× [−∞ : +∞].

I A segment is in the canonical subset of
v if it completely crosses the slab
corresponding to v but not the slab
corresponding to the parent of v. We
denote this subset by S(v).

v

Int(v)

I Let us see an example.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

WINDOWING QUERY PROBLEM

I Build a segment tree T on the x-intervals of the segments
in S.

I We consider a node v in T to
correspond to the vertical slab
Int(v)× [−∞ : +∞].

I A segment is in the canonical subset of
v if it completely crosses the slab
corresponding to v but not the slab
corresponding to the parent of v. We
denote this subset by S(v).

v

Int(v)

I Let us see an example.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

WINDOWING QUERY PROBLEM

I Build a segment tree T on the x-intervals of the segments
in S.

I We consider a node v in T to
correspond to the vertical slab
Int(v)× [−∞ : +∞].

I A segment is in the canonical subset of
v if it completely crosses the slab
corresponding to v but not the slab
corresponding to the parent of v. We
denote this subset by S(v).

v

Int(v)

I Let us see an example.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

EXAMPLE

s1

s2

s3

s4

s5

s6

s7

v1

v2 v3

S(v1) = {s3}

S(v2) = {s1, s2} S(v3) = {s4, s6}

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

WINDOWING QUERY PROBLEM

I When we search with qx in T we find
O(log n) canonical subsets on the search
path that collectively contain all the
segments whose x-interval contain qx.

I A segment s in such a canonical subset
is intersected by q iff the lower
endpoint of q is below s and the upper
endpoint is above s.

I To identify proper segments we use the
fact that the segments in the canonical
subset S(v) span the slab corresponding
to v and that they do not intersect each
other – i.e., they can be vertically
ordered.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

WINDOWING QUERY PROBLEM

I When we search with qx in T we find
O(log n) canonical subsets on the search
path that collectively contain all the
segments whose x-interval contain qx.

I A segment s in such a canonical subset
is intersected by q iff the lower
endpoint of q is below s and the upper
endpoint is above s.

I To identify proper segments we use the
fact that the segments in the canonical
subset S(v) span the slab corresponding
to v and that they do not intersect each
other – i.e., they can be vertically
ordered.

s1

s2

s3

s4

s5
(qx, qy)

(qx, q
′
y)

q

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

WINDOWING QUERY PROBLEM

I When we search with qx in T we find
O(log n) canonical subsets on the search
path that collectively contain all the
segments whose x-interval contain qx.

I A segment s in such a canonical subset
is intersected by q iff the lower
endpoint of q is below s and the upper
endpoint is above s.

I To identify proper segments we use the
fact that the segments in the canonical
subset S(v) span the slab corresponding
to v and that they do not intersect each
other – i.e., they can be vertically
ordered.

s1

s2

s3

s4

s5
(qx, qy)

(qx, q
′
y)

q

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

WINDOWING QUERY PROBLEM

I Hence we can store S(v) in a search tree T (v) according to
their vertical order.

I By searching T (v) we can find the intersected segments in
O(log n + kv) time, where kv is the number of intersected
segments.

s1

s2

s3

s4

s5
(qx, qy)

(qx, q
′
y)

qs3

s2

s5

s1

s4

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

WINDOWING QUERY PROBLEM

I Hence we can store S(v) in a search tree T (v) according to
their vertical order.

I By searching T (v) we can find the intersected segments in
O(log n + kv) time, where kv is the number of intersected
segments.

s1

s2

s3

s4

s5
(qx, qy)

(qx, q
′
y)

qs3

s2

s5

s1

s4

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

WINDOWING QUERY PROBLEM

I So the over all query algorithm is like this. We search with
qx in the segment tree in the usual way, and at every node v
on the search path we search with upper and lower
endpoint of q in T (v) to report the segments in S(v). Since
search in T (v) takes O(log n + kv) time where kv is the
number of reported segments at v, total query time is
O(log2 n + k), where k is the total number of reported
segments.

I Because the associated structure of any node v uses storage
linear in size of S(v), total amount of storage remain
O(n log n).

I The associated structure can be built in O(n log n) time,
leading to a preprocessing time of O(n log2 n).

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

WINDOWING QUERY PROBLEM

I So the over all query algorithm is like this. We search with
qx in the segment tree in the usual way, and at every node v
on the search path we search with upper and lower
endpoint of q in T (v) to report the segments in S(v). Since
search in T (v) takes O(log n + kv) time where kv is the
number of reported segments at v, total query time is
O(log2 n + k), where k is the total number of reported
segments.

I Because the associated structure of any node v uses storage
linear in size of S(v), total amount of storage remain
O(n log n).

I The associated structure can be built in O(n log n) time,
leading to a preprocessing time of O(n log2 n).

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

WINDOWING QUERY PROBLEM

I So the over all query algorithm is like this. We search with
qx in the segment tree in the usual way, and at every node v
on the search path we search with upper and lower
endpoint of q in T (v) to report the segments in S(v). Since
search in T (v) takes O(log n + kv) time where kv is the
number of reported segments at v, total query time is
O(log2 n + k), where k is the total number of reported
segments.

I Because the associated structure of any node v uses storage
linear in size of S(v), total amount of storage remain
O(n log n).

I The associated structure can be built in O(n log n) time,
leading to a preprocessing time of O(n log2 n).

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

RESULT

Theorem
Let S be a set of n disjoint segment of arbitrary orientations in the
plane. The segments intersecting a vertical query segment can be
reported in O(log2 n + k) time with a data structure that used
O(n log n) storage, where k is the number of reported segments. The
data structure can be built in O(n log2 n) time.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

RESULT

Theorem
Let S be a set of n disjoint segment of arbitrary orientations in the
plane. The segments intersecting an axis parallel rectangular query
window can be reported in O(log2 n + k) time with a data structure
that used O(n log n) storage, where k is the number of reported
segments. The data structure can be built in O(n log2 n) time.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

OUTLINE

INTRODUCTION

RANGE SEARCHING

SEGMENT SEARCHING

CONCLUSION

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

FUTURE DIRECTIONS

I We have confined ourselves in the plane only. Each of the
problems can be generalized in space and higher
dimensions.

I The queries we have considered are called reporting
queries. Another type of queries is often important where
we want to count instead of report. Such queries are called
counting queries.

I Both objects to be searched and query shape can vary. For
example they can be triangles, circles, ellipses,
tetrahedrons, simplexes, in higher space and higher
dimensions.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

FUTURE DIRECTIONS

I We have confined ourselves in the plane only. Each of the
problems can be generalized in space and higher
dimensions.

I The queries we have considered are called reporting
queries. Another type of queries is often important where
we want to count instead of report. Such queries are called
counting queries.

I Both objects to be searched and query shape can vary. For
example they can be triangles, circles, ellipses,
tetrahedrons, simplexes, in higher space and higher
dimensions.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

FUTURE DIRECTIONS

I We have confined ourselves in the plane only. Each of the
problems can be generalized in space and higher
dimensions.

I The queries we have considered are called reporting
queries. Another type of queries is often important where
we want to count instead of report. Such queries are called
counting queries.

I Both objects to be searched and query shape can vary. For
example they can be triangles, circles, ellipses,
tetrahedrons, simplexes, in higher space and higher
dimensions.

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

REFERENCES

Mark de Berg, Marc van Kreveld, Mark Overmars and
Otfried Schwarzkof, Computational Geometry: Algorithms
and Applications, Springer, 1997.

Herbert Edelsbrunner, Algorithms in Computational
Geometry, Springer, 1987.

Joseph O’Rourke, Computational Geometry in C, Cambridge
University Press, 1998.

Franco P. Preparata and Michael Ian Shamos, Computational
Geometry: An Introduction, Springer-Verlag, New York, 1985.

http://en.wikipedia.org/wiki/Computational_
geometry

http://en.wikipedia.org/wiki/Computational_geometry
http://en.wikipedia.org/wiki/Computational_geometry

INTRODUCTION RANGE SEARCHING SEGMENT SEARCHING CONCLUSION

Thank you!

	Introduction
	Range Searching
	Segment Searching
	Conclusion

