Shortest paths in presence of node or link failures

Surender Baswana

Indian Institute of Technology Kanpur, India

Shortest Paths Problem

Problem Domain

Graph $G=(V, E)$, with $n=|V|, m=|E|, \omega: E \rightarrow R$. $P(u, v)$: shortest path from u to v.
$\delta(u, v)$: distance from u to v.

Shortest Paths Problem

Single Source Shortest Paths (SSSP)

- Positive edge weights:

Dijkstra's algorithm: $O(m+n \log n)$ time, $O(n)$ space.

- Negative edge weights (but no negative cycle): Bellman Ford algorithm : $O(m n)$ time, $O(n)$ space.

All-Pairs Shortest Paths (APSP)

- Floyd and Warshal Algorithm : $O\left(n^{3}\right)$
- Johnson's algorithm: $O\left(m n+n^{2} \log n\right)$
- Pettie [2004] : $O\left(m n+n^{2} \log \log n\right)$

Shortest paths in planar graphs

Planar graph

A graph is said to be planar if its vertices can be embedded on a sphere so that no two edges cross each others.

Research on SSSP for planar graphs

For possibly negative weights

- Late 70's: $O\left(n^{1.5}\right)$
- ...
- Klein[2006]: $O(n \log n)$

Key ingredients

- Topology.
- Small size separator.

Shortest paths in presence of vertex failure

Algorithmic Objective

Construct a data-structure that supports following query.

- report $P(x, y, z)$: the shortest path from x to y in $G \backslash\{z\}$.
- report $\delta(x, y, z)$: the length of the path $P(x, y, z)$.

Motivation and applications

A model for dynamic shortest paths

(1) At any time a subset $S \subset V$ of at most t vertices may be down.
(2) The set S may keep changing but $|S| \leq t$ holds always.

Other applications

- k-shortest paths problem
- most vital node or link

Single source shortest paths in presence of vertex failure

Trivial upper bound

- preprocessing time: $O(m n)$
- space: $O\left(n^{2}\right)$

Lower bounds for directed graphs

- preprocessing time: $\Omega(m \sqrt{n})$
- space: $\Omega\left(n^{2}\right)$

Replacement paths problem for a source-destination pair

Replacement paths problem for a (r, t) pair

Problem definition

Given an undirected graph, a source r and destination t, compute $P(r, t, e)$ efficiently for all $e \in P(r, t)$.

Solution

$O(m)$ time and $O(n)$ space solution Gupta and Malik [1989], Hershberger and Suri [2001]

Notations used

T_{r} : shortest path tree rooted at r.
$T_{r}(x)$: subtree of T_{r} rooted at x.

Replacement paths problem for a (r, t) pair

Key Ideas

© Revisiting the shortest paths problem
(2) Investigating the properties of $P(r, t, e)$
(3) Deriving key observations
(ㅇ) Using elementary data structure

Handling an edge failure

Revisiting the shortest paths problem

Recall Dijkstra's algorithm ...
© optimal subpath property
(2) use of Heap data structure

Investigating properties of $P(r, t, e)$

How does the path $P(r, t, e)$ look like ?

Observation 1

Once $P(r, t, e)$ leaves U_{e}, it never enters U_{e} again

Observation 2

$P(v, t, e)$ is the same as $P(v, t)$

Replacement paths problem for (r, t) pair

Key idea

For an edge $e=(x, y)$

$$
\delta(r, t, e)=\min _{(u, v) \in E, u \in U_{e}, v \in T_{r}(y)} \delta(r, u)+\omega(u, v)+\delta(t, v)
$$

Replacement paths problem for (r, t) pair

Key idea

For an edge $e=(x, y)$

$$
\delta(r, t, e)=\min _{(u, v) \in E, u \in U_{e}, v \in T_{r}(y)} \delta(r, u)+\omega(u, v)+\delta(t, v)
$$

Replacement paths problem for (r, t) pair

An $O(m)$ time and $O(n)$ space solution

- build shortest path tree T_{r} rooted at source r
- build shortest path tree T_{t} rooted at destination t
- use Heap on crossing edges with suitable weights.

All-pairs replacement paths problem

Problem Definition

Compute a compact data structure for reporting $P(r, t, x)$ and/or $\delta(r, t, x)$ for all $r, t, x \in V$ in optimal time.

Solution

- Demetrescu et al. [SICOMP 2008]
$\tilde{O}\left(n^{2}\right)$ storage-space and $O\left(m n^{2}\right.$ polylog $\left.n\right)$ processing time.

Problem Definition

Compute a compact data structure for reporting $P(r, t, x)$ and/or $\delta(r, t, x)$ for all $r, t, x \in V$ in optimal time.

Solution

- Demetrescu et al. [SICOMP 2008] $\tilde{O}\left(n^{2}\right)$ storage-space and $O\left(m n^{2}\right.$ polylog $\left.n\right)$ processing time.
- Bernstein and Karger [STOC 2009] Improved processing time to $O(m n$ polylog $n)$.

Overcoming challenges through Collaboration

A toy problem :
Given an array A storing n numbers, design a data structure to to answer query of the following kind

- report_min (A, i, j) : smallest element from $\{A[i], A[i+1], \ldots, A[j]\}$.

Trivial solution

Build an $n \times n$ table M where $M[i, j]$ stores the smallest element from $\{A[i], A[i+1], \ldots, A[j]\}$.

Solving the toy problem through collaboration

Solving the toy problem through collaboration

$O(n \log n)$ space and $O(1)$ query time solution

Solving all-pairs replacement paths problem

Solving all-pairs replacement paths problem

Solving all-pairs replacement paths problem

For each $u \in V$ and $i \in\left[0, \log _{2} n\right]$, do

- Compute and store $\delta(u, v, x)$ for all x lying at level 2^{i} in G.
- Compute and store $\delta(u, v, x)$ for all x lying at level 2^{i} in G^{r}. (guess why ...)
- Compute and store $\delta(u, v, P)$ for all paths P starting from a vertex at level 2^{i-1} to level 2^{i}. (guess why ...)

Recent results on replacement paths

- Efficient solution for Approximate replacement paths
- Efficient solution for Planar graphs

Single source shortest paths in presence of vertex failure

Trivial upper bound

- preprocessing time: $O(m n)$
- space: $O\left(n^{2}\right)$

Lower bounds

- preprocessing time: $\Omega(m \sqrt{n})$
- space: $\Omega\left(n^{2}\right)$

New results for approximate replacement paths

New results for approximate replacement paths

Compact data structures for

- Single Source approximate shortest paths avoiding any failed vertex

New results for approximate replacement paths

Compact data structures for

- Single Source approximate shortest paths avoiding any failed vertex
- All-pairs approximate shortest paths avoiding any failed vertex

New results for approximate replacement paths

Compact data structures for

- Single Source approximate shortest paths avoiding any failed vertex
- All-pairs approximate shortest paths avoiding any failed vertex

Optimality !!

the size of our data structures nearly match their best static counterpart. [STACS 2010]

Single source version
best static result
keep a shortest path tree, space $=O(n)$

Single source version

best static result

keep a shortest path tree, space $=O(n)$

New result I
Single source approx. shortest paths avoiding a failed vertex

	Stretch	Space
Weighted graph	3	$O(n \log n)$

Single source version

best static result

keep a shortest path tree, space $=O(n)$

New result
Single source approx. shortest paths avoiding a failed vertex

	Stretch	Space
Weighted graph	3	$O(n \log n)$
Unweighted graph	$(1+\epsilon)$	$O\left(n / \epsilon^{3} \log n\right)$

All-pairs version

best static result by Thorup and Zwick [JACM 2005]

All-pairs $(2 k-1)$-Approximate shortest paths oracle

Stretch	Space	Query time
$(2 k-1)$	$O\left(k n^{1+1 / k}\right)$	$O(k)$

All-pairs version

best static result by Thorup and Zwick [JACM 2005]

All-pairs $(2 k-1)$-Approximate shortest paths oracle

Stretch	Space	Query time
$(2 k-1)$	$O\left(k n^{1+1 / k}\right)$	$O(k)$

For unweighted graphs, an oracle capable of handling single vertex failure

All-pairs version

best static result by Thorup and Zwick [JACM 2005]

All-pairs $(2 k-1)$-Approximate shortest paths oracle

Stretch	Space	Query time
$(2 k-1)$	$O\left(k n^{1+1 / k}\right)$	$O(k)$

For unweighted graphs, an oracle capable of handling single vertex failure

Stretch	Space	Query time
$(2 k-1)(1+\epsilon)$	$O\left(\frac{k}{\epsilon^{4}} n^{1+1 / k} \log n\right)$	$O(k)$

New results for planar graphs [unpublished]

single source

- Preprocessing time: $O\left(n \log ^{4}\right)$
- Space: $O\left(n \log ^{4} n\right)$
- Query time: $O\left(\log ^{2} n\right)$

single source

- Preprocessing time: $O\left(n \log ^{4}\right)$
- Space: $O\left(n \log ^{4} n\right)$
- Query time: $O\left(\log ^{2} n\right)$

All-pairs

- Preprocessing time: $O(n \sqrt{n})$
- Space: $O(n \sqrt{n})$
- Query time: $O(\sqrt{n})$

Open problems

- For weighted graphs, is it possible to have single source oracle with $O(n)$ space but stretch better than 3 ?

Open problems

- For weighted graphs, is it possible to have single source oracle with $O(n)$ space but stretch better than 3 ?
- Extending the results of planar graphs to bounded genus graphs.

