
Geometry Engine Optimization:

Cache Friendly Compressed Representation

of Geometry

Jatin Chhugani

Intel Corporation, CA

Subodh Kumar

I.I.T., Delhi, India

and

Geometry

Shader

Graphics Pipeline
Mesh

Vertex

Shader

Clip &

Setup

Primitive

Assembly

FramebufferRasterize Fragment

Shader

Picture

Triangle List Representation

V1x V1y V1z

V2x V2y V2z

V3 V3 V3
V1

V3x V3y V3z

•
•

m triangles => 3m vertices

Triangle List Representation

V1x V1y V1z N1 T1 U1 ..

V2x V2y V2z N2 T2 U2 ..

V3 V3 V3 N3 T3 U3 ..V3x V3y V3z N3 T3 U3 ..

•
•

m triangles => 3m vertices

Adjacency List Representation

V1x V1y V1z

V2x V2y V2z

V3 V3 V3

i10 i11 i12

i20 i21 i22

i10 i11 i12V3x V3y V3z

V4x V4y V4z

V5x V5y V5z

•
•
•

m triangles => n vertices, 3m indices

i10 i11 i12

•
•

Triangle Strip Representation

V1x V1y V1z

V2x V2y V2z

V3 V3 V3

0 1 2

1 2 3

2 3 4

10

32
V3x V3y V3z

V4x V4y V4z

V5x V5y V5z

•
•
•

m triangles => n vertices

2 3 4
•
•

6

54

7

Triangle Strip Representation?

V1x V1y V1z

V2x V2y V2z

V3 V3 V3

1

V1
V3x V3y V3z

V4x V4y V4z

V5x V5y V5z

•
•
•

m triangles => n vertices

Relationship between m and n

• Euler’s relation:

o #V + #F – #E = 2

• #V + #F – (3/2)#F = 2• #V + #F – (3/2)#F = 2

o #V ≈ ½ #F

• n is approximately half of m

om triangles imply 3m indices

oAn index is re-used about 6 times

Vertex Shading Review

• Triangle mesh is

– a set of Vertices

– Each vertex has attributes

– Set of Triangles (topology information)

• Each triangle indexes three of the input vertices

CPU

Vertices Topology

Texture/Normal Maps

GPU

PCIe

Post-Tran.

Vertex Cache
R.O.P.

… T.M.U.
Texture

Cache

…

Post-Transform Vertex Cache

• Cache results of vertex shading

• Helps reuse computation and reduce b/w

• Typical cache sizes are between 8 and 32 entries

• FIFO cache replacement policy

1

2

3

K

.

.

.

Post-Transform Vertex Cache

• Triangles reuse vertices

– Average degree of a vertex is ~6

– Would like to transform a vertex once

• ~85% reduction in vertex computation

• Specify triangles in an order that exploits the cache

– Vertex reuse is clustered in the order

Reorder triangles to maximize cache utilization

Geometry Specification

• Huge Meshes

– Hundreds of megabytes to store and transfer

• Bus bandwidth and video memory size are bottlenecks

• Need to compress both the vertex data and the topology

– Hardware supported– Hardware supported

• Topology compression is required as well

– Lossless compression to preserve the mesh structure

– Little hardware support in current GPU’s

Compress input geometry with efficient hardware

decompression and minimal hardware changes

Problem Statement

“Cache Friendly Compressed Representation of

Input Geometry with efficient decompression”

– high compression of topology

– high cache coherence – high cache coherence

– Inexpensive and Efficient decompression hardware

– Minimal API change

– Friendly to vertex attribute compression

• not a subject of this paper

Some Previous Work

• Compression – Deering/Chow

• Cache simulation and optimization – Hoppe et al.

• Stack Buffer – BarYehuda-Gotsman

• Other work to just compress topology – Edgebreaker

• Cache oblivious work – Yoon et al. • Cache oblivious work – Yoon et al.

• Single Strip triangulation work – Gopi

Compressed Stream [Deering..]

• Turn meshes into a stream of data and

instructions

• ‘Generalized’ Mesh• ‘Generalized’ Mesh

• Include special LOAD instructions

– Restart, Replace Oldest, Replace Middle

– Push into mesh-buffer

– Control which index goes into the buffer and

which is evicted

Greedy strip-growing [Hoppe]

To decide when to restart strip, To decide when to restart strip,

perform lookperform look--ahead cache ahead cache

To decide when to restart strip, To decide when to restart strip,

perform lookperform look--ahead cache ahead cache perform lookperform look--ahead cache ahead cache

simulationsimulation

perform lookperform look--ahead cache ahead cache

simulationsimulation
11

22
33

44

Cache Oblivious Layout [Yoon..]
va

vb vd

vc

Input graph

Multilevel optimization
Cache-oblivious metric

Local permutations

va vb vd vc

Result 1D layout

Our Approach

• n vertices imply at least n cache misses

– Minimize the use of a vertex when not in cache

• Visit all triangles adjacent to a vertex before it is evicted

– Cannot guarantee for every vertex

– A vertex is ‘hit’ only for a fixed number of cache misses (FIFO)– A vertex is ‘hit’ only for a fixed number of cache misses (FIFO)

• Directly re-order the vertices, rather than triangles

– Connectivity of the vertices dictates the triangle order to follow

Illustration

Input Mesh with 19 vertices and 22 triangles

Illustration

R1 �

R �

Step 1:Divide the mesh into rows (chains) of vertices

� Triangles exist only between consecutive chains

R2 �

R3 �

R4 �

Illustration

R1 �

R �

Step 2: Order Vertices within every chain

(1,1) (1,2) (1,3) (1,4) (1,5)

R2 �

R3 �

R4 �
(4,1) (4,2) (4,3) (4,4) (4,5)

(2,1) (2,2) (2,3) (2,4) (2,5)

(3,1) (3,2) (3,3)
(3,4)

Illustration

R1 �

R2 �

Step 3: Render triangles in an order that introduces vertices in R1 before

R2 and so on, in the order specified within each row

(1,1) (1,2) (1,3) (1,4) (1,5)

(2,1)
R2 �

R3 �

R4 �
(4,1) (4,2) (4,3) (4,4) (4,5)

K = 10

(2,1) (2,2) (2,3) (2,4) (2,5)

(3,1) (3,2) (3,3)
(3,4)

Illustration

Render Degenerate Triangle � [V(1,1) V(1,1) V(1,1)]

(1,1) (1,2) (1,3) (1,4) (1,5)

(2,1)

(1,1)

(4,1) (4,2) (4,3) (4,4) (4,5)

K = 10

(2,1) (2,2) (2,3) (2,4) (2,5)

(3,1) (3,2) (3,3)
(3,4)

Illustration

Render Degenerate Triangle � [V(1,2) V(1,2) V(1,2)]

(1,1) (1,2) (1,3) (1,4) (1,5)

(2,1)

(1,1)

(1,2)

(4,1) (4,2) (4,3) (4,4) (4,5)

K = 10

(2,1) (2,2) (2,3) (2,4) (2,5)

(3,1) (3,2) (3,3)
(3,4)

Illustration

Render Degenerate Triangle � [V(1,3) V(1,3) V(1,3)]

(1,1) (1,2) (1,3) (1,4) (1,5)

(2,1)

(1,1)

(1,2)

(1,3)

(4,1) (4,2) (4,3) (4,4) (4,5)

K = 10

(2,1) (2,2) (2,3) (2,4) (2,5)

(3,1) (3,2) (3,3)
(3,4)

Illustration

Render Degenerate Triangle � [V(1,4) V(1,4) V(1,4)]

(1,1) (1,2) (1,3) (1,4) (1,5)

(2,1)

(1,1)

(1,2)

(1,3)

(4,1) (4,2) (4,3) (4,4) (4,5)

K = 10

(2,1) (2,2) (2,3) (2,4) (2,5)

(3,1) (3,2) (3,3)
(3,4)

(1,4)

Illustration

Render Degenerate Triangle � [V(1,5) V(1,5) V(1,5)]

(1,1) (1,2) (1,3) (1,4) (1,5)

(2,1)

(1,1)

(1,2)

(1,3)

(4,1) (4,2) (4,3) (4,4) (4,5)

K = 10

(2,1) (2,2) (2,3) (2,4) (2,5)

(3,1) (3,2) (3,3)
(3,4)

(1,4)

(1,5)

Illustration

Render Triangle � [V(1,1) V(1,2) V(2,1)]

(1,1) (1,2) (1,3) (1,4) (1,5)

(2,1)

(1,1)

(1,2)

(1,3)

(4,1) (4,2) (4,3) (4,4) (4,5)

K = 10

(2,1) (2,2) (2,3) (2,4) (2,5)

(3,1) (3,2) (3,3)
(3,4)

(1,4)

(1,5)

(2,1)

Illustration

Render Triangle � [V(1,2) V(2,1) V(2,2)]

(1,1) (1,2) (1,3) (1,4) (1,5)

(2,1)

(1,1)

(1,2)

(1,3)

(4,1) (4,2) (4,3) (4,4) (4,5)

K = 10

(2,1) (2,2) (2,3) (2,4) (2,5)

(3,1) (3,2) (3,3)
(3,4)

(1,4)

(1,5)

(2,1)

(2,2)

Illustration

Render triangles between R1 and R2

(1,1)

(1,2)

(1,3)

(1,1) (1,2) (1,3) (1,4) (1,5)

(2,1)

R1 �

R2 �

K = 10

(1,4)

(1,5)

(2,1)

(2,2)

(2,3)

(2,4)

(2,5)

(4,1) (4,2) (4,3) (4,4) (4,5)

(2,1) (2,2) (2,3) (2,4) (2,5)

(3,1) (3,2) (3,3)
(3,4)

R2 �

Illustration

Render triangle � [V(2,1) V(2,2) V(3,1)]

(1,2)

(1,3)

(1,4)

(1,1) (1,2) (1,3) (1,4) (1,5)

(2,1)
R2 �

K = 10

(1,5)

(2,1)

(2,2)

(2,3)

(2,4)

(2,5)

(3,1)

(2,1)

(4,1) (4,2) (4,3) (4,4) (4,5)

(2,1) (2,2) (2,3) (2,4) (2,5)

(3,1) (3,2) (3,3)
(3,4)

R2 �

R3 �

Illustration

Render triangle � [V(2,2) V(3,1) V(3,2)]

(1,3)

(1,4)

(1,5)

(2,1)

(1,1) (1,2) (1,3) (1,4) (1,5)

(2,1)

K = 10

(1,5)

(2,1)

(2,3)

(2,4)

(2,5)

(2,5)

(3,2)

(2,2)

(2,1)

(3,1)

(4,1) (4,2) (4,3) (4,4) (4,5)

(2,1) (2,2) (2,3) (2,4) (2,5)

(3,1) (3,2) (3,3)
(3,4)

Illustration

Render triangles between R2 and R3

(1,5)

(1,4)

(1,5)(2,2)

(2,1)

R2 �

(1,1) (1,2) (1,3) (1,4) (1,5)

(2,1)

K = 10

(1,5)

(2,1)

(2,5)

(3,4)

(3,3)

(2,3)

(2,4)

(2,5)

(3,2)

(3,1)

R2 �

R3 �

(4,1) (4,2) (4,3) (4,4) (4,5)

(2,1) (2,2) (2,3) (2,4) (2,5)

(3,1) (3,2) (3,3)
(3,4)

Illustration

Render Triangle � [V(3,1) V(3,2) V(4,1)]

(1,5)

(1,4)

(1,5)(2,3)

(2,2)

(2,1)

(1,1) (1,2) (1,3) (1,4) (1,5)

(2,1)

K = 10

(1,5)

(2,1)

(2,5)(3,4)

(3,3)

(2,4)

(2,5)

(3,2)

(3,1)

(4,1)

R3 �

(4,1) (4,2) (4,3) (4,4) (4,5)

(2,1) (2,2) (2,3) (2,4) (2,5)

(3,1) (3,2) (3,3)
(3,4)

R4 �

Illustration

Render Triangle � [V(3,2) V(4,1) V(4,2)]

(1,1) (1,2) (1,3) (1,4) (1,5)

(2,1)

(1,5)

(1,4)

(1,5)

(2,1)

(2,3)

(2,4)

(2,5)

(2,2)

(1,1) (1,2) (1,3) (1,4) (1,5)

(2,1)

(4,1) (4,2) (4,3) (4,4) (4,5)

K = 10

(2,1) (2,2) (2,3) (2,4) (2,5)

(3,1) (3,2) (3,3)
(3,4)

(1,5)

(2,1)

(2,5)

(3,4)

(3,3)

(2,5)

(3,2)

(3,1)

(4,1)

(4,2)

R3 �

(4,1) (4,2) (4,3) (4,4) (4,5)

(2,1) (2,2) (2,3) (2,4) (2,5)

(3,1) (3,2) (3,3)
(3,4)

R4 �

Illustration

(1,5)

(1,4)

(1,5)

(2,1)

(2,3)

(2,4)

(2,2)

(3,3)

(2,5)

(3,2)

(3,1)

Render triangles between R3 and R4

(1,1) (1,2) (1,3) (1,4) (1,5)

(2,1)

(1,1) (1,2) (1,3) (1,4) (1,5)

(2,1)

K = 10

(1,5)

(2,5)

(3,4)

(3,3)

(4,1)

(4,2)

(4,3)

(4,4)

(4,5)

(4,1) (4,2) (4,3) (4,4)

(2,1) (2,2) (2,3) (2,4) (2,5)

(3,1) (3,2) (3,3)
(3,4)R3 �

(4,1) (4,2) (4,3) (4,4)

(2,1) (2,2) (2,3) (2,4) (2,5)

(3,1) (3,2) (3,3)
(3,4)

R4 �

(4,5)

Illustration (contd.)

• Each vertex was loaded only once into the cache

– Optimal solution

• Generated some degenerate triangles to warm-up the cache

• However, we allowed a potentially large cache!

• What happens when the cache size (K) is not that large?• What happens when the cache size (K) is not that large?

– Choose a subset of vertices along each chain

– Each subset is referred to as a cut.

– Vertices shared by two cuts need to be reloaded

Algorithm Overview

1. Form chains (rows of vertices) for the mesh

2. Order the vertices within each chain

3. Form cuts of vertices for each row

• Function of connectivity and cache size K

4. Form list of triangles that preserves the vertex order4. Form list of triangles that preserves the vertex order

1. Forming Chains On The Mesh

• Given a mesh, choose a subset of vertices that form a

connected path

– can choose any single vertex as well

– denote this set as R1

1. Forming Chains On The Mesh

R1 �

1. Forming Chains On The Mesh
• Given a mesh, choose a subset of vertices that form a connected path

– can choose any single vertex as well

– denote this set as R1

• Perform a Breadth First Search and find all vertices

connected to at least one vertex in R1

– Forms the chain R2– Forms the chain R2

1. Forming Chains On The Mesh

R2 �

R1 �

1. Forming Chains On The Mesh
• Given a mesh, choose a subset of vertices that form a connected path

– can choose any single vertex as well

– denote this set as R1

• Perform a Breadth First Search and find all vertices connected to at least one vertex

in R1

– Forms the chain R2

• Continue forming chains until each vertex belongs to some • Continue forming chains until each vertex belongs to some

chain

– Some chains may not form a connected path

• Running time of O (n + m)

1. Forming Chains On The Mesh

R2 �

R1 �

R3 �

R4 �

1. Forming Chains On The Mesh

Example 2

R1 �

R1 �

1. Forming Chains On The Mesh

Example 2

2. Ordering Vertices Within A Chain
• R1 is already ordered to start with

R1 �

2. Ordering Vertices Within A Chain

(1,1) (1,2) (1,3) (1,4) (1,5)

2. Ordering Vertices Within A Chain
• R1 is already ordered to start with

• For each vertex in R2

– Store the ID of vertices in R1 (Lv) sharing an edge with it

R1 �

2. Ordering Vertices Within A Chain

(1,1) (1,2) (1,3) (1,4) (1,5)

(1,1); (1,2)

R2 �

(1,1); (1,2) (1,2); (1,3)
(1,3) (1,3); (1,4); (1,5) (1,5)

2. Ordering Vertices Within A Chain
• R1 is already ordered to start with

• For each vertex in R2

– Store the ID of vertices in R1 (Lv) sharing an edge with it

• Sort the vertices in R2 based on Lv

– Specific rules to break ties

• This defines the order within R2• This defines the order within R2

R1 �

2. Ordering Vertices Within A Chain

(1,1) (1,2) (1,3) (1,4) (1,5)

(1,1); (1,2) (1,2); (1,3) (1,3) (1,3); (1,4); (1,5)
(1,5)

R2 �

(1,1); (1,2) (1,2); (1,3) (1,3) (1,3); (1,4); (1,5)
(1,5)

R1 �

2. Ordering Vertices Within A Chain

(1,1) (1,2) (1,3) (1,4) (1,5)

R2 �
(2,1) (2,2) (2,3) (2,4) (2,5)

(2,2) (2,3) (2,4) (2,5)

2. Ordering Vertices Within A Chain
• P1 is already ordered to start with

• For each vertex in P2

– Store the ID of vertices in P1 (Lv) sharing an edge with it

• Sort the vertices in P2 based on Lv

– Specific rules to break ties

• This defines the order within P2

• Perform similar computation for each subsequent chain.• Perform similar computation for each subsequent chain.

• Running time of O (n log(n))

2. Ordering Vertices Within A Chain

R1 �

(1,1) (1,2) (1,3) (1,4) (1,5)

R2 �
(2,1) (2,2) (2,3) (2,4) (2,5)

(2,2) (2,3) (2,4) (2,5)

R3 �

R4 �
(4,1) (4,2) (4,3) (4,4) (4,5)

(3,1) (3,2) (3,3)
(3,4)

2. Ordering Vertices Within A Chain

R1 �

(1,1)

(2,1)

(2,2)

(3,2)

(3,3)

(4,4)

(4,5)

(4,6)

(5,5)

(5,6)

(2,1)

(3,1)

(4,1)

(4,2)

(4,3)

(4,5)

(5,1)

(5,2)

(5,3)

(5,4)

(6,1)

3. Forming Cuts Of Vertices

• Each cut is defined as a subset of vertices in each row

• Consider a row Ri

– say a vertex v is introduced into the cache by some triangle

joining vertices in Ri-1 and Ri

– The subset in Ri is chosen in a fashion that ensures that every

vertex v remains in the cache when triangles joining v to vertices vertex v remains in the cache when triangles joining v to vertices

in Ri+1 are traversed

– keep a counter which keeps track of the number of vertices that

can be loaded from Ri+1 and continue while counter > 0

3. Forming Cuts Of Vertices

(1,1) (1,2) (1,3) (1,4) (1,5)

• Assume cache size (K) = 6

R1

R2

64

R3

R4

R2

3. Forming Cuts Of Vertices

(1,1) (1,2) (1,3) (1,4) (1,5)

• Assume cache size (K) = 6

R1

R2

43

R3

R4

R2

3. Forming Cuts Of Vertices

(1,1) (1,2) (1,3) (1,4) (1,5)

• Assume cache size (K) = 6

R1

R2

31

R3

R4

R2

3. Forming Cuts Of Vertices

(1,1) (1,2) (1,3) (1,4) (1,5)

• Assume cache size (K) = 6

R1

R2

10

R3

R4

R2

3. Forming Cuts Of Vertices

(1,1) (1,2) (1,3) (1,4) (1,5)

• Assume cache size (K) = 6

R1

R2

R3

R4

R2

3. Forming Cuts Of Vertices

(1,1) (1,2) (1,3) (1,4) (1,5)

• Assume cache size (K) = 6

R1

R2

R3

R4

R2

First Cut

3. Forming Cuts Of Vertices

(1,1) (1,2) (1,3) (1,4)

• Assume cache size (K) = 6

R1

R2

(1,1)

(1,2)

(1,3)

(2,1) (2,2)

R3

R4

R2
(1,4)(2,1) (2,2) (2,3) (2,4)

(4,1) (4,2) (4,3) (4,4)

(3,1) (3,2) (3,3)

(2,1)

K = 6

3. Forming Cuts Of Vertices

(1,1) (1,2) (1,3) (1,4)

• Assume cache size (K) = 6

R1

R2

(1,1)

(1,2)

(1,3)

(2,1) (2,2)

R3

R4

R2
(1,4)(2,1) (2,2) (2,3) (2,4)

(4,1) (4,2) (4,3) (4,4)

(3,1) (3,2) (3,3)

(2,1)

K = 6

(2,2)

3. Forming Cuts Of Vertices

(1,1) (1,2) (1,3) (1,4)

• Assume cache size (K) = 6

R1

R2

(1,3)

(1,4)

(1,3)

(2,1) (2,2)

(2,1)

(2,2)

R3

R4

R2
(1,4)(2,1) (2,2) (2,3) (2,4)

(4,1) (4,2) (4,3) (4,4)

(3,1) (3,2) (3,3)

(2,3)

K = 6

(2,4)

(2,2)

3. Forming Cuts Of Vertices

(1,1) (1,2) (1,3) (1,4)

• Assume cache size (K) = 6

R1

R2

(1,4)

(1,4)

(1,3)

(2,1) (2,2)

(2,2)

(2,3)

(2,1)

R3

R4

R2
(1,4)(2,1) (2,2) (2,3) (2,4)

(4,1) (4,2) (4,3) (4,4)

(3,1) (3,2) (3,3)

(2,4)

K = 6

(2,5)

(2,3)

(3,1)

3. Forming Cuts Of Vertices

(1,1) (1,2) (1,3) (1,4)

• Assume cache size (K) = 6

R1

R2

(1,4)

(1,4)

(1,3)

(2,1)
(2,4)

(2,3)

(2,3)

(2,2)

(2,2)

(3,1)

R3

R4

R2
(1,4)(2,1)

(2,3) (2,4)

(4,1) (4,2) (4,3) (4,4)

(3,1) (3,2) (3,3)

(2,4)

K = 6

(2,5)

(2,3)(2,2)

(3,3)

(3,1)

(3,2)

3. Forming Cuts Of Vertices

(1,1) (1,2) (1,3) (1,4)

• Assume cache size (K) = 6

R1

R2

(1,4)

(1,4)

(1,3)(2,4)

(2,3)

(2,3)

(2,2)

(2,2)

(3,1)(2,1)

R3

R4

R2
(1,4)(2,4)

(4,1) (4,2) (4,3) (4,4)

(3,1) (3,2) (3,3)

(2,4)

K = 6

(2,5)

(2,3)(2,2)

(3,3)

(3,1)

(3,2)
(2,3)

(2,1)

3. Forming Cuts Of Vertices

(1,1) (1,2) (1,3) (1,4)

• Assume cache size (K) = 6

R1

R2

(1,4)

(1,4)

(1,3)(2,4)

(2,3)

(2,3)

(2,2)

(2,2)

(3,1)(2,1)

R3

R4

R2
(1,4)(2,4)

(4,1) (4,2) (4,3) (4,4)

(3,1) (3,2) (3,3)

(2,4)

K = 6

(2,5)

(2,3)(2,2)

(3,3)

(3,1)

(3,2)
(2,3)

(2,1)

3. Forming Cuts Of Vertices
2 cuts are formed and 4 vertices need to be reloaded2 cuts are formed and 4 vertices need to be reloaded

R1

R2

(1,1) (1,2) (1,3) (1,4)

(2,1) (2,2)

(1,4) (1,5)

R3

R4

R2 (2,1) (2,2) (2,3) (2,4)

(4,1) (4,2) (4,3) (4,4)

(3,1) (3,2) (3,3)

(2,4) (2,5)

(3,3)
(3,4)

(4,4) (4,5)

3 vertices need to be reloaded3 vertices need to be reloaded

R1 �

3. Forming Cuts Of Vertices

Results (Cache Size K = 16)

Model Vertices

(n)

Triangles

(m)

Grid20 391 704

Fandisk 6,475 12,946

Bunny 35,947 71,884

Cache Miss

Rate (r)

0.580

0.588

0.608

Lin et

al. (r)

0.605

0.595

0.597

Degenerate

Tris (%)

2.9

2.4

3.6Bunny 35,947 71,884

Horse 48,485 96,966

Teeth 116,604 233,204

Igea 134,556 269,108

Isis 187,644 375,284

Hand 327,323 654,666

Tablet 539,446 1,078,890

0.608

0.589

0.590

0.573

0.580

0.612

0.567

0.597

0.599

0.604

0.601

0.603

0.606

0.580

3.6

2.6

2.9

2.3

3.4

4.7

2.3

r = Cache Misses Per Triangle

Results

0.62

0.66

0.7

0.74

0.78
C

a
c

h
e

 M
is

s
 R

a
ti

o
 (

r)

Fandisk

Bunny

Horse

Teeth

Igea

0.5(1+c/(k-1))

where 2<c<4

Optimal : 0.5(1+ 1/(k-1))

r with varying cache sizes for different models

0.5

0.54

0.58

0.62

8 16 24 32 48 64

Cache Size (K)

C
a

c
h

e
 M

is
s

 R
a

ti
o

 (
r)

Isis

Hand

Tablet

Comparison with Cache Oblivious

Layout

2

2.25

2.5

2.75

3
C

a
c
h

e
 M

is
s
 R

a
ti
o

 (
r) Our Layout (optimized for cache size 16) run on

different cache sizes

0.5

0.75

1

1.25

1.5

1.75

2

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Cache Size (k)

C
a

c
h

e
 M

is
s
 R

a
ti
o

 (
r)

Cache Oblivious Layout [Yoon et al.] run on

different cache sizes

Topology Encoding

• Out of 3m input indices (for m triangles)

– m/2 indices refer to vertices encountered for the first time

– Implicit; no bits necessary

– 2.4m indices are cache hits

– Encode by their cache address– Encode by their cache address

– (r-1/2)m ~ 0.1m indices are reloaded post cache-eviction

– Require explicit vertex-index

– Huffman encode these

– <5 bits per index, on average

– Variable length encoding

Fixed-length Compression

Encode an entire triangle:

– FFF : fetch the next 3 vertices from vertex array

– FFC : fetch the next 2 vertices and encode the cache-position of the third

• requires log(K) bits (4 bits for a 16-entry cache)

Let F represent the case where an index is referred for the first time

Let C represent the case where an index is in the cache

Let R represent the case where an index is reloaded into the cache

• requires log(K) bits (4 bits for a 16-entry cache)

– FFR: fetch next 2 from vertex array; encode a previously used index

– FCR: fetch next vertex, one in-cache, one previously used

– FCC : fetch the next vertex; encode two cache positions

• Requires ~8 bits for a 16-entry cache

– CCC : ~8 bits

– CCR : ~8 bits plus the reload index

• reloaded vertices exist at the boundary of the cuts

• bound the number of rows in a cut to keep R small

• If R does not fit, change case

Unfavorable Cases

• RRR

– Guarantee to not exist, by construction

• RRX (ijx)• RRX (ijx)

– Rare, O(n(1/4))

– Fewer than 0.1% of triangles in experiments

– Still disallowed

• Convert to two triangles

• DDR (iii) , CRX (cjx)

Unfavorable Cases

• CCC

– Enforce one of the cache entries 0,1,2

– In fact, if we eliminate FFF

• One of the CCC must be in 0,1

• Split into cases CC0 and CC1

• CCR

– R may not fit

– Make a DDR

• Followed by CCC

Decompression Scheme and

Hardware Extensions

• Decompression is simple

– decode the case number for each triangle

– decode the various addresses required

– directly get the cache address of vertices already in cache

– fetch the vertices loaded for the first time or reloaded– fetch the vertices loaded for the first time or reloaded

• Hardware changes

– decoding logic to compute the case number

– Mux to fetch addresses

– Bypass cache-tag lookup

– Counter for ‘F’ vertices

Results and Comparisons

• Compressed stream requires 8-9 bits per triangle

• Can potentially exploit coherence between triangles

– 70% triangles have 1 index common with previous triangle

– 40% triangles have 2 indices common with previous triangle

• Mesh representations by Chow et al. and Deering et al. take • Mesh representations by Chow et al. and Deering et al. take

20-40 bits per triangle

– our scheme achieves ~2-4X better compression

Conclusions

Unified approach for cache efficiency and

bandwidth reduction

Near optimal

Pre-processing requiredPre-processing required

Only applicable for parts of the model where

order is not pre-determined

Acknowledgements

• Jonathan Cohen

• Budirijanto Purnomo

• Stanford University for various models

• Johns Hopkins University for tablet model• Johns Hopkins University for tablet model

• NSF

