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Scope

Scope of the lecture

Characterisation of Planar Graphs: First we introduce planar
graphs, and give its characterisation alongwith some simple
properties.

Planarity Testing: Next, we give an algorithm to test if a given
graph is planar using the properties that we have uncovered.

Planar Embedding: Lastly we see how a given graph can be
embedded in a plane using straight lines.
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Motivation for Planar Graphs

What are Planar Graphs—Drawings?

Definition (Drawing)

Given a graph G = (V,E), a drawing maps each vertex v ∈ V to a
distinct point Γ(v) in plane, and each edge e ∈ E, e = (u, v) to a
simple open jordan curve Γ(u, v) with end points Γ(u), Γ(v).
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Γ(d)
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Γ(d)

Figure: Drawing of a graph
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Motivation for Planar Graphs

What are Planar Graphs—Non-crossing Drawings?

Definition (Planar Graphs)

Given a graph G = (V,E), G is planar if it admits a drawing such
that no two distinct drawn edges intersect except at end points.
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Γ(a)
Γ(b)

Γ(c)

Γ(d)

Γ(e)

Γ(d)

Figure: Planar drawing of a graph



Planarity Testing of Graphs

Introduction

Motivation for Planar Graphs

Motivation



Planarity Testing of Graphs

Introduction

Motivation for Planar Graphs

Properties of Planar Graph

There are number of interesting properties of planar graphs.

They are sparse.

They are 4-colourable.

A number of operations can be performed on them very
efficiently.

They can be efficiently stored (A data structure called
SPQR-trees even allows O(1) flipping of planar embeddings).

There size including faces, edges and vertices is O(n).
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Motivation for Planar Graphs

Applications of Planar Graph

Planar graphs are extensively used in Electrical, Mechanical and
Civil engineering.

Easy to visualize. In fact, crossing of edges is the main culprit
for reducing comprehensibility.

VLSI design, circuit needs to be on surface: lesser the
crossings, better is the design.

Highspeed Highways/Railroads design, crossings are always
problematic.

Irrigation canals, crossings simply not admissible.

Most of facility location problems on maps are actually
problems of planar graphs.
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Introduction

Problem Definition

Problem Definition: Planarity Testing

Problem (Decision Problem)

Given a graph G = (V,E), is G planar, i.e., can G be drawn in the
plane without edge crossings?
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Introduction

Problem Definition

Problem Definition: Planar Embedding

Problem (Computation Problem)

Given a graph G = (V,E), if G is planar, how can G be drawn in
the plane such that there are no edge crossings? I.e., compute a
planar representation of the graph G.
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Problem Definition

Question: K4

Is the following graph planar (K4)?

1

2

3

4

Figure: Graph K4
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Problem Definition

Planarity of K4

Yes K4 is planar.

1
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3

4

Figure: Planar graph K4
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Question: K5 and K3,3

Are the following graphs planar?

1

2

34

5

1

2

3

1’

2’

3’



Planarity Testing of Graphs

Introduction

Problem Definition

Answer for K5 and K3,3

No, they aren’t. There always will be at least one crossing.
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2

34
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3

1’

2’

3’

Full proofs by Euler’s celebrated theorem.
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Question

Is the following graph planar?
There are so many crossings (O(n2)).
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Figure: a hamiltonian graph
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Problem Definition

Answer

Yes! It is.
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Figure: Planar embedding of the last graph

But how to arrive at the answer?
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Characterisation of Planar Graphs
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Charecterisation of Planar Graphs

Basic Assumptions

We assume that our graphs are connected and there are no self
loops and no multi-edges.
Disconnected graphs, 1-degree vertices, multi-edges can be easily
dealt with.
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Charecterisation of Planar Graphs

Euler’s Relation for Planar Graphs

Euler’s Relation

Theorem (Euler’s Relation)

Given a plane graph with n vertices, m edges and f faces, we have
n−m + f = 2.

Fact

The exterior is also counted as a face. The above relation also
applies to simple polyhedrons with no holes.

Euler formula gives the necessary condition for a graph to be
planar[3].
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Charecterisation of Planar Graphs

Euler’s Relation for Planar Graphs

Euler’s Relation: Corollary 1

Figure: Octahedron; n = 6,m = 12 ≤ 3n− 6

Corollary

For a maximal planar graph, where each face is a triangle, we have
m = 3n− 6, and therefore, for any graph with at least three
vertices, we have m ≤ 3n− 6.

Proof:
∑

x∈F ex = 2m and therefore since ex ≥ 3, 2m ≥ 3f .
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Charecterisation of Planar Graphs

Euler’s Relation for Planar Graphs

Non-planarity of K5

Lemma

K5 is non-planar.

Proof: n = 5,m = 10 > 3n− 6 = 9.
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Charecterisation of Planar Graphs

Euler’s Relation for Planar Graphs

Euler’s Relation: Corollary 2

Figure: Cube; n = 8,m = 12 ≤ 2n− 4

Corollary

For a planar graph, where no face is a triangle, we have
m ≤ 2n− 4.

Proof:
∑

x∈F ex = 2m and therefore since ex ≥ 4, 2m ≥ 4f .
m ≤ 2n− 4 follows.
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Euler’s Relation for Planar Graphs

Non-planarity of K3,3

Lemma

K3,3 is non-planar.

Proof: K3,3 is bi-partite, therefore has no cycle of odd length,
hence if it is planar then no face will be triangular.
Then, n = 6,m = 9 > 2n− 4 = 8.
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Charecterisation of Planar Graphs

Euler’s Relation for Planar Graphs

Euler’s Relation: Corollary 3

Corollary

Any planar graph is 6 colourable.

Proof: Since m ≤ 3n− 6, there exists a vertex with degree less
than 6 (otherwise

∑
v dv = 2m⇒ 6n ≤ 2m).

By induction, if we remove this vertex, resulting graph is
6-colourable. Just give this vetex a colour other than the five
colours of the neighbours.
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Charecterisation of Planar Graphs

Euler’s Relation for Planar Graphs

Euler’s Relation: Corollary 4

Corollary

Any planar graph is 5 colourable.

Proof: The neighbours of 5-degree vertex aren’t all connected.
Take one such pair and do the following:

u

v
v

u

x
x

Figure: u and v are not connected

By induction, if we remove the vertex x and v, resulting graph is
5-colourable. Just give v same colour as u and x a colour other
than the 4 colours of the neighbours.
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Charecterisation of Planar Graphs

Kuratowski’s and Wagner’s Theorems

Concepts relating to Kuratowski’s and Wagner’s
Theorems

Euler’s conditions are necessary but not sufficient, for example join
K5 and K3,3 by an edge.
Next we look at Kuratowski’s and Wagner’s Theorems for
conditions of sufficiency.
Before stating the theorems, we need to understand subdivisions
and minors of a graph.
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Kuratowski’s and Wagner’s Theorems

What is subdivision and minor of a graph?

Subdivision

Minor

Figure: Subdivision and minors

Subdividing an edge in a planar graph does not make it
non-planar. Shrinking an edge of a planar vertex to make a single
vertex does not make it non-planar.
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Charecterisation of Planar Graphs

Kuratowski’s and Wagner’s Theorems

What is subdivision and minor of a graph?

In a way subdivision and minors are complementary. In subdivisions
we add a vertex and in minors we remove a vertex.
Algorithmically, both are expensive for planarity testing.
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Kuratowski’s and Wagner’s Theorems

Kuratowski’s Theorem

Definition

Subdividing any edge means replacing the edge with a path of
length 2.

Theorem (Kuratowski’s Theorem[6])

G is planar iff G contains no sub-division of K5 or K3,3.

As noted earlier, subdividing an edge in a planar graph does not
make it non-planar.
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Kuratowski’s and Wagner’s Theorems

Wagner’s Theorem

Theorem (Wagner’s Theorem[10])

G is planar iff G contains no subgraph which has K5 or K3,3 as
minor.

This is an alternate characterisation of planar graphs. See [4] for
yet another characterisation.
As noted earlier, shrinking an edge of a planar graph to make a
single vertex does not make it non-planar.
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Kuratowski’s and Wagner’s Theorems

Need of Subdivisions and Minors

Why do we need subdivisions or minors? Isn’t subgraphs sufficient?
Then we need to show a non-planar graph which do not have K5

or K3,3 as subgraphs.
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Kuratowski’s and Wagner’s Theorems

Peterson Graph

Figure: Peterson Graph

A graph which doesn’t have K5 or K3,3 as a subgraph.
However, it has a subdivision of K3,3 and both K5 and K3,3 as
minors.
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Charecterisation of Planar Graphs

Kuratowski’s and Wagner’s Theorems

Non-planarity of Peterson Graph

Figure: Peterson Graph

Peterson Graph has a subdivision of K3,3. The same subgraph can
also be used to get K3,3 as minor.



Planarity Testing of Graphs

Charecterisation of Planar Graphs

Kuratowski’s and Wagner’s Theorems

Non-planarity of Peterson Graph

Figure: Peterson Graph

Peterson Graph has K5 as a minor.
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Charecterisation of Planar Graphs

Proof of Kuratowski’s Theorem

Sufficiency Proof of Kuratowski’s Theorem

1

2

34

5

Proof of sufficiency: Suffuciency immediately follows from
non-planarity of K5 and K3,3.
Any subdivison of K5 and K3,3 is also non-planar.
Sufficiency condition of Wagner’s theorem can also be proved
easily. Shrinking edges will not change planarity. So, if we get K5

or K3,3 by shrinking edges, then initial subgraph must be
non-planar to start with.
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Charecterisation of Planar Graphs

Proof of Kuratowski’s Theorem

Proof of Necessary Condition of Kuratowski’s Theorem

Proof of necessity: Proof of necessity is a little difficult.

u v

Suppose G is non-planar.
First we remove edges and vertices of a non-planar graph such
that it becomes a minimal non-planar graph.
I.e. removing any edge will make the resulting graph planar.
How does removing an edge of a non-planar graph make it
planar?
Somehow we always need to join a vertex inside and outside
of a cycle.
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Charecterisation of Planar Graphs

Proof of Kuratowski’s Theorem

Necessary Condition of Kuratowski’s Theorem

Why can’t we move u or v to the other side?
There must be something which is stopping us doing that.
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Charecterisation of Planar Graphs

Proof of Kuratowski’s Theorem

Necessary Condition of Kuratowski’s Theorem

u vu

v

Either there is no common joining vertices but which make
conflicting ears. We get K3,3’s subdivision.

Or, there are three common joining vertices but which make
conflicting tripods. We get K5’s subdivision.
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Charecterisation of Planar Graphs

Proof of Kuratowski’s Theorem

Necessary Condition of Kuratowski’s Theorem

Thus it can be shown that

Fact

If G is non-planar it must contain either a sub-division of K3,3 or
K5.
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Planarity Testing

How to test Planarity

Question is—How to apply Kuratowski’s theorem? Obviously an
exponential method.
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Planarity Testing

Planarity testing using Kuratowski’s Theorem

To test for K5’s subdivision.

Choose 5 vertices of G.

Check if all 5 vertices are connected by
(
5
4

)
= 10 distinct

paths as K5.

To test for K3,3’s subdivision.

Choose 6 vertices of G.

Check if are 6 vertices connected by 3× 3 = 9 distinct paths
as K3,3.

As pointed out previously both are obviously exponential time
algorithms.
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Planarity Testing

Planarity testing using Wagner’s Theorem

This is easier to understand. Do the following for every edge.

Choose an edge of G (m choices).

Shrink it.

If 6 vertices are remaining check for K3,3

If 5 vertices are remaining check for K5

Repeat.

Worst case O(m!).
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Planarity Testing

Both are expensive

Conclusion: both are obviously exponential time algorithms.
How can we do it more efficiently?
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Planarity Testing

Outline of Planarity Testing

Basic Assumptions-I

We assume the following.

The given graph G does not have self loops or multi-edges.

G is undirected and satisfies m ≤ 3n− 6.

G is connected. If it is disconnected, we can test planarity of
disconnected components separately. This also means there
won’t be isolated vertices.

No vertex is of degree 1.

G is stored by adjacency lists. We also rename vertices v’s to
their dfs(v)’s.
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Planarity Testing

Outline of Planarity Testing

Basic Assumptions-II

v

G

G′

G

G′

v

G′

We further assume.

G is bi-connected. If G is not, it is easy to find cut-vertices
and test the planarity of each bi-connected component
separately.
We can embed the component in a face adjacent to the cut
vertex.
Actually we can make any face of a planar graph the outer
face.
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Planarity Testing

Outline of Planarity Testing

Outline of Planarity Testing

First we find out bi-connected components of the given graph
G.

Test planarity of each bi-connected component individually. If
all are planar then G is planar.

Assume that bi-connected component itself is G.

We do a depth-first-search and computer all tree edges and
forward/backward edges.

In the process we compute dfs(v)’s and two lowpoint arrays
L1(v)’s and L2(v)’s.

We sort the adjacency lists according to the criteria of
lowpoints.

There is one cycle, and we try to embed G branch by branch
recursively.



Planarity Testing of Graphs

Planarity Testing

Outline of Planarity Testing

Tree edges and Fronds

Tree edges

Fronds

No cross edges

Figure: DFS tree and backward/forward edges
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Planarity Testing

Outline of Planarity Testing

Lowpoints L1 and L2

We define lowpoints L1(u) and L2(u) for each vertex as follows.
Let S(u) be set of all descendants of u and T (u) be set of all
neighbours of S(u).

Definition

L1(u) = minT (u)
L2(u) = min(T (u)− L1(u))
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Planarity Testing

Outline of Planarity Testing

Lowpoints L1 and L2

L1(4) = 1, L2(4) = 2

1
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12

Figure: DFS tree and Lowpoints
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Planarity Testing

Outline of Planarity Testing

Facts about Lowpoints L1 and L2

Fact

Since G is 2-connected graph, it has no cut-vertices, so we can
conclude that L1(v) < u whenever u is parent of v and u is not
the root node. It follows that L2(v) ≤ u.

Fact

Low-points are well-defined, since every vertex has atleast 2
neighbours.
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Planarity Testing

Outline of Planarity Testing

Reordering of Edges

Next we reorder edges of a vertes so that components are added
on the tree in increasing depth of where they are attached on the
DFS tree.
Let a(v) denote the parent of v. Then weight of edge uv is defined
as

wtu(v) =


2v if uv is a frond with v < u
2L1(v) if a(v) = u and L2(v) = u
2L1(v) + 1 if a(v) = u and L2(v) < u
2n + 1 otherwise
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Planarity Testing

Outline of Planarity Testing

Reordering of Edges: Explanation

r

a
b

c

uv

s x
w

t

Figure: DFS tree and Lowpoints

At vertex u the branches are embedded in the order
Bu(x), ua,Bu(v), ub,Bu(w), and ut
Since wtu[x] = 2r < wtu[a] = 2a < wtu[v] = 2a + 1 < wtu[b] =
2b = wtu[w] < wtu[t] = 2n + 1
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Planarity Testing

Outline of Planarity Testing

Two type of branches

A branch Bu(v), where u = a(v), with L2(v) = u is called a type I
branch. If L2(v) < u it is called a type II branch.
Type I branches are easier.
We need to calculate branch points b(v) where v separates first
from the main trunk.

Fact

G is planar iff each brance can be embedded on one side of its
stem (defined as strongly planar, as in Mehlhorn’s book). Stem is
the part from L1 point to the beginning of the branch.

This enables us to check conflict only among the branches (called
segments in the Mehlhorn’s book).



Planarity Testing of Graphs

Planarity Testing

Outline of Planarity Testing

Branch Points

Figure: Branch Points of Each Branch

Fact

The way ordering of edges is done, the stem is always formed by
the first children till a frond is encountered.
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Planarity Testing

Outline of Planarity Testing

Conflicting branches and fronds

Ordering of Adj[u] by weights is not sufficient to guarantee that an
embedding is possible without further refinement.

Figure: Conflicting Fronds and Branches

If there is a conflict then we must embed on the opposite sides of
the current path from root.
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Planarity Testing

Algorithm for Planarity Testing

Outline of Algorithm I

We embed the whole graph using the DFS tree T branch by
branch.

Since G is bi-connected, initially we will have a cycle.

A frond uv, where v < u, is embedded either on the left side
of T or on the right side.

So we have an embedding of T in the plane, with the fronds
arranged around T giving an embedding of G.

We first determine an ordering of adj(u) so that the branch
points are guaranteed to permit an embedding when G is
planar.

Then, following Hopcroft and Tarjan, we keep two linked lists
of fronds, LF and RF containing the fronds and branches
embedded on the left of T and on the right of T , respectively.
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Planarity Testing

Algorithm for Planarity Testing

Outline of Algorithm II

LF and RF can be viewed as stacks, whose tops contain the
number of the vertex currently marking the upper limit in the
tree to which fronds may be embedded.

We also construct the conflict graph of branches in LF and
RF as IG which is a bipartite graph.

Each branch in turn is embedded recursively.
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Planarity Testing

Algorithm for Planarity Testing

K5 Planarity Testing

How does K5 fare in our algorithm?
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Figure: Testing of Planarity for K5
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Planarity Testing

Algorithm for Planarity Testing

K3,3 Planarity Testing

How does K3,3 fare in our algorithm?
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Figure: Testing of Planarity for K3,3
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Planarity Testing

Algorithm for Planarity Testing

Algorithm: EmbedBranch I

EmbedBranch(u: vertex)

for each v in Adj[u] do

NonPlanar := true

if a(v) = u then { uv is a tree edge }

if b(v) = u then { uv begins a new branch at u }

if L1(v) is too small to permit an embedding then Exit

place Bu (v) either on LF or RF

EmbedBranch(v)

if NonPlanar then Exit

else if v < u then { uv is a frond }

EmbedFrond(u, v)

if EmbedFrond is unsuccessful then Exit

NonPlanar := false { no conflicting fronds were found }
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Planarity Testing

Algorithm for Planarity Testing

Analysis and Correctness of Planarity Algorithm

EmbedBranch is called repeatedly in the order of DFS algorithm
for every branch that is encountered.
It is hard to see the algorithm works. Harder still to see it can be
made to work in linear time[7].
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Planar Embedding of Graphs
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Planar Embedding

Planar Embedding Theorem

Theorem

Let G be a 2-connected planar graph. Then we can embed G in
the plane in linear time[4, 8]
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Planar Embedding

Other embeddings

The embedding that we have obtained has curved edges.
Sometimes we need different criteria for embedding, such as:

Edges might be needed to be straight.

Further, vertices might be needed on the grid.

Furthermore, area might be needed to be minimized.

Or we need edges made of orthogonal segments (then
additionally vertices will need to be rectangular regions, for
degree > 4).
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Planar Embedding

Straight Line embedding: Basic Idea

v v

Figure: Straight Line Embedding

First we triangulate the planar graph. Start with an outer edge
then add vertex after vertex.
We choose v such that it is connected to all consecutve nodes on
the chain.
Then we shift the other vertices on the chain either right or left.



Planarity Testing of Graphs

Planar Embedding

Straight Line Planar Embedding Theorem

Theorem

Any planar graph with n nodes has a straight line embedding into
the 2n− 4 by n− 2 grid such that edges are mapped into
straight-line segments. Also such an embedding can be
constructed in O(n log n) time.[8, 1, 9]
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Tuttes Theorem

Theorem (Tuttes Theorem)

If G is a 3-connected planar graph, then G has a convex embedding
in the plane.

This is a stronger result that Kuratowskis theorem.
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Open Problems and Generalisations

Planar graphs which admit straight-line grid drawings on grids
of linear area.

Planar graphs which admit unit length straight-line edges.

Planar graphs can be generalised to higher dimension where
we have hyper-faces.

If we allow crossings, then sometimes it makes sense to
minimise crossings.

There is a concept of book thickness of graphs. We embed
the graph such that vertices are in spine and edges can be in
the pages. We have to minimise number of pages.
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Summary

We studied the concept of graph planarity.

We gave a short proof of Kuratowski’s theorem.

Next we saw how we can answer queries about planarity of
graph.

We looked into calculation of embeddings.

Now we are for the final concluding remarks.
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You may read

Harary’s book for basic graph theory[3].

Hopcroft and Tarjan’s paper[5] for linear planarity testing.

Mehlhorn and Mutzel’s paper[8] for linear planar embeddings.

S. Even, A. Lempel, and I. Cederbaum’s work[2] for a simpler
embedding algorithm.

Chapter 4 of Mehlhorn’s book[7] for details.
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At Last . . .
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