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Introduction

Conventionally graphs are represented as adjacency matrices,
or adjacency lists. Algorithms are designed with such
representations in mind usually.

It is better to look at the structure of graphs and find some
representations that are suitable for designing algorithms- say
for a class of problems.

Intersection graphs: The vertices correspond to the subsets of
a set U. The vertices are made adjacent if and only if the
corresponding subsets intersect.

We propose to use some nice geometric objects as the
subsets- like spheres, cubes, boxes etc. Here U will be the set
of points in a low dimensional space.
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There are many situations where an intersection graph of
geometric objects arises naturally....

Some times otherwise NP-hard algorithmic problems become
polytime solvable if we have geometric representation of the
graph in a space of low dimension.
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Example of Intersection Graphs I — A Cycle
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Cycle Box Representation
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Example of Intersection Graphs II — A Tree
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Tree Box representation
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Boxicity and Cubicity

Cubicity: Minimum dimension k such that G can be
represented as the intersection graph of k-dimensional cubes.

Boxicity: Minimum dimension k such that G can be
represented as the intersection graph of k-dimensional axis
parallel boxes.

These concepts were introduced by F. S. Roberts, in 1969,
motivated by some problems in ecology.

By the later part of eighties, the research in this area had
diminished.
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An Equivalent Combinatorial Problem

The boxicity(G ) is the same as the minimum number k such
that there exist interval graphs I1, I2, . . . , Ik such that
G = I1 ∩ I2 ∩ · · · ∩ Ik .

Similarly, cubicity(G ) is the minimum number k such that
there exists unit interval graphs I1, . . . , Ik such that
G = I1 ∩ · · · ∩ Ik .
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Intersection of Interval Graphs on Different Axes
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Non-overlapping Projections on At-least One Axis
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How to show a graph of high boxicity

Let G be the complement of a perfect matching on n vertices.
(Assume n is even).

Suppose it is the intersection n/2 − 1 interval graphs.

Then out of the n/2 missing edges of G , at least 2 should be
missing in the same interval graph- by pigeon hole principle.

Then it cannot be an interval graph, since there will be an
induced 4 cycle !

So, the boxicity of this graph is at least n/2.
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Example of High Boxicity Graph

Complement of Perfect Matching
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First Approach

u v

V-{u,v}

Non-edge by Non-edge
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A Simple Upper Bound

Take a vertex u.

Map u to the interval [0, 1].

Map each vertex in N(u) to [1, 2].

Map each vertex in V − ({u} ∪ N(u)) to [2, 3].

Do the same thing for each vertex u. We get n interval
graphs.

So, boxicity of G ≤ n.
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Basic Theory

Simple Approach

N(u)

u V-({u} N(u)}

Vertex by Vertex
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Basic Theory

How to Improve the above strategy

Can we deal with 2 vertices at a time ?

What kind of pairs can be selected ? Roberts suggests to pick
a pair of non-adjacent vertices.

Let u and v be non-adjacent.

Let u be given [0, 1] and v be given [4, 5].

Remaining vertices belong to one of S0 = N(u) ∩ N(v),
S1 = N(u) − S0, S2 = N(v) − S0. S3 = V − (N(u) ∪ N(v)).

To vertices of S0 give [1, 4]

To vertices of S1 give [1, 2.5]

To vertices of S2 give [2.5, 4]

To vertices of S3 give [2, 3]

Repeat the procedure. When do we get stuck ?

This strategy gives an upper bound of ⌈n/2⌉
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Taking Care of One Non-adjacent Pair at a Time

u v

N(u)-x N(v)-x

V-(N[u] N[v])

X=N(u) N(v)

Dealing a Pair of Non-adjacent Vertices

at a time



Geometric Representations of Graphs

Intersection Graphs
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Taking Care of One Adjacent Pair at a Time

u
v

N(v)-X

V-(N[u] N[v])

X=N(u) N(v)

N(u)-X

Adjacent Pair
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Boxicity and Maximum Degree

Boxicity of any graph is at most 2∆2, where ∆ is the maximum
degree of the graph.
(The only previous known upper bound was n/2 where n is the
number of vertices)
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Cubicity of any graph is O(∆ log n), where ∆ is the maximum
degree and n is the number of vertices.
For the first time, we applied probabilistic tools in the study of
boxicity and cubicity.
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We related cubicity and boxicity with width parameters such as
bandwidth and treewidth.

1 boxicity(G ) ≤ treewidth(G ) + 2.

Treewidth is a very well studied parameter. This allowed us to get
many results regarding boxicity.
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More Results

The following consequence of the treewidth upper bound is
interesting.
For a chordal graph, boxicity is at most χ(G ) + 1.



Geometric Representations of Graphs

Intersection Graphs

More Results

cubicity(G ) ≤ bandwidth(G ) + 1.

cubicity(G ) = O(b log n), where b is the bandwidth and n is
the number of vertices.
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More Results

Another upper bound: boxicity (G ) ≤ ⌊ t

2⌋ + 1, where t is the
cardinality of the minimum vertex cover in G .
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Some other results we obtained

Cubicity of d-dimensional hypercubes is Θ(d/ log d).
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The Claw Number: Let ψ be the largest integer such that there
exists an induced star on ψ + 1 vertices in G . The ψ is called the
claw number of G .

Cubicity of an interval graph is O(logψ).

Note that ψ ≤ ∆.
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More Results

Let G be an AT-free graph. Then:

boxicity(G ) ≤ χ(G ).

cubicity(G ) ≤ box (G ).(⌈logψ(G )⌉ + 2)

If girth of G is at least 5, then boxicity(G ) ≤ 2.
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Lower bounds for boxicity: We came up with two general methods
to derive lower bounds for boxicity. Applying these methods we
could derive many results, some of which are listed below.

The boxicity of almost all graphs is Ω(dav ), where dav is the
average degree of the graph.

If the minimum degree is δ, then boxicity is at least n

2(n−δ−1)
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At Last . . .
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