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Introduction

Voronoid Diagram

Example (What does it look like?)

Each cell is a set of points whose nearest site is the same
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Applications in Cross-disciplines

This concept has independently emerged, and proven useful, in
various fields of sciences

Medial axis transform in biology and physiology,

Wigner-Seitz zones in chemistry and physics,

Domains of action in crystallography,

and Thiessen polygons in meteorology and geography.
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Other Direct Applications—I

Example (Jurisdiction of Schools in Boston)

A relevant modern day use.
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Other Direct Applications—II

Example (1854 Cholera Epidemic in London)

A particularly notable use of a Voronoi diagram was the analysis of
the 1854 cholera epidemic in London, in which physician John
Snow determined a strong correlation of deaths with proximity to a
particular (and infected) water pump on Broad Street.
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John Snow’s Voronoi Diagram

Anyone can now guess the infected pump.



Voronoi Diagrams

Introduction

Motivation

Motivation

Problem (Voronoi Diagrams — The Post Office Problem)

In a city with several post offices we would like to mark the service
region of each post office by proximity. What are these regions?

This problem is mentioned in Chapter 7 of the computational
geometry book by de Berg et al. [3].

Let us solve the problem for a section of Kolkata.



Voronoi Diagrams

Introduction

Motivation

Post-offices in a section of Kolkata

Courtesy: Google Images
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Postoffice Problem and its Simplification

We would like to demarcate the service regions of the post-offices.

To simplify, let us use the Euclidean distance (how the crows fly)
and not the actual distance by the roads.
Secondly, post offices are considered as points.
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Post-offices as Points in Plane

First, we remove the clutter.
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Proximity Regions of Postoffices

Second, we compute the Voronoi Diagram
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Postoffice Services in Kolkata

Last, we superimpose the solution. Gives correct answer for at
least Swami Vivekananda’s Birth Place at Simla.
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Voronoi Diagrams in Internet

Where you can play around with Voronoi Diagrams—

Java application at
http://www.nirarebakun.com/voro/ehivorocli.html (includes
higher order VD’s),

VoroGlide (another Java application)
http://wwwpi6.fernuni-hagen.de/GeomLab/VoroGlide/

Anything related to Computational Geometry, start at Jeff
Erickson’s web page,
http://compgeom.cs.uiuc.edu/ jeffe/compgeom/compgeom.html

And, much more.

(All the hyperlinks were alive in January 2010, I checked
personally)
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History

Origin of Problem

The problem is centuries old

Earliest record in Principles of Philosophy [4] by R. Descartes,
17th century.

Decomposition of space into convex regions of influence of
heavenly bodies.
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Origin of Problem

Example (Descartes Explanation of Gravity)

Of course gravity does not work like this, but Newton and Einstien
were to come later.
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Definitions

What are Voronoi Diagrams

What are Voronoi Diagrams?

Informally, Voronoi Diagrams are proximity regions to a set of
objects. We collect all the points in a set for whom, some
particulat proximity query gives the same result.

Mostly we will be talking of nearest point Voronoi Diagram.
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Definitions

What are Voronoi Diagrams

What are Voronoi Diagrams?

Informally, Voronoi Diagrams are proximity regions to a set of
objects. We collect all the points in a set for whom, some
particulat proximity query gives the same result.

Mostly we will be talking of nearest point Voronoi Diagram.
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Voronoi Diagrams Concepts

Definitions

Voronoid Diagram

Example (Voronoi Diagram in Plane)
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Definitions

Proximity Queries

A dataset S of n points called sites in <2.
Let S = {s1, s2, . . . , sn}.

(Query 1) For any given query point find the closest site to q.

(Query 2) Find the proximity region of a site.

(Query 3) Find the proximity regions of all sites.
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Definitions

Proximity Queries

A dataset S of n points called sites in <2.
Let S = {s1, s2, . . . , sn}.
(Query 1) For any given query point find the closest site to q.

(Query 2) Find the proximity region of a site.

(Query 3) Find the proximity regions of all sites.
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Voronoi Diagrams Concepts

Definitions

Proximity Query — Illustration

Example (Sites and Query Point)

What is nearest point to q?
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Voronoi Diagrams Concepts

Definitions

Proximity Query — Illustration

Example (Nearest Site to Query Point)

Also, circle of shortest radius is empty of other sites.
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Definitions

Proximity Query — Easy Solution

Naturally the solution can be found in linear time.
Just calculate the distances from all sites and choose the
closest site.

However, if you have to do it repeatedly, say m times, you can
only do it in O(nm)-time—quadratic time by this method.

Or, if you have to find the proximity regions themselves, the
easy algorithm does not work. There are ∞ points.
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Proximity Query — Easy Solution

Naturally the solution can be found in linear time.
Just calculate the distances from all sites and choose the
closest site.
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easy algorithm does not work. There are ∞ points.
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Voronoi Diagrams Concepts

Formal Definition

What are Voronoi Diagrams (very formally)

Definition

Let S be a set of n distinct points, si , ∀i ∈ n, called sites in
the plane

The Voronoi diagram of S is the subdivision of the plane into
n cells, V (si ), one for each site si ,

A point q lies in V (si ) iff ||q − si || < ||q − sj ||, for each
sj ∈ S , i 6= j

Simply put, V (si ) is the set of points whose nearest point is si .
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Voronoi Diagrams Concepts

Formal Definition

Computing Voronoi Diagram

Example (What is Voronoi Diagram of 2 points)

s1

s2

Closest to s2!!Closest to s1!!

V(s2)?

V(s1)?

Partition the plane in two sets. Points nearer to s1 and nearer to s2
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Voronoi Diagrams Concepts

Formal Definition

Computing Voronoi Diagram

Example (Voronoi Diagram of 2 points)

s1

s2

Closest to s2Closest to s1

V(s2)

V(s1)

Voronoi edge

It’s perpendicular bisector
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Voronoi Diagrams Concepts

Formal Definition

Computing Voronoi Diagram of 3 points

Example (What is Voronoi Diagram of 3 points)

s1

s2

s3

V(s3)?

V(s1)?

V(s2)?

Voronoi vertex

Perpendicular Bisector(s1,s2)

Partition the plane in three sets. Points nearer to s1, s2 and s3
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Formal Definition

Properties of Voronoi Diagram

Example (Voronoi Diagram of 3 points)

s1

s2

s3

V(s3)

V(s1)

V(s2)

Voronoi vertex

Perpendicular Bisector

Bisectors intersect at circumcentre
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Formal Definition

Properties

Voronoi edges are in part perpendicular bisectors.

Voronoi vertices are equidistant to three points
(circumcentre).

Not immediately obvious, the circumcircle must be empty
(Let us see this again).
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Voronoi Diagrams Concepts

Formal Definition

Properties

Voronoi edges are in part perpendicular bisectors.

Voronoi vertices are equidistant to three points
(circumcentre).

Not immediately obvious, the circumcircle must be empty
(Let us see this again).
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Formal Definition

Properties of Voronoi Diagram

Example (There can not be a point nearer than the three points)

s1

s2

s3

V(s3)

V(s1)

V(s2)

Voronoi vertex

Perpendicular Bisector

Circumcircle is empty and voronoi vertex in centre of circumcircle.
This motivates an algorithm.
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Computing Voronoi Diagrams

Non-optimal Algorithms

Straight-forward Algorithm

Frontal Attack to the Problem

Compute
(n

3

)
circumcentres

Remove non-empty circumcircles

Intelligently join circumcentres by bisectors (whenever two
points are common)

Voila, you get the Voronoi Diagram

Bad algorithm, O(n4) time complexity
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Computing Voronoi Diagrams

Non-optimal Algorithms

Space Complexity of Voronoi Diagrams

Before giving good algorithms, we ask what is the size of output.
Why?
Because if output is big we do not hope to improve.
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Computing Voronoi Diagrams

Non-optimal Algorithms

Bad Case for Space Complexity

A cell so big that it has n − 1 edges.
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Non-optimal Algorithms

Size of Voronoi Diagram is Linear

However, we can prove that

Number of Voronoi Vertices is O(n)

Number of Voronoi Edges is O(n)

So, Size of Voronoi Diagrams is O(n)
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Computing Voronoi Diagrams

Non-optimal Algorithms

Proof of Space Complexity
We look at Dual of Voronoi Diagram (Delaunay Triangulation)

Voronoi vertices are Delaunay faces (f ), Voronoi edges are
Delaunay edges (e)
We need to bound both f and e



Voronoi Diagrams

Computing Voronoi Diagrams

Non-optimal Algorithms

Proof of Space Complexity

Euler’s relation for planar graph (Delaunay’s) is v + f = e + 2

e ≤ 3v − 6, again from Euler,

and therefore, f ≤ 2v − 4

Since there is an implicit face at ∞, which corresponds to no
voronoi vertex, number of voronoi vertices f ≤ 2v − 5 .
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Proof of Space Complexity

Euler’s relation for planar graph (Delaunay’s) is v + f = e + 2

e ≤ 3v − 6, again from Euler,

and therefore, f ≤ 2v − 4

Since there is an implicit face at ∞, which corresponds to no
voronoi vertex, number of voronoi vertices f ≤ 2v − 5 .
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Computing Voronoi Diagrams

Non-optimal Algorithms

Another Algorithm

Each Voronoi cell is intersection of n − 1 half planes

We need to compute intersections efficiently
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Non-optimal Algorithms

Another Algorithm—Analysis

Each V (si ) is intersection of n − 1 half planes

Intersection of n halfplanes can be computed in O(n log n)
time

Voronoi diagram of S can be computed in O(n2 log n) time by
computing the Voronoi cells one by one.

A large improvement over previous method (from n4)
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Non-optimal Algorithms

Another Algorithm—Analysis

Each V (si ) is intersection of n − 1 half planes

Intersection of n halfplanes can be computed in O(n log n)
time
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computing the Voronoi cells one by one.

A large improvement over previous method (from n4)



Voronoi Diagrams

Computing Voronoi Diagrams

Non-optimal Algorithms

Yet Another Algorithm (Incremental)

Each point is inserted in Voronoi Diagram one by one

A

B C

D

N
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Non-optimal Algorithms

Yet Another Algorithm (Analysis)

Site si+1 is located in Voronoi Diagram of i sites (by ray
shooting?)

Its boundary is calculated

Voronoi diagram of S can be computed in O(n2) as O(i)
edges might be inserted or deleted in each step

Further improvement over previous method
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Computing Voronoi Diagrams

Non-optimal Algorithms

One more Incremental Algorithm-I

Each Voronoi vertex is inserted in Voronoi Diagram one by one

We start with any hull edge and compute the empty circle
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Computing Voronoi Diagrams

Non-optimal Algorithms

One more Incremental Algorithm-II

Compute adjacent empty circles
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Computing Voronoi Diagrams

Non-optimal Algorithms

One more Incremental Algorithm-III

Final Voronoi Diagram
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Computing Voronoi Diagrams

Non-optimal Algorithms

Complexity Analysis of Incremental Algorithm

This algorithm also computes Voronoi Diagram in O(n2)

Even though the discussed algorithms are non-aptimal, they are
useful for Voronoi Diagram generalisations where the structures are
complex and cannot be calculated using usual methods
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Computing Voronoi Diagrams

Non-optimal Algorithms

Can we Compute Voronoi Diagram Faster?

Clearly no method is optimal.

Can we do better?
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Computing Voronoi Diagrams

Non-optimal Algorithms

Three Popular Algorithms

We know of three good algorithms.

Fortune’s Sweep Line (Beach Line) Method

Divide and Conquer

Reduction to Convex Hull in <3
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Computing Voronoi Diagrams

Voronoi Diagram from 3D Convex Hulls

Reduction to Convex Hull in <3

Transform points in plane to space

(x , y)→ (x , y , x2 + y 2)

Basically we project the plane to the surface of a paraboloid
The lower convex hull is Delaunay Triangulation, the dual of
Voronoi Diagram
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Computing Voronoi Diagrams

Voronoi Diagram from 3D Convex Hulls

Projection to Paraboloid

Reduction to Convex Hull

Lower Convex Hull is Delaunay Triangulation.
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Fortune’s Algorithm

Fortune’s Algorithm
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Fortune’s Algorithm

Assumptions

General position assumption: No four sites are co-circular.

Figures sources:
http://www.ams.org/featurecolumn/archive/voronoi.html
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Computing Voronoi Diagrams

Fortune’s Algorithm

Why Usual Sweep Line Methods Fail?

The problem with usual sweeping methods is that the cells may
start even before the site is encountered.
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Computing Voronoi Diagrams

Fortune’s Algorithm

Tentative Idea

Fortune’s algorithm is sweep line method [6]

s2

s1

s3

beach line

sweep line

Known

Unknown

Region inside beach line does not depend on anything below the
sweep line. What is it?
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Fortune’s Algorithm

Tentative Idea

Fortune’s algorithm is sweep line method [6]

s2

s1

s3

beach line

sweep line

Known

Unknown

Beach line consists of sequence of parabolas. Why?
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Computing Voronoi Diagrams

Fortune’s Algorithm

What is Beach line-0

We want to find where Voronoi Diagram will not change (once
computed).
What are the points in plane always nearer to the point than
anything below the sweep line?
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Computing Voronoi Diagrams

Fortune’s Algorithm

What is Beach line-I

It is parabola.
We know equidistant points from a site and a line is a parabola.
Anything in the parabola is nearer to the point always.
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Computing Voronoi Diagrams

Fortune’s Algorithm

What is Beach line-II

What if we have more points?

Suppose we have got six sites
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Computing Voronoi Diagrams

Fortune’s Algorithm

What is Beach line-III

Three sites are already seen by sweep line. Another three are yet to
be seen.
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Fortune’s Algorithm

What is Beach line-IV

Beach line will be the envelope of the three parabolae
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Fortune’s Algorithm

Important Property of Beach Line

We can order the parabolic segments from left to right (or right to
left)

Beach line intersects any vertical line only once
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Fortune’s Algorithm

Two types of Events

Sweep line can have two types of events

Site Event (Voronoi Edges)

Circle Event (Voronoi Vertices)

The algorithm basically keeps track of the beach line, while
computing Voronoi Diagram inside it.
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Fortune’s Algorithm

Initial Situation
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Fortune’s Algorithm

A site is encountered
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Computing Voronoi Diagrams

Fortune’s Algorithm

Voronoi Edge Enters

That means we have a Voronoi edge whenever two beach segments
intersect
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Computing Voronoi Diagrams

Fortune’s Algorithm

Voronoi Vertex Enters

There is a Voronoi vertex whenever two Voronoi edges intersect
We need to add an event (circle event) where three neighbouring
beach segments intersect
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Computing Voronoi Diagrams

Fortune’s Algorithm

Circle Event-I

Before circle event
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Computing Voronoi Diagrams

Fortune’s Algorithm

Circle Event-II

At the circle event
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Computing Voronoi Diagrams

Fortune’s Algorithm

Circle Event-III

After circle event
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Computing Voronoi Diagrams

Fortune’s Algorithm

Execution of the Fortune’s Algorithm

Let us see how the Fortune’s algorithm calculates the Voronoi
Diagram step by step
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Computing Voronoi Diagrams

Fortune’s Algorithm

Algorithm—Step 1

First site and a strange beach line
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Computing Voronoi Diagrams

Fortune’s Algorithm

Algorithm—Step 2

Second site
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Computing Voronoi Diagrams

Fortune’s Algorithm

Algorithm—Step 3

Third site (and an ineffective circle event)
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Computing Voronoi Diagrams

Fortune’s Algorithm

Algorithm—Step 4

Fourth site (and an effective circle event)
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Computing Voronoi Diagrams

Fortune’s Algorithm

Algorithm—Step 5

Circle event
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Computing Voronoi Diagrams

Fortune’s Algorithm

Algorithm—Step 6

Fifth site and a circle event
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Computing Voronoi Diagrams

Fortune’s Algorithm

Algorithm—Step 7

A circle event and another circle event
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Computing Voronoi Diagrams

Fortune’s Algorithm

Algorithm—Step 8

Another of the same
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Computing Voronoi Diagrams

Fortune’s Algorithm

Algorithm—Step 9

Last site and two circle event
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Computing Voronoi Diagrams

Fortune’s Algorithm

Algorithm—Step 10

Last but one circle event
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Computing Voronoi Diagrams

Fortune’s Algorithm

Algorithm—Step 11

Last circle event
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Computing Voronoi Diagrams

Fortune’s Algorithm

Algorithm—Step 12

Final Output
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Computing Voronoi Diagrams

Fortune’s Algorithm

Analysis of the Fortune’s Algorithm

Fortune’s algorithm being an example of typical sweep line
technique is O(n log n)

Optimal because sorting problem can be reduced to construction of
Voronoi Diagrams
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Computing Voronoi Diagrams

Fortune’s Algorithm

Reduction of Sorting Problem to Voronoi Diagram

To sort x1, x2, . . . , xn

We find Voronoi Diagram of points
(x1, 0), (x2, 0), . . . (xn, 0) and (0,∞) = s∞
Either neighbourhood relation or the cell V (s∞) gives the required
sorted order
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Computing Voronoi Diagrams

Fortune’s Algorithm

Sorting using Voronoi Diagrams
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Computing Voronoi Diagrams

Divide and Conquer

Divide and Conquer

Another algorithm that gives Voronoi Diagram in optimal time and
space
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Computing Voronoi Diagrams

Divide and Conquer

Divide

Partition points equally. Solve two subproblems.
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Computing Voronoi Diagrams

Divide and Conquer

Conquer

Sew the two jumbled pieces
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Computing Voronoi Diagrams

Divide and Conquer

Solution

Merging of Voronoi Diagram complete!!
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Delaunay Triangulations

Motivation

Delaunay Triangulations
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Delaunay Triangulations

Motivation

What are Delaunay Triangulation?

Given a set of points sometimes it is needed to join them in
triangles
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Delaunay Triangulations

Motivation

Bad triangulation

Example (Skinny Triangles)
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Delaunay Triangulations

Motivation

Good triangulation

Example (Delaunay Triangulation)
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Delaunay Triangulations

Concepts

Delaunay triangulation as Dual of Voronoi Diagrams

Example (Delaunay Triangles are Voronoi Vertices)
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Delaunay Triangulations

Concepts

Another Example to Convince

Example (Delaunay Triangulation of 50 points)
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Delaunay Triangulations

Concepts

Yet Another Example to Convince

Example (Delaunay Triangulation of 100 points)
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Delaunay Triangulations

Concepts

What are we looking for?

Triangles should not be very stretched (skinny triangles)

Maximize the minimum angle of all the angles of the triangles
in the triangulation

Circumcircles of all the triangles in the net are empty
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Delaunay Triangulations

Concepts

Delaunay Triangulation Properties-I

Example (Delaunay Triangles have Empty Circumcircles)
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Delaunay Triangulations

Concepts

Delaunay Triangulation Properties-II

Example (Empty Circumcircles centred at Voronoi Vertices)
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Delaunay Triangulations

Method of Computation

Delaunay Triangulation Properties-II

Example (Empty Circumcircles—Dual of Voronoi Diagrams)
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Generalisations

Voronoi Diagrams in <d

Higher Dimension Voronoi Diagram

Example (Voronoi Region 3D point set)

Voronoi Diagram in space
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Generalisations

Voronoi Diagram for Farthest Points

Farthest Point Voronoi Diagram

Example (Voronoi regions for farthest point queries)
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Generalisations

Voronoi Diagram for Farthest Points

Computing Farthest Point Voronoi Diagram

Farthest Point Voronoi diagrams only depends on points on
Convex Hull .

This makes the task of computing the Farthest Point Voronoi
Diagram easier and gives rise to O(n log n) algorithm.
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Generalisations

Voronoi Diagram for Farthest Points

Applications of Farthest Point Voronoi Diagram

Used for Min-Max optimisation problems

Gives you minimum enclosing circle directly. Though linear time
algorithms that do not use farthest point Voronoi Diagram are
known.
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Generalisations

Voronoi Diagram for Subsets

Higher Order Voronoi Diagram

Example (Voronoi Region for k-nearest point set)

Second order Voronoi Diagram
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Generalisations

Voronoi Diagram for Subsets

Computing Higher Order Voronoi Diagram

Higher-order Voronoi diagrams can be generated recursively.

To generate the nth-order Voronoi diagram from set S , start with
the (n − 1)th-order diagram and replace each cell generated by
X = {x1, x2, ..., xn−1} with a Voronoi diagram generated on the set
S − X .

Collect all the regions of X in different cells.
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Conclusion

Open Problems

Open Problems to Ponder

Compute Voronoi diagram of a set of lines (or line segments)
in three dimensions, conjectured to be near quadratic. (Same
for Polyhedra is hard)

What is the maximum number of combinatorial changes
possible in a Euclidean Voronoi diagram of a set of n points
each moving along a line at unit speed in two dimensions?

Where to place a new site to maximize its Voronoi cell?
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Concluding Remarks

Summary

We studied the concept of Voronoi Diagrams

Next we saw how they can be computed

We looked into their duals—Delaunay Triangulations

Finally we also saw some of the generalisations
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Further Reading

You may read

Book by Okabe et al. [7], who lists more than 600 papers, and

the surveys by Aurenhammer [1],

Bernal [2], and

Fortune [6] for a complete overview,

Also, Chapters 5 and 6 of Preparata and Shamos [8], and

Chapter 13 of Edelsbrunner [5]
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Further Reading

At Last . . .

Thank You
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