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Ramsey Number

» Ramsey Number R(k, ) is the smallest integer n such that in any
two-colouring of the edges of a complete graph on n vertices K, by
red and blue, either there is a red K| or there is a blue K.

Example (Ks)

Ks need not have a monochromatic triangle.



» Ramsey (1929) showed that R(k, /) is finite for any two integers k
and /.

Example (R(3,3) = 6)

Ke will have a monochromatic triangle.

» We propose to obtain a lower bound on the diagonal Ramsey
Numbers R(k, k).



We now proceed to prove, step by step, that
R(k, k) > |27 ], Vk > 3.

Let S denote a fixed set of k vertices. Let As denote the event that
the induced subgraph of K, on S be monochromatic; then

PlAs] = 2C).

Note that there are (Z) choices for such an S.

So the total probability g(n, k) of the event that at least one
induced subgraph of k vertices on K, is monochromatic is

q(n, k) = (Z) 21-(5).
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Suppose, we indeed choose n and k > 3 such that g(n, k) < 1.

Then, with positive probability, none of the As's occur i.e., there is a
two-colouring of K, without a monochromatic Ky i.e.,

R(k, k) > n.

Let the choice of n and k > 3 be n = [27 .

K k
Then, g(n, k) < 21;!2 (L%) <1

So, R(k.k) > |2
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Crossing Number and Szemerédi-Trotter Theorem

» An embedding of a graph G = (V, E) in the plane is a planar
representation of it, where each vertex is represented by a point in
the plane, and each edge (u, v) is represented by a curve connecting
the points corresponding to the vertices v and v.

» The crossing number of such an embedding is the number of pairs
of intersecting curves that correspond to pairs to edges with no
common endpoints.

» The crossing number cr(G) of G is the minimum possible crossing
number in an embedding of it in the plane.



Example (K3)

In every planar embedding the graph K3 has crossing number 0. Hence it
is a planar graph.



Example (K, )

The graph K; has crossing number 1 !1!



Example (K, )

The graph K actually has crossing number 0 !!l It is a planar graph.



Example (K )

The graph Ks has crossing number 5 1!



Example (K5 has crossing number 1 1)

In every planar embedding the graph Ks has at least a pair of edges
crossing. Hence, it is a non-planar graph.



Example (K33)

The crossing number of K33 is 9 !l



Example (K33 has crossing number 1)

Hence, it is a non-planar graph.



Example (Petersen Graph)

Famous example of a non-planar graph



Theorem (Kuratowski, 1930): A graph is planar iff it has no
subgraph homeomorphic to Ks or K3 3.

The following Crossing Number Theorem was proved by Ajtai,
Chvétal, Newborn and Szemerédi (1982) and independently, by
Leighton:

The crossing number of any simple (i.e., with no multi-edges or no

self-loops) graph G = (V, E) with |E| > 4|V] is at least 64‘”\‘/‘2

Let us describe a short probabilistic proof of this theorem.

Euler's Formula: For any spherical polyhedron, with V' vertices, E
edges and F faces,
V-E+F=2.



Any maximal planar (i.e., one to which no edge can be added
without losing planarity) graph will have triangular faces implying

3F =2E.

Hence for any simple planar graph with V = n > 3 vertices, we have
2
E=V+F-2< V+§E—2:> E <3n-6,

implying that it has at most 3n edges.

Therefore, the crossing number of any simple graph with n vertices
and m edges is at least m — 3n.

Let G = (V, E) be a graph with |E| > 4|V| embedded in the plane
with t = cr(G) crossings.



» Let H be the random induced subgraph of G obtained by picking
each vertex of G, randomly and independently, to be a vertex of H
with probability p (to be chosen later).

> Then, the expected number of vertices in H is p|V/|, the expected
number of edges is p?|E|, and the expected number of crossings (in
its given embedding) is p*t.

» Therefore, we have
p't > p*|E| - 3p|V|,

implying

» Substituting p = % (<1), we get the result.



» Now we state the famous Szemerédi-Trotter Theorem in
Combinatorial Geometry:

Let P be a set of n distinct points in the plane, and let L be a set of
m distinct lines. Then the number of incidences between the
members of P and those of L (i.e., the number of pairs (p, /) with
pe P, lel, pel)isatmost c(mgn% + m+ n), for some absolute
constant ¢ > 0.

» We shall now give a step-by-step proof using probabilistic
arguments. This proof is due to Székely (1997).



We may and shall assume that every line in L is incident with one of
the points of P.

Denote the number of such incidences by /.

Form a graph G = (V, E) with V = P, where for
p,q € P, (p,q) € E iff they are consecutive points of P on some
line in L.

Clearly, |V|=n,and [E| = 3" (ki —1)=>" ki —m=1—m,

where k; is the number of points of P on line j € L.

Note that G is already embedded in the plane where the edges are
represented by segments of the corresponding lines in L.

In this embedding, every crossing is an intersection point of two
members of L, implying

er(G) < (’;) < %m%



» By the Crossing Number Theorem, either | — m = |E| < 4|V| = 4n,
that is,
| < m-+4n

” nj > cr(G) > M
2 = - 64n?
implying
I < (32)%m%n% +m.

» |n both cases,
/§4(m%n%+m+n).



Discrepancy Methods in Graphs

> Consider a set system (hypergraph) G(V,S), with n vertices
(|V] = n) and a set S of m k-hyperedges (subsets of V of size k).

» For all e € S, define

X E 3T x(v),

veV:vee

where x(v) € {1 = blue, —1 = red} is the colour assigned to
vertex v.

» The discrepancy D(S) of the system is defined as

f .
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> Before we proceed further, let us state the following famous theorem
due to Chernoff (1952):

Let X;, i =1,...,n be mutually independent random variables with
1
P[X,‘I+1]IP[X;271]I§,
and let S, = > " | X,. Let a> 0. Then
2
P[S,>a] <e 2.

» Using symmetry arguments, we immediately get the following
corollary:

PlISs| > a] < 2~ %.



The following theorem gives an upper bound on the discrepancy
D(S) of such a set system S:

D(S) < /2nIn(2m).
Let us prove this step by step.

For A C V, and for random x : V — {1, -1}, let Xa be the
indicator of the event {|x(A)| > a}, where « .\ /2n In(2m).

If |JA| = k, then by our choice of «, we have, by the above corollary
of Chernoff's Theorem,

a2 o 1
E[Xa] = P[|Ix(A)] > a] < 2e” % <2e” 2 = —
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Let X be the number of A with {|x(A)| > a}, so that
X =3 pcs Xa

Hence, we have E [X] =", s E[Xa] <|S| (%) =1.

Thus, for some x, we must have X = 0, implying
X(A) < a, VAES,

implying

< a.
max |x(e)| < a

Hence we have

D(S)= min  max|x(e)| < a=+/2nIn(2m).

x:V—{1,—1} ecS
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