Algorithm design in Perfect Graphs N.S. Narayanaswamy IIT Madras

What is it to be Perfect?

- Introduced by Claude Berge in early 1960s
- Coloring number and clique number are one and the same for all induced subgraphs of a Graph
- Note that the coloring number is at least the clique number
- Are they even unequal? - Odd cycles!!!
- To be perfect, induced subgraphs cannot be odd cycles

Exercise in Coloring

- For any given two integers, o and c, does there exist a graph whose coloring number is c and clique number is 0 .
- For $\mathrm{o}=2$ and $\mathrm{c}=3$, answer is obviously yes.
- Construct a graph for $o=2$ and $c=4$.
- Answered by Lovasz for arbitrary values of o and c.
- Check text on Graph Theory by Bondy and Murty.

Perfect Questions

- Is a given graph Perfect?
- Is there a characterization of perfect graphs?
- Is a graph minimally imperfect?
- Do any hard computational exercises become easy on these graphs?
- Are there interesting sub-classes?

This talk: A survey of the first 4 and a sample of the last question

Characterizations

- Strong Perfect Graph Theorem

A Graph is perfect if and only if it does not contain a odd cycle or its complement as an induced subgraph- last decade Chudnovsky..

- Conjectured by Berge in 1960
- A forbidden subgraph characterization.
- Conjecture settled after many years of research in the first decade of this century.
- Come up with a verification algorithm?

Results along the way

- Weak Perfect Graph Theorem [Lovasz, Fulkerson]
A Graph is perfect if and only if its complement is perfect.
Further, G is perfect if and only if for each induced subgraph H , the alpha-omega product is at least the number of vertices in H .
- Consequently, independence number is same as clique cover number for all induced subgraph of a perfect graph.

Polyhdedral Combinatorics

- Main goal-understanding the geometric structure of a solution space.
Visualize the convex hull and find a system of inequalities that specify exactly the convex hull
- Consider the convex hull of stable set incidence vectors
- Consider the clique inequalities
- G is perfect if and only if the convex hull and clique inequality polytope are identical

Summary of Survey

- Perfect graphs are motivated by coloring issues.
- Connects combinatorial understanding to polyhedral structure in a very rich and fundamental way

Geometric Algorithms and Combinatorial Optimization - Groetschel, Lovasz, Schrijver
Algorithmic Graph Theory and Perfect Graphs Golumbic

The Sandwich Theorem - Knuth

Interval Graphs

- A subclass of perfect graphs
- Motivated by many applications
- Temporal reasoning issues like register allocation
- Given a set of intervals, consider the natural intersection graph for which there is one vertex per interval and an edge indicates a non-empty intersection
- Examples of interval graphs and non interval graphs

Interval Graphs are perfect

- Given a graph, find an interval representation
- Visualize the intervals as time intervals
- Color the intervals in increasing order of time
- Reuse a color whenever possible and use a new color greedily
- This proves that interval graphs are perfect.
- Key issues: given a graph, does it have an interval represenation.

Forbidden subgraphs

- Induced cycles of length more than 3
- Asteroidal triples

3 vertices x, y, z form an asteroidal triple if for all ordering of them, there is a path from the first to third which avoids the neighbors of the second.

- Gives a polynomial time algorithm
- Check no four form an induced cycle
- Check no 3 form an asteroidal triple

The interval representation

- Graph is an interval graph if and only if its maximal cliques can be linearly ordered such that the set of maximal cliques containing a vertex occur consecutively in the order.
- Note that this consecutive ordering gives the interval representation
- For each vertex, the interval associated is the interval of indices of maximal cliques that contain it
- Finding the maximal cliques and ordering them!!

Interval Graphs

2

Coloring Intervals

Resouce Allocation:

Each interval \sim Request for a resource
for a period of time
Color $\quad \sim$ Resource

Intervals as Paths

Coloring intervals is same as coloring paths in linear graphs/chains.

Path Coloring: Given a set of paths in a graph, assign a color to each path such that no two paths will get he same color if they have a common edge.

Online path coloring

Types of Coloring

- Offline coloring
- Optimal coloring : Arrange the colors in some order; Assign the least possible color to each interval in non-decreasing order of their start times.
- chromatic number = clique number
- Online Coloring
- First fit
- Kierstead's algorithm

Example

Competitive Ratio

No of colors used by the online algo. A
Competitive
Ratio of A
$=$
No of colors used by the optimal offline algorithm

No of colors used by the online algo. A
$=\max _{G, s} \longrightarrow \boldsymbol{\omega}$

First fit

- Principle: Consider the colors in some order and assign the least feasible color to the incoming interval.
- Simple to implement
- 8-competitive
- There exists an instance on which First fit uses at least 4.4 ω colors.

First fit: Example-1

Clique size is 2
No of colors used is 3

First fit: Example-2

Clique size is 2
No of colors used is 4

Properties of First fit

Property: If an interval I is colored j, then there exists an interval I ' in each color $i, 1 \leq i \leq j$ such that I intersects I^{\prime}.

Wall like structure

Kierstead's Algorithm

- The best known online algorithm
- Uses at most 3 ω-2 colors
- Outperformed by First fit on random instances Basis for designing efficient algorithms for online coloring intervals with bandwidth

Kierstead's Arrangement

Each interval I is assigned a position p , such that p is the least possible position below which I is supported by a clique of size $\mathrm{p}-1$.

There can be at most ω positions.
No interval is contained in any interval or union of intervals of the same position.
All intervals assigned to the same position are can be colored with at most 3 colors online. Uses at most $3 \omega-2$ colors.

Chordal Graphs

- A Graph in which there is no induced cycle of length four or more.
-A 4 clique with one edge removed - chordal
-A 4 cycle with an additional central vertex adjacent to all four - not chordal
- Every interval graph is a chordal graph
-What is the structure of chordal graph?
- Are they intersection graphs of some meaningful collection of sets?
- very natural question

Separators are Cliques

- In chordal graphs minimal vertex separators are cliques
- structure of minimal separators are very important
-Also a characterization
-Let X be a minimal u-v separator
-Assume X is not a clique
-Because of minimality, for each x in X, in each component (after removal of X), x has a neighbor in the component.
-Let C1 and C2 be two components

Why? ..

-Let x 1 and x 2 be 2 vertices in X , not adjacent -Let a 1 and a 2 be neighbors in C 1 , and b 1 and b 2 in C2
-Then a1 x1 b1 P' b2 x2 a2 Pa1 is a cycle
-From this cycle, we can construct a chordless cycle, contradiction
-The reverse direction
-If all minimal separators are cliques, no induced cycles.
-If C is an induced cycle, take x in C and y in C and take any minimal x - y separator containing the neighbors of x in C . Contradiction

Simplicial Vertices

- A vertex whose neighbor induces a clique -An incomplete chordal graph has two nonadjacent simplicial vertices!!!
-Proof by induction in the number of vertices
-a single vertex, is simplicial (Why?)
-consider an edge, both are
-consider a path, the degree 1 vertices are (base case)
- Let X be a minimal separator
- Consider $\mathrm{A}+\mathrm{X}$ and $\mathrm{B}+\mathrm{X}$

Since X is a clique..

- apply induction to $A+X$ and $B+X$
-they are chordal and smaller.
- A and B are non-empty
\bullet take nonadj $v_{-} a 1, v_{-}$a2 in A+X and nonadj v_b1,
v_b2 in $B+X$ that are simplicial.
-at most one of v_a1, v_a2 (v_b1, v_b2) can be in X
-so we get at least 2 simplicial vertices
-What if $A+X$ is complete, then it is easier.
- we get a simplicial vertex from A, which is what we want.

Perfect Simplicial Ordering

$\bullet \vee _1, v _2, \ldots, v _n$ is a very special ordering

- Property: higher numbered numbers of v_i induce a clique in G
-Consequence
-Color greedily using a simplicial ordering
-note simplicial ordering can be found in polynomial time.
-And more....

Finding the maximal cliques

- Based on a structural property of graphs that do not have induced 4 cycles.

