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What is offline algorithm?
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◮ Starting from s, a point robot is searching for the point t in R .

◮ If the robot has the complete geometric information (or map)
of R and also knows the exact location of t, then the robot
can choose a path inside R to move from s to t.

◮ In many situations, it is expected that the robot follows the
Euclidean shortest path from s to t inside R .

◮ In some situation, the robot may be asked to follow a
minimum link (or, turn) path from s to t inside R .



◮ There are known efficient sequential algorithms for computing
such paths.

◮ Thus, the robot can compute an optimal path, depending
upon the optimization criteria, using its on-board computer
system and then follows the path from s to t.

◮ Such algorithms are called offline algorithms of a robot path
planning for a target searching problem in a known
environment.

1. S. K. Ghosh, Visibility Algorithms in the Plane, Cambridge
University Press, United Kingdom, 2007.

2. J. C. Latombe, Robot Motion Planning, Kluwer Academic
Publishers, Boston, MA, 1991.



What is online algorithm?

◮ Suppose, a robot does not have the complete knowledge of
the geometry of R apriori.

◮ The robot also does not know the location of the target t, but
the target can be recognized by the robot.

◮ In such a situation, the robot is asked to reach t from its
starting position s using its sensory input provided by acoustic,
visual, or tactile sensors of its on-board sensor system.

◮ The problem here is to design an efficient online algorithm

which a robot can use to search for the target t.

◮ Observe that any such algorithm is ‘online’ in the sense that
decisions must be made based only on what the robot has
received input so far from its sensor system.



Efficiency of online algorithms
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One of the difficulties in working with incomplete information is
that the path cannot be pre-planned and therefore, its global
optimality can hardly be achieved.

Instead, one can judge the online algorithm performance based on
how it stands with respect to other existing or theoretically feasible
algorithms.



The efficiency of online algorithms for searching and exploration
algorithms is generally measured using their competitive ratios.

Competitive ratio =
Cost of the online algorithm

Cost of an optimal offline algorithm

1. S. K. Ghosh and R. Klein, Online algorithms for searching

and exploration in the plane, Computer Science Review,
4:189-201, 2010.

2. P. Berman, On-line searching and navigation, Lecture Notes
in Computer Science 1442, pp. 232-241, Springer, 1996.

3. D. D. Sleator and R. E. Tarjan, Amortized efficiency of list

update and paging rules, Communication of ACM, 28:
202-208, 1985.



Searching for a target on a line
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◮ Suppose, the target point t is placed on a line L in an
unknown location.

◮ Starting from a given position O on L, the problem is to
design an online algorithm for a point robot for locating t.

◮ It is assumed that the robot can detect t if it stands on top of
t or reaches t.

◮ The problem may be viewed as an autonomous robot is facing
a very long wall and it wants go to the other side of the wall
through a door on the wall but it does not known whether the
door is located to the left or right of its current position.



◮ Suppose the robot knows that t is located exactly d distance
away from O.

◮ Then the robot first walks d distance to the right.

◮ If t is not found, then the robot returns to O and then walks
d distance to the left.

◮ So, the competitive ratio of this straightforward on-line
algorithm is 3.

What is the competitive ratio of the search if d is not known
apriori?



Alternate walk
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◮ The robot walks one unit to the right along L. If t is not
found, then it returns to its starting point O.

◮ In the next step, the robot walks two units to the left of O

along L. If t is not found again, the robot returns to O.

◮ In the next step, the robot walks four units to the right along
L and if it is again unsuccessful to locate t, it returns to O.

◮ After some steps, the robot locates t.

The process of doubling the length is known as doubling strategy.
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◮ Assume that t is located at a distance d from the origin on
the positive axis.

◮ Assume that 2k−1 < d ≤ 2k+1 for some k.

◮ The total distance traveled during the alternative walk is
(2.1 + 2.| − 2| + 2.4 + 2.| − 8| + . . . + 2.2k−1 + 2.| − 2k | + d

= 2.2k+1 + d).

◮ If the location of t is known apriori, then it is a straight walk
of length d from the origin to t.

◮ So, the competitive ratio of the alternate walk is
(2.2k+1 + d)/d = 1 + 2.2k+1/d which is at most
1 + (2.2k+1/2k−1) = 9.



Searching for a target on m rays
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A beautiful young cow Ariadne is at the entrance of a simple
labyrinth which branches in m ≥ 2 corridors. She knows that the
handsome Minotaur is waiting somewhere in the labyrinth. What is
the best searching strategy for Ariadne to locate Minotaur?

1. S. Gal, Minimax solutions for linear search problems, SIAM
Journal on Applied Mathematics, 27:17-30, 1974.

2. S. Gal, Search games, Academic Press, New York, 1980.



◮ Visit m ≥ 2 rays in a cyclic order starting with an initial walk
of length one.

◮ Increase the length of the walk each time by a factor of
m/(m − 1) till t is located.

◮ This strategy gives the competitive ratio of
1 + 2mm/(m − 1)m−1, which is optimal.

1. R. A. Baeza-Yates, J. C. Culberson and G. J. E. Rawlins,
Searching in the plane, Information and Computation,
106:234-252, 1993.

2. A. Eubeler, R. Fleischer, T. Kamphans, R. Klein, E. Langetepe
and G. Trippen, Competitive online searching for a ray in the

plane, Robot Navigation, Schloss Dagstuhl, Germany, 2006.

3. E. Langetepe, On the optimality of spiral search, Proceedings
of the 21st Annual ACM-SIAM Symposium on Discrete
Algorithms, 2010.



Searching for a target in an unknown region
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◮ Assume that the point robot knows the exact location of t but
does not know the positions of unknown polygonal obstacles
h1, h2, . . . , hk .

◮ The robot starts from s, and moves towards t following the
segment st till the robot detects by its tactile sensor that it
has hit a polygonal obstacle (say, hi ) at a some point ui .

◮ Then the robot goes around the boundary of hi to locate the
boundary point of hi (say, vi ) which is closest to t.

◮ Then the robots moves from ui to vi following the shorter of
the two paths from ui to vi along the boundary of hi .



◮ Then the robots moves from ui to vi following the shorter of
the two paths from ui to vi along the boundary of hi .

◮ Treating vi as s, the robot repeats the same process of
moving towards t following the segment vi t till t is reached.

◮ The length of the path traversed by the robot is bounded by
the length of st and 1.5 times the perimeters of those
polygonal obstacles that are hit by the robot.

1. V. Lumelsky and A. Stepanov, Dynamic path planning for a

mobile automaton with limited information on the

environment, IEEE Transactions on Automatic Control,
AC-31:1058-1063, 1986.

2. V. Lumelsky and A. Stepanov, Path planning strategies for

point automation moving amidst unknown obstacles of

arbitrary shape, Algorithmica, 2:402-430, 1987.



Algorithms for target searching in an unknown unbounded

region

1. C. Papadimitriou and M. Yannakakis, Shortest paths without

map, Theoretical Computer Science, 84:127-150, 1991.

2. A. Blum and P. Raghavan and B. Schieber, Navigating in

unfamiliar geometric terrain, SIAM Journal on Computing, 26
(1997), 110-137.

3. P. Berman, A. Blum, A. Fiat, H. J. Karloff, A. Rosn and M.
E. Saks, Randomized robot navigation algorithms, Proc. of
the 7th ACM-SIAM Symposium on Discrete Algorithms, pp.
75-84, 1996.

4. E. Bar-Eli, P. Berman, A. Fiat and P. Yan, On-line navigation

in a room, Journal of Algorithms, 17:319-341, 1994.

5. A. Mei and Y. Igarashi, An efficient strategy for robot

navigation in unknown environement, Information Processing
Letters, 52:127-150, 1994.



Visibility polygon
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The visibility polygon of P from a point p (denoted as VP(P , p))
is the set of all points of P that are visible from p.

In other words, for every point z ∈ P , if the line segment joining z

and p lies inside P , then z belongs to VP(P , p).

1. S. K. Ghosh, Visibility Algorithms in the Plane, Cambridge
University Press, United Kingdom, 2007.



Continuous and discrete visibility
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If the robot computes visibility polygons from each points on its
path, we say that P is explored under continuous visibility.

If the robot computes visibility polygons from a selected set of
points on its path, we say that P is explored under discrete
visibility.



Target searching in a simple polygon with continuous

visibility

t

u4
u6

u7
P

u5

u3

u2

u1

u8

s

◮ Let u1, u2, . . . un/4 be the nearest points of s in the alleys of a
simple polygon P of distance d such that if the robot moves
from s to ui for each i , the robot can see the alley completely.

◮ In order to search t, the robot moves from s to ui in each
alley and then returns to s if it does not locate t.

◮ For every unsuccessful search, the robot travels 2d distance.



◮ In the worst case, the robot locates t in the last alley.

◮ So, the total distance travelled by the robot is at least
2d(n/4 − 1) + d .

◮ Hence, the lower bound of the competitive ratio for this
problem is n/2 − 1.

1. R. Klein, Algorithmische Geometrie, Second Edition,
Springer-Verlag, 2005.

2. S. Schuierer, On-line searching in simple polygons, Proceeding
of the International Workshop on Sensor Based Intelligent
Robots, LNCS 1724, pp. 220–239, Springer-Verlag, 1999.
Competitive ratio: 2n − 7.



Searching for a target in an unknown street
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A simple polygon P is said to be a street (also called LR-visibility

polygon) if there exists two points s and t on the boundary of P

such that every point of the clockwise boundary from s to t of P

(denoted as L) is visible from some point of the counterclockwise
boundary of P from s to t (denoted as R) and vice versa.

Observe that if a point robot moves along any path between s and
t inside the street P , it can see all points of P .



Algorithms for target searching in an unknown street

1. R. Klein, Walking an unknown street with bounded detour,
Computational Geometry: Theory and Applications, 1 (1992),
325-351. Competitive ratio: 5.72.

2. C. Icking, Motion and visibility in simple polygons, Ph.D.
Thesis, FernUniversität, 1994. Competitive ratio: 4.44.

3. J. Kleinberg, On line search in a simple polygon, In
Proceedings of the fifth ACM-SIAM Symposium on Discrete
Algorithms, Pages 8-15, 1994. Competitive ratio: 2.61.

4. A. López-Ortiz and S. Schuierer, Going home through an

unknown street, Proceedings of Algorithms and Data
Structures, LNCS 955, pp. 135-146, Springer-Verlag, 1995.
Competitive ratio: 2.05.

5. A. López-Ortiz and S. Schuierer, Walking streets faster,
Proceedings of the 5th Scandinavian Workshop on Algorithm
Theory, LNCS 1097,pp. 345-356, Springer-Verlag, 1996.
Competitive ratio: 1.73.



6. P. Dasgupta and P. Chakrabarti and S. De Sarkar, A new

competitive algorithm for agent searching in unknown streets,
Proceeding of the 16th Symposium on FSTTCS, LNCS 1180,
pp. 32-41, Springer-Verlag, 1995. Competitive ratio: 1.71.

7. I. Semrau, Analyse und experimentelle Untersuchung von

Strategien zum Finden eines Ziels in Strαβenpolygonen,
Diploma Thesis, FernUniversität, 1996. Competitive ratio:
1.57.

8. E. Kranakis and A. Spatharis, Almost optimal on-line search

in unknown streets, Proceedings of the 9th Canadian
Conference on Computational Geometry, pp. 93-99, 1997.
Competitive ratio: 1.498.

9. C. Icking, R. Klein, E. Langetepe and S. Schuierer, An optimal

competitive strategy for walking in streets, SIAM Journal on
Computing, 33(2004), 462-486. Competitive ratio: 1.41.



Optimal online algorithm for target searching in an

unknown street
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The left and right constructed edges of VP(P , s) decide the
movement of the robot initially. If θ < π/2, then the robot follows
the bisector of θ till it reaches a point where θ becomes π/2.

Then the robot follows a curve path toward vlvr which is define by
an algebraic expression based on positions of current p, vl and vr .



Target searching using link paths
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Another problem for searching t in an unknown street P is find a
path such that the number of links (or, turns) in the path is as
small as possible.

1. S. K. Ghosh and S. Saluja, Optimal on-line algorithms for

walking with minimum number of turns in unknown streets,
Computational Geometry: Theory and Applications, 8 (1997),
241-266. Competitive ratio: 2.



Walking into the kernel in an unknown star-shaped

polygon with continuous visibility
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Starting from the initial position s, the problem is to design a
competitive strategy to walk into the kernel of P .

1. C. Icking and R. Klein, Searching for the Kernel of a

Polygon—A Competitive Strategy, SOCG, pages 258-266,
1995. Competitive ratio:5.331.



Algorithms for walking into the kernel

2. J.-H. Lee and K.-Y. Chwa, Tight analysis of a

self-approaching strategy for the online kernel-search problem,
Information Processing Letters, 69:39-45, 1999.

3. J.-H. Lee, C.-S. Shin, J.-H. Kim, S. Y. Shin and K.-Y. Chwa,
New competitive strategies for searching in unknown

star-shaped polygons, SOCG, pages 427-432, 1997.
Competitive ratio: 3.828.

4. L. Palios, A new competitive strategy for reaching the kernel

of an unknown polygon, Proceedings of 7th Workshop on
Algorithmic Theory, LNCS 1851, pp. 367-382, Springer, 2000.
Competitive ratio: 3.1226.

5. P. Anderson and A. Lopez-Ortiz, A new lower bound for

kernel searching, CCCG, 2000. Lower bound: 1.515.

6. A. López-Ortiz and S. Schuierer, Searching and on-line

recognition of star-shaped polygons, Information and
Computations, 185:66-88, 2003. Lower bound: 1.5.



Exploring unknown polygons: continuous visibility
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Starting from a point s inside P , the exploration problem is to
design an online algorithm which a point robot can use for moving
inside P such that every point of P becomes visible from some
point on the exploration path of the robot

However, if P contains holes, the exploration problem does not
admit competitive strategy.

1. X. Deng, T. Kameda and C. Papadimitriou, How to learn an

unknown environment, Proceedings of the 32nd Annual IEEE
Symposium on Foundation of Computer Science, PP.
298-303, 1991.



Exploring simple polygons: continuous visibility
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Observe that if both edges of every reflex vertex ui of P are seen
by the robot, then the entire P has been explored by the robot

1. F. Hoffmann, C. Icking, R. Klein and K. Kriegel, The polygon

exploration problem, SIAM Journal on Computing,
31:577-600, 2001. Competitive ratio: 26.5.



Exploring unknown polygons: discrete visibility

In the remaining part of the lecture, we present exploration
algorithms and their competitive ratios from the following papers.

1. S. K. Ghosh, J. W. Burdick, A. Bhattacharya and S. Sarkar,
On-line algorithms with discrete visibility: Exploring unknown

polygonal environments, Special issue on Computational
Geometry approaches in Path Planning, IEEE Robotics and
Automation Magazine, vol. 15, no. 2, pp. 67-76, 2008.

2. S. K. Ghosh and J. W. Burdick, An on-line algorithm for

exploring an unknown polygonal environment by a point

robot, Proceedings of the 9th Canadian Conference on
Computational Geometry, pp. 100-105, 1997.

3. A. Bhattacharya, S. K. Ghosh and S. Sarkar, Exploring an

Unknown Polygonal Environment with Bounded

Visibility,Proceedings of the International Conference on
Computational Science, Lecture Notes in Computer Science,
No. 2073, pp. 640-648, Springer Verlag, 2001.



Motivation for discrete visibility
Many on-line computational geometry algorithms for exploring
unknown polygons assume that the visibility region can be
determined in a continuous fashion from each point on a path of a
robot. Is this assumption reasonable?

1. Autonomous robots can only carry a limited amount of
on-board computing capability.

2. At the current state of the art, computer vision algorithms
that could compute visibility polygons are time consuming.

3. The computing limitations suggest that it may not be
practically feasible to continuously compute the visibility
polygon along the robot’s trajectory.

4. For good visibility, the robot’s camera will typically be
mounted on a mast and such devices vibrate during the
robot’s movement.

5. Hence for good precision the camera must be stationary while
computing visibility polygons.

It seems feasible to compute visibility polygons only at a discrete
number of points.



Exploration cost
Is the cost associated with a robot’s physical movement dominate
all other associated costs?

The essential components that contribute to the total cost
required for a robotic exploration can be analyzed as follows. Each
move will have two associated costs as follows.

1. There is the time required to physically execute the move. If
we crudely assume that the robot moves at a constant rate, r ,
during a move, the total time required for motion will be r D,
where D is the total path length.

2. In an exploratory process where the robot has no apriori
knowledge of the environment’s geometry, each move must be
planned immediately prior to the move so as to account for
the most recently acquired geometric information. The robot
will be stationary during this process, which we assume to
take time tM .

3. Since the robot is stationary during each sensing operation,
we assume that it takes time tS .



Let NM and NS be respectively the number of moves and the
number of sensor operations required to complete the exploration
of P . Hence, the total cost of an exploration is equated to the total
time T required to explore P : T (P) = tM NM + tS NS + r D.

Now, (tM NM + tS NS) can be viewed as the time required for
computing and maintaining visibility polygons by computer vision
algorithms, which is indeed a significant fraction of T (P) because
computer vision algorithms consume significant time on modest
computers in a relatively cluttered environment.

Therefore, we assume that the overall cost of exploration is
proportional to the cost for computing visibility polygons.

The criteria for minimizing the cost for robotic exploration is to
reduce the number of visibility polygons that the on-line algorithms
compute.

1. J. Borenstein and H. R. Everett and L. Feng, Navigating

mobile robots: sensors and techniques, A. K. Peters Ltd.,
Wellesley, MA, 1995.

2. O. Faugeras, Three-dimensional computer vision, MIT Press,
Cambridge, 1993.



An exploration algorithm
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◮ We present an exploration algorithm that a point robot can
use to explore an unknown polygonal environment P under
discrete visibility.

◮ In order to explore P , the robot starts from a given position,
and sees all points of the free space incrementally.

◮ It may appear that it is enough to see all vertices and edges of
P in order to see the entire free-space. However, this is not
the case.

◮ Three views from p1, p2 and p3 are enough to see all vertices
and edges of P but not the entire free-space of P .



p2p1

(i) Let S denote the set of viewing points that the algorithm has
computed so far. (ii) The triangulation of P is denoted as T (P).
(iii) The visibility polygon of P from a point pi is denoted as
VP(P , pi).

Step 1: i := 1; T (P) := ∅; S := ∅; Let p1 denote the starting
position of the robot.
Step 2: Compute VP(P , pi); Construct the triangulation T ′(P) of
VP(P , pi); T (P) := T (P) ∪ T ′(P); S = S ∪ pi ;
Step 3: While VP(P , pi ) − T (P) = ∅ and i 6= 0 then i := i − 1;



Step 4: If i = 0 then goto Step 7;
Step 5: If VP(P , pi) − T (P) 6= ∅ then choose a point z on any
constructed of VP(P , pi) lying outside T (P);
Step 6: i := i + 1; pi := z ; goto Step 2;
Step 7: Output S and T (P);
Step 8: Stop.

p2

3

p1

p



Competitive ratio
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The algorithm needs r + 1 views. Competitive ratio is (r + 1)/2,
where r denotes the number of reflex vertices of the polygon.

Open Problem: Can the bound be improved?



Convex robot exploration
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We wish to design an algorithm that a convex robot C can use to
explore an unknown polygonal environment P (under translation)
following the similar strategy of a point robot.

C needs more than r + 1 views for exploration.

Open problem

Can one derive an upper bound on the number of views for a
convex robot exploration?



Exploring an unknown polygon: Bounded visibility
Computer vision range sensors or algorithms, such as stereo or
structured light range finder, can reliably compute the 3D scene
locations only up to a depth R . The reliability of depth estimates
is inversely related to the distance from the camera. Thus, the
range measurements from a vision sensor for objects that are far
away are not at all reliable.

Therefore, the portion of the boundary of a polygonal environment
within the range distance R is only considered to be visible from
the camera of the robot.

Vertices of restricted visibility polygon from pi with range R are
u1, u2, . . . , u12.
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An exploration algorithm using restricted visibility

◮ The algorithm starts by computing the restricted visibility
polygon RVP(P , p1) from the starting position p1.

p1

p2

p3

zP

◮ It chooses the next viewing point pi on a constructed edge or
a circular edge of RVP(P , pi−1) for i ≥ 1 till a boundary point
z of P becomes visible.

p1

P

z

pi



◮ Taking z as the next viewing point pi , RVP(P , pi) is
computed. Taking viewing points along the boundary of P in
this fashion, restricted visibility polygons are computed till all
points of this boundary of P become visible.

p1

P

pi

z

pi−1

◮ The process of computing restricted visibility polygons ends
once the entire P is explored.
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Competitive ratio

P

√
3R/2

The maximum number of views needed to explore the unknown
polygon P with h obstacles of size n is bounded by
⌊

8×Area(P)
3×R2

⌋

+
⌊

Perimeter(P)
R

⌋

+ r + h + 1.

The competitive ratio of the algorithm is
⌊

8π
3 + πR×Perimeter(P)

Area(P) + (r+h+1)×πR2

Area(P)

⌋

.

Open problem

Can one improve the competitive ratio of the algorithm?



Exploration and Coverage Algorithms
1. A. Bhattacharya, S. K. Ghosh and S. Sarkar, Exploring an

Unknown Polygonal Environment with Bounded Visibility,
Lecture Notes in Computer Science, No. 2073, pp. 640-648,
Springer Verlag, 2001.

2. S. K. Ghosh, J. W. Burdick, A. Bhattacharya and S. Sarkar,
On-line algorithms for exploring unknown polygonal

environments with discrete visibility, Special issue on
Computational Geometry approaches in Path Planning, IEEE
Robotics and Automation Magazine, 2008 vol. 15, no. 2, pp.
67-76, 2008.

3. E. U. Acar and H. Choset, Sensor-based coverage of unknown

environments: Incremental construction of morse

decompositions, The International Journal of Robotics
Research, 21 (2002), 345-366.

4. K. Chan and T. W. Lam, An on-line algorithm for navigating

in an unknown environment, International Journal of
Computational Geometry and Applications, 3 (1993), 227-244.



5. H. Choset, Coverage for robotics– A survey of recent results,
Annals of Mathematics and Artificial Intelligence, 31 (2001),
113-126.

6. X. Deng, T. Kameda and C. Papadimitriou, How to learn an

unknown environment I: The rectilinear case, Journal of ACM,
45 (1998), 215-245.

7. F. Hoffmann, C. Icking, R. Klein and K. Kriegel, The polygon

exploration problem, SIAM Journal on Computing, 31 (2001),
577-600.

8. C.J. Taylor and D.J. Kriegman, Vison-based motion planning

and exploration algorithms for mobile robot, IEEE Transaction
on Robotics and Automation, 14 (1998), 417-426.

9. P. Wang, View planning with combined view and travel cost,
Ph. D. Thesis, Simon Fraser University, Canada, 2007.

10. S. P. Fekete and C. Schmidt, Polygon exploration with

time-discrete vision, Computational Geometry: Theory and
Applications, 43:148-168, 2010.



Thank You.


