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What is it to be Perfect?

. Introduced by Claude Berge in early 1960s

« Coloring number and clique number are one
and the same for all induced subgraphs of a

Graph

« Note that the coloring number is at least the
clique number

« Are they even unequal? - Odd cycles!!!

« T0 be perfect, induced subgraphs cannot be
odd cycles



Exercise in Coloring

» For any given two integers, o and c, does there
exist a graph whose coloring number is ¢ and
clique number is o.

« For 0=2 and c=3, answer is obviously yes.
« Construct a graph for 0=2 and c=4.

« Answered by Lovasz for arbitrary values of o
and c.

« Check text on Graph Theory by Bondy and
Murty.



Perfect Questions

. Is a given graph Perfect?
. Is there a characterization of perfect graphs?
. Is a graph minimally imperfect?

« Do any hard computational exercises become
easy on these graphs?

 Are there interesting sub-classes?

This talk: A survey of the first 4 and a sample of
the last question



Characterizations

» Strong Perfect Graph Theorem

A Graph is perfect if and only if it does not contain
a odd cycle or its complement as an induced
subgraph- last decade Chudnovsky..

- Conjectured by Berge in 1960
. A forbidden subgraph characterization.

« Conjecture settled after many years of research
in the first decade of this century.

« Come up with a verification algorithm?



Results along the way

« Weak Perfect Graph Theorem [Lovasz,
Fulkerson]

A Graph is perfect if and only if its complement is
perfect.

Further, G is perfect if and only if for each
induced subgraph H, the alpha-omega product
Is at least the number of vertices in H.

. Consequently, independence number is same
as clique cover number for all induced
subgraph of a perfect graph.



Polyhdedral Combinatorics

« Main goal-understanding the geometric
structure of a solution space.

Visualize the convex hull and find a system of
iInequalities that specify exactly the convex hull

. Consider the convex hull of stable set incidence
vectors

« Consider the cligue inequalities

. G is perfect if and only if the convex hull and
clique inequality polytope are identical



Summary of Survey

» Perfect graphs are motivated by coloring
ISsues.

. Connects combinatorial understanding to
polyhedral structure in a very rich and
fundamental way

Geometric Algorithms and Combinatorial
Optimization — Groetschel, Lovasz, Schrijver

Algorithmic Graph Theory and Perfect Graphs —
Golumbic

The Sandwich Theorem — Knuth



Interval Graphs

« A subclass of perfect graphs

» Motivated by many applications
« Temporal reasoning issues like register allocation

« Given a set of intervals, consider the natural
intersection graph for which there is one vertex
per interval and an edge indicates a non-empty
Intersection

. Examples of interval graphs and non interval
graphs



Interval Graphs are perfect

« Given a graph, find an interval representation
« Visualize the intervals as time intervals
« Color the intervals in increasing order of time

« Reuse a color whenever possible and use a
new color greedily

« This proves that interval graphs are perfect.

» Key issues: given a graph, does it have an
Interval represenation.



Forbidden subgraphs

. Induced cycles of length more than 3
« Asteroidal triples

3 vertices X, y, z form an asteroidal triple if for all
ordering of them, there is a path from the first to
third which avoids the neighbors of the second.

. Gives a polynomial time algorithm

« Check no four form an induced cycle
« Check no 3 form an asteroidal triple



The interval representation

« Graph is an interval graph if and only if its
maximal cliques can be linearly ordered such
that the set of maximal cliques containing a
vertex occur consecutively in the order.

« Note that this consecutive ordering gives the
interval representation

« For each vertex, the interval associated is the
interval of indices of maximal cliques that contain it

» Finding the maximal cliques and ordering
them!!



Interval Graphs




Coloring Intervals

color

Fach interval — Request for a resource
for a period of time

Color Resource

time
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Intervals as Paths

4
2
NN . .
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Coloring intervals is same as coloring paths in

linear graphs/chains.

: Given a set of pathsina
graph, assign a color to each path such that no
two paths will get he same color if they have a
common edge.

Online path coloring E



Types of Coloring

Offline coloring

Optimal coloring . Arrange the colors in some order; Assign
the least possible color to each interval in non-decreasing order of
their start times.

chromatic number = clique number

Online Coloring
First fit

Kierstead's algorithm

Example
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Competitive Ratio

No of colors used by the online algo. A

Competitive

Ratio of A No of colors used by the optimal offline algorithm

No of colors used by the online algo. A

w
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First fit

. Consider the colors in some order
and assign the least feasible color to the
Incoming interval.

Simple to implement
-competitive

There exists an instance on which First fit uses
at least colors.
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First fit: Example-1

Clique size 1s 2

No of colors used is 3
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First fit: Example-2

Clique size 1s 2

No of colors used is 4

20



Properties of First fit

: If an interval [ is colored /, then there exists

an interval I in each color 4, 1 < 7 < jsuch that |
intersects I .

Wall like structure
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Kierstead's Algorithm

The best known online algorithm
Uses at most colors
Outperformed by First fit on random instances

Basis for designing efficient algorithms for
online coloring utervals with bandwidth
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Kierstead’'s Arrangement

Each interval I is assigned a position p, such that p is the least possible position below
which I 1s supported by a clique of size p-1.

There can be at most ) positions.
No interval is contained in any interval or union of intervals of the same position.

All intervals assigned to the same position are can be colored with at most 3 colors
online. Uses at most 3 ) -2 colors.
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Chordal Graphs

*A Graph in which there is no induced cycle of
length four or more.

*A 4 clique with one edge removed - chordal

°A 4 cycle with an additional central vertex adjacent to
all four - not chordal

*Every interval graph is a chordal graph

*\What is the structure of chordal graph?

*Are they intersection graphs of some meaningful
collection of sets?

*very natural question
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Separators are Cliques

°In chordal graphs minimal vertex separators are
cliques
*structure of minimal separators are very important

°*Also a characterization

°[ et X be a minimal u-v separator

*Assume X is not a clique

*Because of minimality, for each x in X, in each
component (after removal of X), x has a neighbor in
the component.

°[ et C1 and C2 be two components
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Why? ..

°[ et x1 and x2 be 2 vertices in X, not adjacent

°| et a1 and a2 be neighbors in C1, and b1 and b2 in
C2

*°Then a1 x1 b1 P' b2 x2 a2 P a1 is a cycle

°From this cycle, we can construct a chordless cycle,
contradiction

*The reverse direction

*[f all minimal separators are cliques, no induced
cycles.

*|/f C is an induced cycle, take x in C and y in C and
take any minimal x-y separator containing the
neighbors of x in C. Contradiction



Simplicial Vertices

*A vertex whose neighbor induces a clique

*An incomplete chordal graph has two non-
adjacent simplicial vertices!!!
*Proof by induction in the number of vertices
*°a single vertex, is simplicial (Why?)
econsider an edge, both are

econsider a path, the degree 1 vertices are (base
case)
°[ et X be a minimal separator

*Consider A+ Xand B + X
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Since X is a clique..

*apply induction to A+X and B+X
*they are chordal and smaller.
°A and B are non-empty

*take nonadj v_a1, v_a2in A+X and nonadj v_Db1,
v_b2 in B+X that are simplicial.

eat mostone of v_al1,v a2 (v_b1,v_b2)can bein X
*so we get at least 2 simplicial vertices

*\What if A+X is complete, then it is easier.

*we get a simplicial vertex from A, which is what we
want.

28



Perfect Simplicial Ordering

v 1,v_2,...,v_nis a very special ordering

*Property: higher numbered numbers of v_iinduce a
clique in G

eConsequence
*Color greedily using a simplicial ordering

*note simplicial ordering can be found in polynomial
time.

*’And more....
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Finding the maximal cliques

. Based on a structural property of graphs that do
not have induced 4 cycles.



