Geometric Graphs

Sathish Govindarajan Indian Institute of Science, Bangalore

Workshop on Introduction to Graph and Geometric Algorithms
National Institute of Technology, Patna

Geometric Graph ——

- $\star V = \text{set of geometric objects (point set in the plane)}$
- \star $E = \{(u, v)\}$ based on some geometric condition

Questions on Geometric Graphs —

- **★** Problems on graphs
 - We Independent set, coloring, clique, etc.

- ★ Combinatorial/Structural questions
 - Obtain Bounds
 - Characterization

- ★ Computational questions
 - Efficient Algorithm
 - Approximation

Geometric graphs —

- $\star V$ set of geometric objects
- \star E object i and j satisfy certain geometric condition
- ★ Broad classes of geometric graphs (based on edge condition)
 - Proximity graphs
 - Intersection graphs
 - Distance based graphs

Proximity Graphs –

- \star P point set in plane
- $\star R_{i,j}$ proximity region defined by i and j

- $\star V$ point set P
- ★ $(i,j) \in E$ if $R_{i,j}$ is empty
- ★ Examples Delaunay, Gabriel, Relative Neighborhood Graph
- ★ Applications Graphics, wireless networks, GIS, computer vision, etc.

Delaunay Graph - Classic Example —

 \star P - point set in plane

- $\star V$ point set P
- \bigstar (i, j) ∈ E if \exists some empty circle thro' i and j
- ★ Triangle (i, j, k) if circumcircle(i, j, k) is empty (Equivalent condition)
- * Applications Graphics, mesh generation, computer vision, etc.

Questions on Delaunay Graph ——

- ★ Combinatorial Bounds on
 - Maximum size of edge set?
 - Chromatic number?
 - Maximum independent set?

(Over all possible point sets P)

- **★** Computational
 - Efficient Algorithm

Delaunay Graph - Classic Example ——

 \star P - point set in plane

★ Observations:

Delaunay Graph - Classic Example ——

 \star P - point set in plane

★ Observations: Planar?

Delaunay Graph - Planar ———

Delaunay Graph - Planar ——

Delaunay Graph - Planar ——

Delaunay Graph - Planar ——

★ Let, if possible, 2 edges cross

★ Circles c'ant intersect like this (why?)

Delaunay Graph - Planar —

- ★ Circles c'ant intersect like this (why?)
- ★ One endpoint of an edge lies within the other circle
 - Contradiction

Delaunay Graph - Proof using angles -

- \star Consider any circle passing through c and d
- \bigstar Points a and b are outside the circle

 $\bigstar \angle cad + \angle cbd < 180$

Delaunay Graph - Proof using angles -

- \star Let, if possible, edges ab and cd cross
- \star Consider the quadrilateral acdb

- $\star cd$ is an edge $\implies \angle cad + \angle cbd < 180$
- ★ ab is an edge $\implies \angle acb + \angle adb < 180$
- \star $\angle cad + \angle cbd + \angle acb + \angle adb < 360$
 - Contradiction

Questions on Delaunay Graph —

- \star Given any *n*-point set P in the plane
 - Delaunay graph is planar
- ★ Maximum size of edge set
 - $\approx \le 3n 6$ (Euler's formula)
- ★ Chromatic number
 - ≥ 4 (Four color theorem)
- **★** Maximum independent set
 - $\geq n/4$ (Chromatic number)

Delaunay Graph ——

 \star P - point set in plane

- $\bigstar V$ point set P
- **★** $(i,j) \in E$ if \exists some empty **circle** thro' i and j

Delaunay Graph - Variants —

- ★ Edges defined by other objects (instead of circles)
- ★ $(i,j) \in E$ if \exists some empty rectangle thro' i and j

- ★ Bounds on the size of maximum independent set?
- * Application: Frequency assignment in wireless networks

Delaunay Graph wrt Rectangles —

★ $(i,j) \in E$ if \exists some empty rectangle thro' i and j

- **★** Graph Properties
 - $\ \ref{eq:can}$ Graph can have $\Omega(n^2)$ edges
 - $\ll K_n, n \geq 5$ is a forbidden subgraph

Bounds on Independent Set Size —

Theorem: Any Delaunay graph (wrt rectangles) has an independent set of size at least $\sqrt{n}/2$

Bounds on Independent Set Size —

- **★** Same slope sequence of points
 - * +ve slope sequence (Red)
 - → ve slope sequence (Blue)

- \star Same slope sequence of size 2k

Bounds on Independent Set Size —

Erdos-Szekeres Theorem: Let P be any set of $m^2 + 1$ points in the plane. There exists a same slope sequence (+ve or -ve) of size m + 1.

- ★ Atleast six different proofs(Monotone subsequence survey by Michael Steele)
- \star Let S be any sequence of $m^2 + 1$ integers. There exists a monotonic subsequence (increasing or decreasing) of size m + 1.

Independent Set - Open Problem —

- ★ Size of maximum independent set Lower bound
 - $\approx \Omega(n^{0.5})$ (Slope sequence)
 - \mathbb{Z} Improved to $\Omega(n^{0.618-\epsilon})$ (Ajwani et al, SPAA '07)
- ★ Size of maximum independent set Upper bound
 - $O(n/\log n)$ (Pach et al '08)
- \star Conjecture: Close to $O(n/\log n)$
- ★ Open problem : Obtain better upper/lower bounds

Intersection Graphs ——

- **★** Interval Graph Classic example
- \star S set of geometric objects s_i (intervals on the real line)

- $\star V$ set of object s_i
- \star $(s_i, s_j) \in E$ if objects s_i and s_j intersect

Interval Graphs —

 \star S - set of intervals on the line

- $\star V$ set of object s_i
- \bigstar $(s_i, s_j) \in E$ if objects s_i and s_j intersect
- ★ Graph problems Maximum independent set, Maximum clique, Chromatic number, etc.
 - **%** Can be computed efficiently

Intervals ———

 \star S - set of intervals on the real line

★ Every 2 intervals in S intersect

★ Claim: All the intervals have a common intersection

Intervals ——

- \star S set of intervals on the real line
- ★ Every 2 intervals in S intersect

★ Claim: All the intervals have a common intersection

Intervals -

- \star S set of intervals on the real line
- ★ Every 2 intervals in S intersect
- ★ Claim: All the intervals have a common intersection

- **★** Induction proof (Exercise)
- **★** Constructive proof
 - \sim Construct a point p that is contained in all the intervals

Intervals -

- \star S set of intervals on the real line
- ★ Every 2 intervals intersect
- **★** Constructive proof
 - \sim Construct a point p that is contained in all the intervals
- \star p: Right endpoint of interval that ends leftmost
 - Leftmost right endpoint

 \star Claim: All the intervals contain p

Intervals -

- \star Construct a point p that is contained in all the intervals
- \star p: Right endpoint of interval that ends leftmost
 - Leftmost right endpoint
- \bigstar Claim: All the intervals contain p
- **★** Proof by contradiction

Intersection Graphs of Axis Parallel Rectangles —

- \star S set of axis parallel rectangles
- ★ Every 2 rectangles intersect
 - \sim Claim: There exists a point p contained in all the rectangles
 - Is it true?

Intersection Graphs of Circles ——

- \star S set of circles
- ★ Every 2 circles intersect
 - \aleph Claim: There exists a point p contained in all the circles

Intersection Graphs of Circles ——

- \star S set of circles
- ★ Every 2 circles intersect
 - \sim Claim: There exists a point p contained in all the circles
 - Not true

Intersection Graphs of Circles ——

- \star S set of circles
- ★ Every 2 circles intersect
 - \sim Claim: There exists a point p contained in all the circles
 - Not true
- ★ Every 3 circles intersect
 - \sim Claim: There exists a point p contained in all the circles
 - ***** True
- ★ Helly Theorem: Statement true for convex objects

Distance based Graphs —

- **★** Unit distance graph

 - $(i,j) \in E \text{ if } d(i,j) = 1$

- ★ Place points so as to maximize the number of edges
- \star Can you get a complete graph? (even for n=4)

Distance based Graphs —

- **★** Unit distance graph
 - $\not \sim V$ point set in plane
 - $(i,j) \in E \text{ if } d(i,j) = 1$

Unit Distance Graph -

- \star V point set P
- \bigstar $(i,j) \in E$ if d(i,j) = 1
- ★ Maximum number of edges? (Erdos)
 - ^ℯ Over all possible n-point set
- \star $O(n^{3/2})$ edges
 - \aleph Forbidden $K_{2,3}$

- \star $O(n^{4/3})$ edges
 - & Crossing Lemma, Cuttings, Arrangement of Circles

Unit Distance Graph - Open Problem —

- ★ Upper bound
 - $\partial O(n^{4/3})$ edges
- ★ Lower bound
 - $\Omega(n^{1+\frac{c}{\log\log n}})$ [Erdos]
- ★ Conjecture: Lower bound is tight

Unit Distance Graph - Convex Point Set ——

★ Convex Point Set

 \bigstar Upper bound: $O(n \log n)$ edges

 \star Lower bound: 2n-7 edges

 \star Conjecture: Lower bound is tight (2n edges)

