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Introduction

Goal of a Deterministic Algorithm

INPUT OUTPUT
ALGORITHM

The solution produced by the algorithm is correct, and

the number of computational steps is same for different
runs of the algorithm with the same input.
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Problems in Deterministic Algorithm

Given a computational problem,

it may be difficult to formulate an algorithm with good
running time, or

the explotion of running time of an algorithm for that
problem with the number of inputs.

Remidies

Efficient heuristics,

Approximation algorithms,

Randomized algorithms
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Randomized Algorithm

INPUT OUTPUT
ALGORITHM

Random Number

In addition to the input, the algorithm uses a source of pseudo
random numbers. During execution, it takes random choices
depending on those random numbers.

The behavior (output) can vary if the algorithm is run
multiple times on the same input.
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Advantage of Randomized Algorithm

The algorithm is usually simple and easy to implement,

The algorithm is fast with very high probability, and/or

It produces optimum output with very high probability.

Difficulties

There is a finite probability of getting incorrect answer.
However, the probability of getting a wrong answer can be
made arbitrarily small by the repeated employment of
randomness.

Analysis of running time or probability of getting a correct
answer is usually difficult.

Getting truely random numbers is impossible. One needs to
depend on pseudo random numbers. So, the result highly
depends on the quality of the random numbers.
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An Important Note

Randomized algorithms are not the probabilistic analysis of
expected running time of a deterministic algorithm, where

The inputs are assumed to come from a probability
distribution.

The objective is to compute the expected running time
of the algorithm.
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Randomized Quick Sort
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Deterministic Quick Sort

The Problem:

Given an array A[1 . . . n] containing n (comparable) elements, sort
them in increasing/decreasing order.

QSORT(A, p, q)

If p ≥ q, EXIT.

Compute s ← correct position of A[p] in the sorted order of
the elements of A from p-th location to q-th location.

Move the pivot A[p] into position A[s].

Move the remaining elements of A[p − q] into appropriate
sides.

QSORT(A, p, s − 1);

QSORT(A, s + 1, q).
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Complexity Results of QSORT

An INPLACE algorithm

The worst case time complexity is O(n2).

The average case time complexity is O(n log n).
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Randomized Quick Sort

An Useful Concept - The Central Splitter

It is an index s such that the number of elements
less (resp. greater) than A[s] is at least n

4 .

The algorithm randomly chooses a key, and checks whether it
is a central splitter or not.

If it is a central splitter, then the array is split with that key as
was done in the QSORT algorithm.

It can be shown that the expected number of trials needed to
get a central splitter is constant.
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Randomized Quick Sort

RandQSORT(A, p, q)

1: If p ≥ q, then EXIT.

2: While no central splitter has been found, execute the following
steps:

2.1: Choose uniformly at random a number r ∈ {p, p + 1, . . . , q}.
2.2: Compute s = number of elements in A that are less than A[r ],

and
t = number of elements in A that are greater than A[r ].

2.3: If s ≥ q−p
4 and t ≥ q−p

4 , then A[r ] is a central splitter.

3: Position A[r ] is A[s + 1], put the members in A that are
smaller than the central splitter in A[p . . . s] and the members
in A that are larger than the central splitter in A[s + 2 . . . q].

4: RandQSORT(A, p, s);

5: RandQSORT(A, s + 2, q).
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Analysis of RandQSORT

Fact: Step 2 needs O(q − p) time.

Question: How many times Step 2 is executed for finding a
central splitter ?

Result:

The probability that the randomly chosen element is a central
splitter is 1

2 .

Implication

The expected number of times the Step 2 needs to be
repeated to get a central splitter is 2.

Thus, the expected time complexity of Step 2 is O(n)
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Analysis of RandQSORT

Time Complexity

Worst case size of each partition in j-th level of recursion is
n × (3

4)j .

Number of levels of recursion = log 4
3
n = O(log n).

Recurrence Relation of the time complexity:
T (n) = 2T (3n

4 ) + O(n) = O(n log n)
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Smallest Enclosing Disk
Problem
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Smallest Enclosing Disk

The Problem:

GIven a set of points P = {p1, p2, . . . , pn} in 2D, compute a disk
of minimum radius that contains all the points in P.

Trivial Solution: Consider each triple of points pi , pj , pk ∈ P, and
check whether every other point in P lies inside the circle defined
by pi , pj , pk . Time complexity: O(n4)

An Easy Implementable Efficient Solution: Consider furthest
point Voronoi diagram. Its each vertex represents a circle
containing all the points in P. Choose the one with minimum
radius. Time complexity: O(n log n)

Best Known Result: A complicated O(n) time algorithm (using
linear programming).



Introduction Quick Sort Smallest Enclosing Disk Min Cut Complexity Classes

Smallest Enclosing Disk
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Smallest Enclosing Disk

V-1(2)

V-1(4)

V-1(7)



Introduction Quick Sort Smallest Enclosing Disk Min Cut Complexity Classes

A Simple Randomized Algorithm

We generate a random permutation of the points in P.

Notations:

• Pi = {p1, p2, . . . , pi}.
• Di = the smallest enclosing disk of Pi .

An incremental procedure

Result:

If pi ∈ Di−1 then Di = Di−1.

If pi 6∈ Di−1 then pi lies on the
boundary of Di .

pi

Di−1

Di
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Algorithm MINIDISC(P)

Input: A set P of n points in the plane.
Output: The smallest enclosing disk for P.

1. Compute a random permutation of P = {p1, p2, . . . , pn}.
2. Let D2 be the smallest enclosing disk for {p1, p2}.
3. for i = 3 to n do
4. if pi ∈ Di−1

5. then Di = Di−1

6. else Di = MINIDISKWITHPOINT({p1, p2, . . . , pi}, pi )
7. return Dn.

Critical Step: If pi 6∈ Di−1.
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Algorithm MINIDISCWITHPOINT(P , q)

Idea: Incrementally add points from P one by one and compute
the smallest enclosing circle under the assumption that the point q
(the 2nd parameter) is on the boundary.

Input: A set of points P, and another point q.
Output: Smallest enclosing disk for P with q on the boundary.

1. Compute a random permutation of P = {p1, p2, . . . , pn}.
2. Let D1 be the smallest enclosing disk for {p1, q}.
3. for j = 2 to n do
4. if pj ∈ Dj−1

5. then Dj = Dj−1

6. else Dj = MINIDISKWITH2POINTS({p1, p2, . . . , pj}, pj , q)
7. return Dn.
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Algorithm MINIDISCWITH2POINT(P , q1, q2)

Idea: Thus we have two fixed points; so we need to choose another
point among P \ {q1, q2} to have the smallest enclosing disk
containing P.

1. Let D0 be the smallest disk with q1 and q2 on its boundary.
3. for k = 1 to n do
4. if pk ∈ Dk−1

5. then Dk = Dk−1

6. else Dk = the disk with q1, q2 and pk on its boundary
7. return Dn.
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Correctness

Result:
Let P be a set of points in the plane, and R be a set of points with
P ∩ R = φ. Then

If there is a disk that encloses P, and has all points of R on
its boundary, then the smallest enclosing disk is unique. We
shall denote this disk by md(P,R).

For a point p ∈ P,

if p ∈ md(P \ {p},R), then md(P,R) = md(P \ {p},R)
if p 6∈ md(P \ {p},R), then md(P,R) = md(P \ {p},R ∪ {p})
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Time Complexity

Worst case: O(n3)

Expected case:

MINIDISKWITH2POINTS needs O(n) time.

MINIDISKWITHPOINTS needs O(n) time if

we do not consider the time taken in the call of the
routine MINIDISKWITH2POINTS.

Question: How many times the routine MINIDISKWITH2POINTS
is called ?
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Expected Case Time Complexity

Backward Analysis

Fix a subset Pi = {p1, p2, . . . , pi}, and Di is the smallest
enclosing circle of Pi .

If a point p ∈ Pi is removed, and if p is in the proper interior
of Di , then the enclosing circle does not change.

However, if p is on the boundary of Di , then the circle gets
changed.

One of the boundary points is q. So, only for 2 other points,
MINIDISKWITH2POINTS will be called from
MINIDISKWITHPOINTS.
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Expected Case Time Complexity

Observation:

The probability of calling MINIDISKWITH2POINTS is 2
i .

Expected Running time of MINIDISKWITHPOINTS

O(n) +
n∑

i=2

O(i)× 2

i
= O(n)

Similarly, we have

Expected Running time of MINIDISK

O(n)
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Global Mincut Problem for
an Undirected Graph
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Global Mincut Problem

Problem Statement

Given a connected undirected graph G = (V ,E ), find a cut (A,B)
of minimum cardinality.

Applications:

Partitioning items in a database,

Identify clusters of related documents,

Network reliability,

Network design,

Circuit design, etc.
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Network Flow Solution

Replace every edge (u, v) with two directed edges (u, v) and
(v , u).

Choose a pseudo vertex s, and connect it with all each vertex
in v ∈ V by a directed edge (s, v).

For each vertex v ∈ V , compute the minimum s-v cut.

Result

Time complexity: O(nM), where M is the time complexity of the
best known algorithm for the Network Flow problem.

Best known result on Network Flow Problem:
Goldberg & Tarjan (1985) − O(|E ||V | log(|V |2/|E |))

Relatively Easy algorithm for Network Flow Problem:
Malhotra, Pramod Kumar and Maheswari (1978) − O(|V |3)
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A Simple Randomized Algorithm

Contration of an Edge

Contraction of an edge e = (x , y) implies merging the two vertices
x , y ∈ V into a single vertex, and remove the self loop. The
contracted graph is denoted by G/xy .

x

y xy

xy

222

G = (V, E) ContractedGraph

Contractedsimpleweightedgraph
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Results on Contration of Edges

Result - 1

As long as G/xy has at least one edge,

The size of the minimum cut in the weighted graph G/xy is
at least as large as the size of the minimum cut in G .

Result - 2

Let e1, e2, . . . , en−2 be a sequence of edges in G , such that

none of them is in the minimum cut of G , and

G ′ = G/{e1, e2, . . . , en−2} is a single multiedge.

Then this multiedge corresponds to the minimum cut in G .

Problem: Which edge sequence is to be chosen for contraction?
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Analysis

Algorithm MINCUT(G)

G0 ← G ; i = 0
while Gi has more than two vertices do

Pick randomly an edge ei from the edges in Gi

Gi+1 ← Gi/ei

i ← i + 1
(S ,V − S) is the cut in the original graph

corresponding to the single edge in Gi .

Theorem

Time Complexity: O(n2)

A Trivial Observation: The algorithm outputs a cut whose size is
no smaller than the mincut.
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Demonstration of the Algorithm

The given graph:

Stages of Contraction:

2 2 2
2

2 2

2 2

3 2 3 2

4 4
5

9

The corresponding output:
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Quality Analysis

A Big Question: How good is the solution?

Result 1:

If a graph G = (V ,E ) has a minimum cut of size k, and it has n
vertices, then |E | ≥ kn

2 .

But, we don’t know the min cut

Result 2:

If we pick a random edge e from the graph G , then the probability
of belonging it in the mincut is at most 2

n .
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Correctness

Theorem

The procedure MINCUT outputs the mincut with probability
≥ 2

n(n−1) .

Proof:
Let ηi ⇒ the event that ei picked in the ith step is not in the
mincut.

Probability that e1 in C = k
nk/2 = 2

n . ⇒ Pr [η1] = 1− 2
n .

Assuming η1 occurs, during the second step, the number of
edges in G1 is k(n−1)

2 .
Thus, Probability that e2 in C = 2

n−1 , and

Pr [η2|η1] = 1− 2
n−1 .

Proceeding similarly, we have

Pr [ηi | ∩i−1
j=1 ηj ] = 1− 2

n − i + 1
=

n − i − 1

n − i + 1
.
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Thus, in the worst case,
Probability that no edge in C is picked =

Pr [∩n−2
i=1 ηi ] = Πn−2

i=1 (
n − i − 1

n − i + 1
) =

2

n(n − 1)

Thus, we have
Probability of discovering a particular mincut is larger than 2

n2 .

Probabilistic Conclusion

Now, if we repeat the attempt n2

2 times, then the probability of not
getting a mincut is

(1− 2
n2 )

n2

2 = 1
e .

Result

By spending O(n4) time, we can reduce the failure probability
from 1− 2

n2 to a reasonably small constant value 1
e .
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Improving the Algorithm

Why MINCUT has high time complexity

The probability of getting a mincut is 2
n2 .

So, in order to get a correct solution with reasonable probability,
we need to repeat the process at least Ω(n2) times.

Remedy

Revise the contract process to increase the probability of getting a
mincut.
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Important Observations and Suggestions

Consider a mincut C.
Observation:

Initial contractions are very unlikely to involve edges from C.
At the end, when the number of edges apart from C is less.

Thus, the probability of choosing an edge from C increases.

Suggestions:

Repeat the earlier fast algorithm till the number of edges is
not very less.

After that use some slower algorithm that guarantees high
probability of not choosing member of C.
The first stage also guarantees that the second stage will not
take much time.
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Algorithm FASTCUT

FASTCUT(G = (V ,E ))
Input: G → A multigraph
begin

n← |V (G )|
if n ≤ 6 then
Compute (by brute force), the
mincut of G and return the cut.

else
t ← d1 + n√

2
e

H1 ← CONTRACT(G , t)
H2 ← CONTRACT(G , t)
X1 ← FASTCUT(H1)
X2 ← FASTCUT(H2)
return minimum cut out of X1 and X2

end.

CONTRACT(G = (V ,E ), t)
begin

while|V | > t do
Pick a random edge e ∈ E .
G ← G/e

return G
end.
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Theme of the Algorithm

We considered two contracted instances, each of size t;
computed their mincuts, and have chosen the one having
smaller size.

The recursion stopped hen n ≤ 6 since at that point of time
t = 1 + n√

2
becomes greater than n.

The computation can be viewed as a binary computation tree.
The height of this tree is log√2 n = 2 log n.

The number of leaves is 22 log n = n2.

Thus, we have generated n2 different min-cuts, as we did in
the earlier method.
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Difference with the Earlier Method

The difference with the earlier method is that,

In the earlier method, we created a tree of height 1 with
O(n2) leaves. Each leave correspond to a mincut.

In this method, we have created a tree of height 2 log n, and
with O(n2) leaves.

But, here we have shared the computation of generating
several mincuts.
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Time and Space Complexities

Theorem

FASTCUT runs in O(n2 log n) time and O(n2) space.

Proof: Time Complexity

H1 and H2 can be obtained in O(n2) time, since
Each contraction step needs O(n) time.
Contraction process continues O(n) times.

Thus, we have the recursion

T (n) = 2T (
n√
2
) + O(n2) = O(n2 log n).

Space:
At d-th level of recursion, the graph has O( n

2d/2 ) vertices.
Thus, the total space is

O(
∞∑

d=0

n2

2d
) = O(n2).
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Correctness Probability

Let C be a mincut.

ηi → In the i-th stage of contraction, ei is not in C.

Result:

P = Pr(H1 does not contain any edge of C) ≥ 1
2 .

Proof: The probability P = Pr(η0 ∩ η1 ∩ . . . ∩ ηn−t)

= Πn−t−1
i=0 (1− 2

n − i
) = Πn−t−1

i=0

n − i − 2

n − i

=
n − 2

n
× n − 3

n − 1
× n − 4

n − 2
× . . .

t

t + 2
× t − 1

t + 1

=
t.(t − 1)

n.(n − 1)

=
d1 + n/

√
2e(d1 + n/

√
2e − 1)

n(n − 1)
≥ 1

2
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Correctness Probability

Theorem

FASTCUT finds a mincut with probability Ω( 1
log n )

Proof:

P(n)→ Pr(algorithm succeeds on a graph of n vertices)
= Π2

i=1Pr(Hi does not contract any edge of C)
= Pr(H1 does not contract any edge of C)
= 1

2 × P( n√
2
)

Thus, Probability to fail on H1 ≤ 1− 1
2P( n√

2
)

Probability to fail on both H1 and H2 ≤ (1− 1
2P( n√

2
))2
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Correctness Probability

P(n) ≥ 1− (1− 1

2
P(

n√
2
))2 = P(

n√
2
)− 1

4
(P(

n√
2
))2

This, on simplification gives

P(n) ≥ 2 log 2

log n

[See Motwani and Raghavan, Randomized Algorithms, pages
292-295.]
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Types of Randomized Algorithms

Definition

Las Vegas: a randomized algorithm that always returns a correct
result. But the running time may vary between executions.

Example: Randomized QUICKSORT Algorithm

Definition

Monte Carlo: a randomized algorithm that terminates in
polynomial time, but might produce erroneous result.

Example: Randomized MINCUT Algorithm
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Complexity Classes

RP

The class Randomized Polynomial Time (RP) consists of all
languages L that have randomized algorithm A with worst case
polynomial running time, and if for any input x ∈ Σ∗

x ∈ L ⇒ Pr[A(x) accepts] ≥ 1
2

x 6∈ L ⇒ Pr[A(x) accepts] = 0.

RP algorithm is Monte Carlo, but the mistake can only be if x ∈ L

Co-RP

A class of Monte Carlo algorithms that can make mistake if x 6∈ L.

A problem in RP ∩ Co − RP
⇒ It has an algorithm that does not make any mistake.
In other words, it has a Las Vegas Algorithm.
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Complexity Classes

Zero Error Probabilistic Polynomial Time Algorithm (ZPP)

The class of languages that have Las Vegas algorithm in expected
polynmial time.

Example: QUICKSORT or Minimum Enclosing Circle Problem

Probabilistic Polynomial Time Algorithm (PP)

The class of languages that have randomized algorithm A with
worst case polynomial execution time, and for any input x ∈ Σ∗,

x ∈ L ⇒ Pr[A(x) accepts] > 1
2

x 6∈ L ⇒ Pr[A(x) accepts] < 1
2

An algorithm in PP is not very useful
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Las Vegas vs Monte-Carlo

Las Vegas → Monte-Carlo

A - Las Vegas algo with E [TA(x)] ≤ poly(n) for every x ∈ Σ∗.

By incorporating a counter which counts every elementary
step into A and stopping after, say, 4poly(n) steps, one gets a
polynomial time Monte-Carlo algorithm B with a guaranteed
confidence of at least 3

4 .
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Las Vegas vs Monte-Carlo

Monte-Carlo → Las Vegas

A - Monte-Carlo algorithm with θ1 = poly1(n) execution time,

success probability
1

θ2
, where θ2 = poly2(n).

Suppose correctness of output can be verified in θ3 = poly3(n)
time.

Run the algorithm A repeatedly until it gives a correct
solution.
Let it need k trials. k follows geometric distribution, with
E (k) = θ2.
Thus, we get a Las Vegas algo with expected time
(θ1 × θ3)× θ2, which is a polynomal in n.
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Conclusions

Employing randomness leads to improved simplicity and
improved efficiency in solving the problem.

It assumes the availability of a perfect source of independent
and unbiased random bits.

Access to truly unbiased and independent sequence of random
bits is expensive.
So, it should be considered as an expensive resource like time
and space.
Thus, one should aim to minimize the use of randomness to
the extent possible.

Assumes efficient realizability of any rational bias. However,
this assumption introduces error and increases the work and
the required number of random bits.

There are ways to reduce the randomness from several
algorithms while maintaining the efficiency nearly the same.
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