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Shortest Paths Problem

Problem Domain
Graph G = (V , E), with n = |V |, m = |E |, ω : E → R.
P(u, v) : shortest path from u to v .
δ(u, v) : distance from u to v .
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Shortest Paths Problem

Single Source Shortest Paths (SSSP)

Positive edge weights:
Dijkstra’s algorithm : O(m + n log n) time, O(n) space.

Negative edge weights (but no negative cycle):
Bellman Ford algorithm : O(mn) time, O(n) space.

All-Pairs Shortest Paths (APSP)

Floyd and Warshal Algorithm : O(n3)

Johnson’s algorithm : O(mn + n2 log n)

Pettie [2004] : O(mn + n2 log log n)
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Shortest paths in planar graphs

Planar graph

A graph is said to be planar if its vertices can be embedded on
a sphere so that no two edges cross each others.

Research on SSSP for planar graphs

For possibly negative weights

Late 70’s : O(n1.5)

...

Klein[2006] : O(n log n)

Key ingredients

• Topology.
• Small size separator.
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Shortest paths in presence of vertex failure

Algorithmic Objective

Construct a data-structure that supports following query.

report P(x , y , z) : the shortest path from x to y in G\{z}.

report δ(x , y , z) : the length of the path P(x , y , z).
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Motivation and applications

A model for dynamic shortest paths
1 At any time a subset S ⊂ V of at most t vertices may be

down.
2 The set S may keep changing but |S| ≤ t holds always.

Other applications

k-shortest paths problem

most vital node or link
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Single source shortest paths in presence of vertex failure

Trivial upper bound

preprocessing time: O(mn)

space: O(n2)

Lower bounds for directed graphs

preprocessing time: Ω(m
√

n)

space: Ω(n2)
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Replacement paths problem for a source-destination pair
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Replacement paths problem for a (r , t) pair

Problem definition
Given an undirected graph, a source r and destination t ,
compute P(r , t , e) efficiently for all e ∈ P(r , t).

Solution
O(m) time and O(n) space solution
Gupta and Malik [1989], Hershberger and Suri [2001]
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Notations used
Tr : shortest path tree rooted at r .

Tr (x) : subtree of Tr rooted at x .
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Replacement paths problem for a (r , t) pair

Key Ideas
1 Revisiting the shortest paths problem

2 Investigating the properties of P(r , t , e)

3 Deriving key observations

4 Using elementary data structure
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Handling an edge failure

Revisiting the shortest paths problem

Recall Dijkstra’s algorithm ...

1 optimal subpath property

2 use of Heap data structure
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Investigating properties of P(r , t , e)

. . . .

replacements

e

r

t

Ue

Tr (y)

How does the path P(r , t , e) look like ?
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Observation 1

. . . .

e

r

t

u
v

Ue

Tr (y)

Once P(r , t , e) leaves Ue, it never enters Ue again
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Observation 2

. . . .

e

r

t

u
v

Ue

Tr (y)

P(v , t , e) is the same as P(v , t)
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Replacement paths problem for (r , t) pair

Key idea

For an edge e = (x , y)

δ(r , t , e) = min
(u,v)∈E,u∈Ue,v∈Tr (y)

δ(r , u) + ω(u, v) + δ(t , v)
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Replacement paths problem for (r , t) pair

Key idea

For an edge e = (x , y)

δ(r , t , e) = min
(u,v)∈E,u∈Ue,v∈Tr (y)

δ(r , u) + ω(u, v) + δ(t , v)

solution lies in classical SSSP itself !!
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Replacement paths problem for (r , t) pair

An O(m) time and O(n) space solution

build shortest path tree Tr rooted at source r

build shortest path tree Tt rooted at destination t

use Heap on crossing edges with suitable weights.
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All-pairs replacement paths problem
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Problem Definition
Compute a compact data structure for reporting P(r , t , x)
and/or δ(r , t , x) for all r , t , x ∈ V in optimal time.

Solution
Demetrescu et al. [SICOMP 2008]

Õ(n2) storage-space and O(mn2 polylog n) processing time.
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Problem Definition
Compute a compact data structure for reporting P(r , t , x)
and/or δ(r , t , x) for all r , t , x ∈ V in optimal time.

Solution
Demetrescu et al. [SICOMP 2008]

Õ(n2) storage-space and O(mn2 polylog n) processing time.

Bernstein and Karger [STOC 2009]
Improved processing time to O(mn polylog n).
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Overcoming challenges through Collaboration

A toy problem :

Given an array A storing n numbers, design a data structure to
to answer query of the following kind

report_min(A, i , j): smallest element from
{A[i], A[i + 1], ..., A[j]}.

Trivial solution
Build an n × n table M where M[i , j] stores the smallest element
from {A[i], A[i + 1], ..., A[j]}.



Shortest paths problem in static setting Replacement paths problem for a source destination pair All-pairs shortest paths avoiding ver

Solving the toy problem through collaboration
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Solving the toy problem through collaboration

A

i j
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O(n log n) space and O(1) query time solution
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Solving all-pairs replacement paths problem
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Solving all-pairs replacement paths problem
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Solving all-pairs replacement paths problem

For each u ∈ V and i ∈ [0, log2 n], do

Compute and store δ(u, v , x) for all x lying at level 2i in G.

Compute and store δ(u, v , x) for all x lying at level 2i in Gr .
(guess why ... )

Compute and store δ(u, v , P) for all paths P starting from a
vertex at level 2i−1 to level 2i . (guess why ...)
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Recent results on replacement paths

Efficient solution for Approximate replacement paths

Efficient solution for Planar graphs
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Single source shortest paths in presence of vertex failure

Trivial upper bound

preprocessing time: O(mn)

space: O(n2)

Lower bounds

preprocessing time: Ω(m
√

n)

space: Ω(n2)
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New results for approximate replacement paths
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New results for approximate replacement paths

Compact data structures for

Single Source approximate shortest paths avoiding any
failed vertex
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New results for approximate replacement paths

Compact data structures for

Single Source approximate shortest paths avoiding any
failed vertex

All-pairs approximate shortest paths avoiding any failed
vertex
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New results for approximate replacement paths

Compact data structures for

Single Source approximate shortest paths avoiding any
failed vertex

All-pairs approximate shortest paths avoiding any failed
vertex

Optimality !!

the size of our data structures nearly match their best static
counterpart. [STACS 2010]
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Single source version

best static result
keep a shortest path tree, space = O(n)
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Single source version

best static result
keep a shortest path tree, space = O(n)

New result I
Single source approx. shortest paths avoiding a failed vertex

Stretch Space

Weighted graph 3 O(n log n)
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Single source version

best static result
keep a shortest path tree, space = O(n)

New result I
Single source approx. shortest paths avoiding a failed vertex

Stretch Space

Weighted graph 3 O(n log n)

Unweighted graph (1 + ǫ) O(n/ǫ3 log n)
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All-pairs version

best static result by Thorup and Zwick [JACM 2005]

All-pairs (2k − 1)-Approximate shortest paths oracle

Stretch Space Query time
(2k − 1) O(kn1+1/k ) O(k)
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All-pairs version

best static result by Thorup and Zwick [JACM 2005]

All-pairs (2k − 1)-Approximate shortest paths oracle

Stretch Space Query time
(2k − 1) O(kn1+1/k ) O(k)

New result II
For unweighted graphs, an oracle capable of handling single
vertex failure
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All-pairs version

best static result by Thorup and Zwick [JACM 2005]

All-pairs (2k − 1)-Approximate shortest paths oracle

Stretch Space Query time
(2k − 1) O(kn1+1/k ) O(k)

New result II
For unweighted graphs, an oracle capable of handling single
vertex failure

Stretch Space Query time
(2k − 1)(1 + ǫ) O( k

ǫ4 n1+1/k log n) O(k)
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New results for planar graphs [unpublished]
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single source

Preprocessing time: O(n log4)

Space: O(n log4 n)

Query time: O(log2 n)
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single source

Preprocessing time: O(n log4)

Space: O(n log4 n)

Query time: O(log2 n)

All-pairs

Preprocessing time: O(n
√

n)

Space: O(n
√

n)

Query time: O(
√

n)
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Open problems

For weighted graphs, is it possible to have single source
oracle with O(n) space but stretch better than 3 ?
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Open problems

For weighted graphs, is it possible to have single source
oracle with O(n) space but stretch better than 3 ?

Extending the results of planar graphs to bounded genus
graphs.


	Shortest paths problem in static setting
	Replacement paths problem for a source destination pair
	All-pairs shortest paths avoiding vertex failure
	Recent results on replacement paths

