Geometry Engine Optimization: Cache Friendly Compressed Representation of Geometry

Jatin Chhugani and Subodh Kumar Intel Corporation, CA I.I.T., Delhi, India

Triangle List Representation

Triangle List Representation

 $V1_x V1_y V1_z N1 T1 U1 ..$ $V2_{x} V2_{y} V2_{z} N2 T2 U2 ...$ $V3_{x} V3_{y} V3_{z} N3 T3 U3 ..$

m triangles => 3*m* vertices

Adjacency List Representation

 $V1_x V1_v V1_z$ $V2_{x}V2_{y}V2_{z}$ $V3_{x}V3_{v}V3_{z}$ $V4_{x}V4_{y}V4_{z}$ $V5_{x}V5_{v}V5_{z}$

m triangles => *n* vertices, 3*m* indices

Triangle Strip Representation

()0 1 2 $V1_x V1_y V1_z$ 1 2 3 $V2_x V2_y V2_z$ 2 3 4 $V3_x V3_y V3_z$ $V4_x V4_y V4_z$ 5 $\overline{V5}_{x}\overline{V5}_{y}\overline{V5}_{z}$ 6 7

m triangles => *n* vertices

Triangle Strip Representation?

 $V1_x V1_v V1_z$ $V2_x V2_y V2_z$ $V3_x V3_y V3_z$ $\overline{V4}_{x}\overline{V4}_{y}\overline{V4}_{z}$ $V5_x V5_v V5_z$ *m* triangles => *n* vertices

Relationship between m and n

- Euler's relation:
 - $\circ #V + #F #E = 2$
- #V + #F (3/2)#F = 2 $\circ \#V \approx \frac{1}{2} \#F$
- *n* is approximately half of *m m* triangles imply 3*m* indices
 An index is re-used about 6 times

Vertex Shading Review

- Triangle mesh is
 - a set of Vertices
 - Each vertex has attributes
 - Set of Triangles (topology information)
 - Each triangle indexes *three* of the input vertices

Post-Transform Vertex Cache

- Cache results of vertex shading
- Helps reuse computation and reduce b/w
- Typical cache sizes are between 8 and 32 entries
- FIFO cache replacement policy

Post-Transform Vertex Cache

- Triangles reuse vertices
 - Average degree of a vertex is ~6
 - Would like to transform a vertex *once*
 - ~85% reduction in vertex computation
- Specify triangles in an order that exploits the cache
 - Vertex reuse is clustered in the order

Reorder triangles to maximize cache utilization

Geometry Specification

- Huge Meshes
 - Hundreds of megabytes to store and transfer
- Bus bandwidth and video memory size are bottlenecks
- Need to *compress both* the vertex data and the topology
 Hardware supported
- Topology compression is required as well
 - Lossless compression to preserve the mesh structure
 - Little hardware support in current GPU's

Compress input geometry with efficient hardware decompression and minimal hardware changes

Problem Statement

"Cache Friendly Compressed Representation of Input Geometry with efficient decompression"

- high compression of topology
- high cache coherence
- Inexpensive and Efficient decompression hardware
- Minimal API change
- Friendly to vertex attribute compression
 - not a subject of this paper

Some Previous Work

- Compression Deering/Chow
- Cache simulation and optimization Hoppe et al.
- Stack Buffer BarYehuda-Gotsman
- Other work to just compress topology Edgebreaker
- Cache oblivious work Yoon et al.
- Single Strip triangulation work Gopi

Compressed Stream [Deering..]

- Turn meshes into a stream of data and instructions
- 'Generalized' Mesh
- Include special LOAD instructions
 - Restart, Replace Oldest, Replace Middle
 - Push into mesh-buffer
 - Control which index goes into the buffer and which is evicted

Greedy strip-growing [Hoppe]

To decide when to restart strip, perform look-ahead cache simulation

Our Approach

- *n* vertices imply at least *n* cache misses
 - Minimize the use of a vertex when not in cache
- Visit all triangles adjacent to a vertex before it is evicted
 - Cannot guarantee for every vertex
 - A vertex is 'hit' only for a fixed number of cache misses (FIFO)
- Directly re-order the vertices, rather than triangles
 - Connectivity of the vertices dictates the triangle order to follow

Input Mesh with 19 vertices and 22 triangles

Step 1:Divide the mesh into rows (chains) of vertices \rightarrow Triangles exist only between consecutive chains

Step 2: Order Vertices within every chain

Step 3: Render triangles in an order that introduces vertices in R1 before R2 and so on, in the order specified within each row

Render Degenerate Triangle \rightarrow [V_(1,1) V_(1,1) V_(1,1)]

Render Degenerate Triangle \rightarrow [$V_{(1,2)}$ $V_{(1,2)}$ $V_{(1,2)}$]

Render Degenerate Triangle \rightarrow [V_(1,3) V_(1,3) V_(1,3)]

Render Degenerate Triangle \rightarrow [V_(1,4) V_(1,4) V_(1,4)]

Render Degenerate Triangle \rightarrow [V_(1,5) V_(1,5) V_(1,5)]

Render Triangle \rightarrow [V_(1,1) V_(1,2) V_(2,1)]

Render Triangle \rightarrow [V_(1,2) V_(2,1) V_(2,2)]

Render triangles between R_1 and R_2

Render triangle \rightarrow [V_(2,1) V_(2,2) V_(3,1)]

Render triangle \rightarrow [V_(2,2) V_(3,1) V_(3,2)]

Render triangles between R₂ and R₃

Render Triangle \rightarrow [V_(3,1) V_(3,2) V_(4,1)]

Render Triangle \rightarrow [V_(3,2) V_(4,1) V_(4,2)]

Render triangles between R₃ and R₄

Illustration (contd.)

- Each vertex was loaded *only once* into the cache
 Optimal solution
- Generated some degenerate triangles to warm-up the cache
- However, we allowed a potentially large cache!
- What happens when the cache size (K) is not that large?
 - Choose a subset of vertices along each chain
 - Each subset is referred to as a *cut*.
 - Vertices shared by two cuts need to be reloaded

Algorithm Overview

- 1. Form chains (rows of vertices) for the mesh
- 2. Order the vertices within each chain
- 3. Form cuts of vertices for each row
 - Function of connectivity and cache size K
- 4. Form list of triangles that preserves the vertex order

- Given a mesh, choose a subset of vertices that form a connected path
 - can choose any single vertex as well
 - denote this set as R_1

- Given a mesh, choose a subset of vertices that form a connected path
 - can choose any single vertex as well
 - denote this set as R_1
- Perform a Breadth First Search and find all vertices connected to at least one vertex in R₁
 - Forms the chain R₂

- Given a mesh, choose a subset of vertices that form a connected path
 - can choose any single vertex as well
 - denote this set as R_1
- Perform a Breadth First Search and find all vertices connected to at least one vertex in R₁
 - Forms the chain R_2
- Continue forming chains until each vertex belongs to some chain
 - Some chains may not form a connected path
- Running time of O (n + m)

1. Forming Chains On The Mesh Example 2

1. Forming Chains On The Mesh Example 2

- R_1 is already ordered to start with

2. Ordering Vertices Within A Chain (1,1) (1,2) (1,3) (1,4)(1,5) $R_1 \rightarrow$

- R_1 is already ordered to start with
- For each vertex in R₂
 - Store the ID of vertices in $R_1 (L_v)$ sharing an edge with it

2. Ordering Vertices Within A Chain (1,1) (1,2) (1,3) (1,4)(1,5) $R_1 \rightarrow$ $R_2 \rightarrow$ (1,1); (1,2) (1,2); (1,3) 1,3); (1,4); (1,5) (1,5)

- R_1 is already ordered to start with
- For each vertex in R₂
 - Store the ID of vertices in $R_1(L_v)$ sharing an edge with it
- Sort the vertices in R_2 based on L_v
 - Specific rules to break ties
- This defines the order within R₂

- P_1 is already ordered to start with
- For each vertex in P_2
 - Store the ID of vertices in $P_1(L_v)$ sharing an edge with it
- Sort the vertices in P_2 based on L_v
 - Specific rules to break ties
- This defines the order within P₂
- Perform similar computation for each subsequent chain.
- Running time of O (n log(n))

- Each cut is defined as a subset of vertices in each row
- Consider a row R_i
 - say a vertex v is introduced into the cache by some triangle joining vertices in R_{i-1} and R_i
 - The subset in R_i is chosen in a fashion that ensures that every vertex v remains in the cache when triangles joining v to vertices in R_{i+1} are traversed
 - keep a counter which keeps track of the number of vertices that can be loaded from R_{i+1} and continue while counter > 0

3 vertices need to be reloaded

Results (Cache Size K = 16)

Model	Vertices	Triangles	Cache Miss	Lin et	Degenerate
	(n)	(m)	Rate (r)	al. (r)	Tris (%)
Grid20	391	704	0.580	0.605	2.9
Fandisk	6,475	12,946	0.588	0.595	2.4
Bunny	35,947	71,884	0.608	0.597	3.6
Horse	48,485	96,966	0.589	0.599	2.6
Teeth	116,604	233,204	0.590	0.604	2.9
Igea	134,556	269,108	0.573	0.601	2.3
Isis	187,644	375,284	0.580	0.603	3.4
Hand	327,323	654,666	0.612	0.606	4.7
Tablet	539,446	1,078,890	0.567	0.580	2.3

r = Cache Misses Per Triangle

Results

r with varying cache sizes for different models

Comparison with Cache Oblivious Layout

Topology Encoding

- Out of 3*m* input indices (for *m* triangles)
 - m/2 indices refer to vertices encountered for the first time
 - Implicit; no bits necessary
 - -2.4m indices are cache hits
 - Encode by their cache address
 - $-(r-1/2)m \sim 0.1m$ indices are *re*loaded post cache-eviction
 - Require explicit vertex-index
 - Huffman encode these
 - -<5 bits per index, on average
 - Variable length encoding

Fixed-length Compression

Let *F* represent the case where an index is referred for the first time Let *C* represent the case where an index is in the cache Let *R* represent the case where an index is reloaded into the cache

Encode an entire triangle:

- *FFF* : fetch the next 3 vertices from vertex array
- *FFC* : fetch the next 2 vertices and encode the cache-position of the third
 - requires log(*K*) bits (4 bits for a 16-entry cache)
- FFR: fetch next 2 from vertex array; encode a previously used index
- FCR: fetch next vertex, one in-cache, one previously used
- *FCC* : fetch the next vertex; encode two cache positions
 - Requires ~8 bits for a 16-entry cache
- *CCC* : ~8 bits
- CCR : ~8 bits plus the reload index
 - reloaded vertices exist at the boundary of the cuts
 - bound the number of rows in a cut to keep *R* small
 - If R does not fit, change case

Unfavorable Cases

• RRR

– Guarantee to not exist, by construction

- RRX (ijx)
 - $\text{Rare, O}(n^{(1/4)})$
 - Fewer than 0.1% of triangles in experiments
 - Still disallowed
 - Convert to two triangles
 - DDR (iii), CRX (cjx)

Unfavorable Cases

• CCC

– Enforce one of the cache entries 0,1,2

– In fact, if we eliminate FFF

- One of the CCC must be in 0,1
- Split into cases CC0 and CC1
- CCR
 - R may not fit
 - Make a DDR
 - Followed by CCC

Decompression Scheme and Hardware Extensions

- Decompression is simple
 - decode the case number for each triangle
 - decode the various addresses required
 - *directly* get the cache address of vertices already in cache
 - fetch the vertices loaded for the first time or reloaded
- Hardware changes
 - decoding logic to compute the case number
 - Mux to fetch addresses
 - Bypass cache-tag lookup
 - Counter for 'F' vertices

Results and Comparisons

- Compressed stream requires 8-9 bits per triangle
- Can potentially exploit coherence between triangles

 70% triangles have 1 index common with previous triangle
 40% triangles have 2 indices common with previous triangle
- Mesh representations by Chow et al. and Deering et al. take 20-40 bits per triangle
 - our scheme achieves ~2-4X better compression

Conclusions

Unified approach for cache efficiency and bandwidth reduction

Near optimal

Pre-processing required

Only applicable for parts of the model where order is not pre-determined

Acknowledgements

- Jonathan Cohen
- Budirijanto Purnomo
- Stanford University for various models
- Johns Hopkins University for tablet model
- NSF