Geometry Engine Optimization:

Cache Friendly Compressed Representation

 of Geometry

Jatin Chhugani and Subodh Kumar

 Intel Corporation, CAI.I.T., Delhi, India

Triangle List Representation

$$
\begin{aligned}
& \mathrm{V1}_{\mathrm{x}} \mathrm{V1}_{\mathrm{y}} \mathrm{~V} 1_{\mathrm{z}} \\
& V 2_{\mathrm{x}} \mathrm{~V} 2_{\mathrm{y}} \mathrm{~V} 2_{\mathrm{z}} \\
& V 3_{\mathrm{x}} \mathrm{~V} 3_{\mathrm{y}} \mathrm{~V} 3_{\mathrm{z}}
\end{aligned}
$$

m triangles $=>3 m$ vertices

Triangle List Representation

$$
\begin{aligned}
& \hline \mathrm{V1}_{\mathrm{x}} \mathrm{V1}_{\mathrm{y}} V 1_{\mathrm{z}} \mathrm{~N} 1 \mathrm{~T} 1 \mathrm{U1} . . \\
& \mathrm{V} 2_{\mathrm{x}} \mathrm{~V} \mathrm{y}_{\mathrm{y}} \mathrm{~N} \text { 2 T2 U2 .. } \\
& \mathrm{V} 3_{\mathrm{x}} \mathrm{~V} \mathrm{y}_{\mathrm{y}} \mathrm{~F} \text { N3 T3 U3 .. } \\
& \hline
\end{aligned}
$$

m triangles $=>3 m$ vertices

Adjacency List Representation

$$
\begin{array}{ll}
\mathrm{V} 1_{\mathrm{x}} \mathrm{~V} 1_{\mathrm{y}} \mathrm{~V} 1_{\mathrm{z}} & \mathrm{i1}_{0} \\
\mathrm{i} 1_{1} & \mathrm{i1} 2_{2} \\
\mathrm{~V} 2_{\mathrm{x}} \mathrm{~V} 2_{\mathrm{y}} \mathrm{~V} 2_{\mathrm{z}} & \mathrm{i} 2_{0} \\
\mathrm{i} 2_{1} & \mathrm{i} 2_{2} \\
\mathrm{~V} 3_{\mathrm{x}} \mathrm{~V} 3_{\mathrm{y}} \mathrm{~V} 3_{\mathrm{z}} & \mathrm{i1}_{0} \\
\mathrm{i1} & \mathrm{i} 1_{2} \\
\mathrm{~V} 4_{\mathrm{x}} \mathrm{~V} 4_{\mathrm{y}} \mathrm{~V} 4_{\mathrm{z}} & ! \\
\mathrm{V} 5_{\mathrm{x}} \mathrm{~V} 5_{\mathrm{y}} \mathrm{~V} 5_{\mathrm{z}} & \\
\hline
\end{array}
$$

Triangle Strip Representation

$$
\begin{array}{lll}
\mathrm{V1}_{\mathrm{x}} \mathrm{V1} 1_{\mathrm{y}} \mathrm{V1} 1_{\mathrm{z}} & 0 & 0
\end{array}
$$

m triangles $=>n$ vertices

Triangle Strip Representation?

$$
\begin{aligned}
& \mathrm{V} 1_{\mathrm{x}} \mathrm{~V} 1_{\mathrm{y}} \mathrm{~V} 1_{\mathrm{z}} \\
& V 2_{\mathrm{x}} \mathrm{~V} 2_{\mathrm{y}} \mathrm{~V} 2_{\mathrm{z}} \\
& V 3_{x} V 3_{y} V 3_{z} \\
& \mathrm{~V} 4_{\mathrm{x}} \mathrm{~V} 4_{\mathrm{y}} \mathrm{~V} 4_{\mathrm{z}} \\
& \mathrm{~V} 5_{\mathrm{x}} \mathrm{~V} 5_{\mathrm{y}}^{\mathrm{y}} \mathrm{~V} 5_{\mathrm{z}}
\end{aligned}
$$

m triangles $=>n$ vertices

Relationship between m and n

- Euler's relation:
o \#V + \#F - \#E = 2
- \#V + \#F - (3/2)\#F = 2

○ \#V $\approx 1 / 2 \# F$

- n is approximately half of m
- m triangles imply $3 m$ indices
- An index is re-used about 6 times

Vertex Shading Review

- Triangle mesh is
- a set of Vertices
- Each vertex has attributes
- Set of Triangles (topology information)
- Each triangle indexes three of the input vertices

Post-Transform Vertex Cache

- Cache results of vertex shading
- Helps reuse computation and reduce b / w
- Typical cache sizes are between 8 and 32 entries
- FIFO cache replacement policy

1	
2	
3	
.	
.	
K	

Post-Transform Vertex Cache

- Triangles reuse vertices
- Average degree of a vertex is ~ 6
- Would like to transform a vertex once
- $\sim 85 \%$ reduction in vertex computation
- Specify triangles in an order that exploits the cache
- Vertex reuse is clustered in the order

Geometry Specification

- Huge Meshes
- Hundreds of megabytes to store and transfer
- Bus bandwidth and video memory size are bottlenecks
- Need to compress both the vertex data and the topology
- Hardware supported
- Topology compression is required as well
- Lossless compression to preserve the mesh structure
- Little hardware support in current GPU's

Compress input geometry with efficient hardware decompression and minimal hardware changes

Problem Statement

"Cache Friendly Compressed Representation of Input Geometry with efficient decompression"

- high compression of topology
- high cache coherence
- Inexpensive and Efficient decompression hardware
- Minimal API change
- Friendly to vertex attribute compression
- not a subject of this paper

Some Previous Work

- Compression - Deering/Chow
- Cache simulation and optimization - Hoppe et al.
- Stack Buffer - BarYehuda-Gotsman
- Other work to just compress topology - Edgebreaker
- Cache oblivious work - Yoon et al.
- Single Strip triangulation work - Gopi

Compressed Stream [Deering..]

- Turn meshes into a stream of data and instructions
- 'Generalized' Mesh
- Include special LOAD instructions
- Restart, Replace Oldest, Replace Middle
- Push into mesh-buffer
- Control which index goes into the buffer and which is evicted

Greedy strip-growing [Hoppe]

To decide when to restart strip, perform look-ahead cache simulation

Cache Oblivious Layout [Yoon..]

Our Approach

- n vertices imply at least n cache misses
- Minimize the use of a vertex when not in cache
- Visit all triangles adjacent to a vertex before it is evicted
- Cannot guarantee for every vertex
- A vertex is 'hit' only for a fixed number of cache misses (FIFO)
- Directly re-order the vertices, rather than triangles
- Connectivity of the vertices dictates the triangle order to follow

Illustration

Input Mesh with 19 vertices and 22 triangles

Illustration

Step 1:Divide the mesh into rows (chains) of vertices
\rightarrow Triangles exist only between consecutive chains

Illustration

Step 2: Order Vertices within every chain

$$
\begin{aligned}
& \mathrm{R}_{1} \rightarrow \stackrel{(1,1)}{\circ} \stackrel{(1,2)}{(1,3)} \underset{\sim}{\circ}- \\
& \mathrm{R}_{2} \rightarrow \underset{(2,1)}{\mathrm{O}} \underset{(2,2)}{\mathrm{O}}-\underset{(2,3)}{\mathrm{O}} \underset{(2,4)}{-} \\
& \mathrm{R}_{3} \rightarrow \underset{(3,1)}{0}-0-0 \quad 0 \quad 0 \\
& \mathrm{R}_{4} \rightarrow \underset{(4,1)}{\mathrm{O}} \underset{(4,2)}{(4,3)} \underset{(4,4)}{0}
\end{aligned}
$$

Illustration

Step 3: Render triangles in an order that introduces vertices in R1 before R2 and so on, in the order specified within each row

Illustration

Render Degenerate Triangle $\rightarrow\left[\mathrm{V}_{(1,1)} \mathrm{V}_{(1,1)} \mathrm{V}_{(1,1)}\right]$

Illustration

Render Degenerate Triangle $\rightarrow\left[\mathrm{V}_{(1,2)} \mathrm{V}_{(1,2)} \mathrm{V}_{(1,2)}\right]$

$\mathrm{K}=10$

Illustration

Render Degenerate Triangle $\rightarrow\left[\mathrm{V}_{(1,3)} \mathrm{V}_{(1,3)} \mathrm{V}_{(1,3)}\right]$

$\mathrm{K}=10$

Illustration

Render Degenerate Triangle $\rightarrow\left[\mathrm{V}_{(1,4)} \mathrm{V}_{(1,4)} \mathrm{V}_{(1,4)}\right]$

Illustration

Render Degenerate Triangle $\rightarrow\left[\mathrm{V}_{(1,5)} \mathrm{V}_{(1,5)} \mathrm{V}_{(1,5)}\right]$

$\mathrm{K}=10$

Illustration

Render Triangle $\rightarrow\left[\mathrm{V}_{(1,1)} \mathrm{V}_{(1,2)} \mathrm{V}_{(2,1)}\right]$

Illustration

Render Triangle $\rightarrow\left[\mathrm{V}_{(1,2)} \mathrm{V}_{(2,1)} \mathrm{V}_{(2,2)}\right]$

Illustration

Render triangles between R_{1} and R_{2}

Illustration

Render triangle $\rightarrow\left[\mathrm{V}_{(2,1)} \mathrm{V}_{(2,2)} \mathrm{V}_{(3,1)}\right]$

Illustration

Render triangle $\rightarrow\left[\mathrm{V}_{(2,2)} \mathrm{V}_{(3,1)} \mathrm{V}_{(3,2)}\right]$

Illustration

Render triangles between R_{2} and R_{3}

Illustration

Render Triangle $\rightarrow\left[\mathrm{V}_{(3,1)} \mathrm{V}_{(3,2)} \mathrm{V}_{(4,1)}\right]$

Illustration

Render Triangle $\rightarrow\left[\mathrm{V}_{(3,2)} \mathrm{V}_{(4,1)} \mathrm{V}_{(4,2)}\right]$

Illustration

Render triangles between R_{3} and R_{4}

Illustration (contd.)

- Each vertex was loaded only once into the cache
- Optimal solution
- Generated some degenerate triangles to warm-up the cache
- However, we allowed a potentially large cache!
- What happens when the cache size (K) is not that large?
- Choose a subset of vertices along each chain
- Each subset is referred to as a cut.
- Vertices shared by two cuts need to be reloaded

Algorithm Overview

1. Form chains (rows of vertices) for the mesh
2. Order the vertices within each chain
3. Form cuts of vertices for each row

- Function of connectivity and cache size K

4. Form list of triangles that preserves the vertex order

1. Forming Chains On The Mesh

- Given a mesh, choose a subset of vertices that form a connected path
- can choose any single vertex as well
- denote this set as R_{1}

1. Forming Chains On The Mesh

1. Forming Chains On The Mesh

- Given a mesh, choose a subset of vertices that form a connected path
- can choose any single vertex as well
- denote this set as R_{1}
- Perform a Breadth First Search and find all vertices connected to at least one vertex in R_{1}
- Forms the chain R_{2}

1. Forming Chains On The Mesh

1. Forming Chains On The Mesh

- Given a mesh, choose a subset of vertices that form a connected path
- can choose any single vertex as well
- denote this set as R_{1}
- Perform a Breadth First Search and find all vertices connected to at least one vertex in R_{1}
- Forms the chain R_{2}
- Continue forming chains until each vertex belongs to some chain
- Some chains may not form a connected path
- Running time of $\mathrm{O}(n+m)$

1. Forming Chains On The Mesh

1. Forming Chains On The Mesh Example 2

1. Forming Chains On The Mesh Example 2

2. Ordering Vertices Within A Chain

- R_{1} is already ordered to start with

2. Ordering Vertices Within A Chain

2. Ordering Vertices Within A Chain

- R_{1} is already ordered to start with
- For each vertex in R_{2}
- Store the ID of vertices in $R_{1}\left(L_{v}\right)$ sharing an edge with it

2. Ordering Vertices Within A Chain

2. Ordering Vertices Within A Chain

- R_{1} is already ordered to start with
- For each vertex in R_{2}
- Store the ID of vertices in $\mathrm{R}_{1}\left(\mathrm{~L}_{\mathrm{v}}\right)$ sharing an edge with it
- Sort the vertices in R_{2} based on L_{v}
- Specific rules to break ties
- This defines the order within R_{2}

2. Ordering Vertices Within A Chain

2. Ordering Vertices Within A Chain

2. Ordering Vertices Within A Chain

- P_{1} is already ordered to start with
- For each vertex in P_{2}
- Store the ID of vertices in $\mathrm{P}_{1}\left(\mathrm{~L}_{\mathrm{v}}\right)$ sharing an edge with it
- Sort the vertices in P_{2} based on L_{v}
- Specific rules to break ties
- This defines the order within P_{2}
- Perform similar computation for each subsequent chain.
- Running time of $\mathrm{O}(\mathrm{n} \log (\mathrm{n}))$

2. Ordering Vertices Within A Chain

$$
\mathrm{R}_{1} \rightarrow \mathrm{R}_{2}^{(1,1)} \mathrm{R}_{3}^{(1,2)} \rightarrow \mathrm{Cl}_{(3,1)}^{(1,3)}
$$

2. Ordering Vertices Within A Chain

3. Forming Cuts Of Vertices

- Each cut is defined as a subset of vertices in each row
- Consider a row R_{i}
- say a vertex v is introduced into the cache by some triangle joining vertices in $\mathrm{R}_{\mathrm{i}-1}$ and R_{i}
- The subset in R_{i} is chosen in a fashion that ensures that every vertex v remains in the cache when triangles joining v to vertices in R_{i+1} are traversed
- keep a counter which keeps track of the number of vertices that can be loaded from $\mathrm{R}_{\mathrm{i}+1}$ and continue while counter >0

3. Forming Cuts Of Vertices

- Assume cache size $(\mathrm{K})=6$

3. Forming Cuts Of Vertices

- Assume cache size $(\mathrm{K})=6$

3. Forming Cuts Of Vertices

- Assume cache size $(\mathrm{K})=6$

3. Forming Cuts Of Vertices

- Assume cache size $(\mathrm{K})=6$

3. Forming Cuts Of Vertices

- Assume cache size $(\mathrm{K})=6$

3. Forming Cuts Of Vertices

- Assume cache size $(\mathrm{K})=6$

3. Forming Cuts Of Vertices

- Assume cache size $(\mathrm{K})=6$

$K=6$

3. Forming Cuts Of Vertices

- Assume cache size $(\mathrm{K})=6$

3. Forming Cuts Of Vertices

- Assume cache size $(\mathrm{K})=6$

3. Forming Cuts Of Vertices

- Assume cache size $(\mathrm{K})=6$

3. Forming Cuts Of Vertices

- Assume cache size $(\mathrm{K})=6$

3. Forming Cuts Of Vertices

- Assume cache size $(\mathrm{K})=6$

3. Forming Cuts Of Vertices

- Assume cache size $(\mathrm{K})=6$

3. Forming Cuts Of Vertices

2 cuts are formed and 4 vertices need to be reloaded

3. Forming Cuts Of Vertices

3 vertices need to be reloaded

Results (Cache Size K = 16)

Model	Vertices (n)	Triangles (m)	Cache Miss Rate (r)	Lin et al. (r)	Degenerate Tris (\%)
Grid20	391	704	0.580	0.605	2.9
Fandisk	6,475	12,946	0.588	0.595	2.4
Bunny	35,947	71,884	0.608	0.597	3.6
Horse	48,485	96,966	0.589	0.599	2.6
Teeth	116,604	233,204	0.590	0.604	2.9
Igea	134,556	269,108	0.573	0.601	2.3
Isis	187,644	375,284	0.580	0.603	3.4
Hand	327,323	654,666	0.612	0.606	4.7
Tablet	539,446	$1,078,890$	0.567	0.580	2.3

r = Cache Misses Per Triangle

Results

r with varying cache sizes for different models

Comparison with Cache Oblivious Layout

Topology Encoding

- Out of $3 m$ input indices (for m triangles)
- $m / 2$ indices refer to vertices encountered for the first time
- Implicit; no bits necessary
- $2.4 m$ indices are cache hits
- Encode by their cache address
- ($r-1 / 2$) $m \sim 0.1 m$ indices are reloaded post cache-eviction
- Require explicit vertex-index
- Huffman encode these
$-<5$ bits per index, on average
- Variable length encoding

Fixed-length Compression

Let F represent the case where an index is referred for the first time
Let C represent the case where an index is in the cache
Let R represent the case where an index is reloaded into the cache
Encode an entire triangle:

- FFF : fetch the next 3 vertices from vertex array
- FFC : fetch the next 2 vertices and encode the cache-position of the third
- requires $\log (K)$ bits (4 bits for a 16-entry cache)
- FFR: fetch next 2 from vertex array; encode a previously used index
- FCR: fetch next vertex, one in-cache, one previously used
- FCC : fetch the next vertex; encode two cache positions
- Requires ~ 8 bits for a 16 -entry cache
- CCC : ~ 8 bits
- CCR : ~ 8 bits plus the reload index
- reloaded vertices exist at the boundary of the cuts
- bound the number of rows in a cut to keep R small
- If R does not fit, change case

Unfavorable Cases

- RRR
- Guarantee to not exist, by construction
- RRX (ijx)
- Rare, O(n $\left.{ }^{(1 / 4)}\right)$
- Fewer than 0.1% of triangles in experiments
- Still disallowed
- Convert to two triangles
- DDR (iii), CRX (cix)

Unfavorable Cases

- CCC
- Enforce one of the cache entries 0,1,2
- In fact, if we eliminate FFF
- One of the CCC must be in 0,1

- Split into cases CC0 and CC1
- CCR
- R may not fit
- Make a DDR
- Followed by CCC

Decompression Scheme and Hardware Extensions

- Decompression is simple
- decode the case number for each triangle
- decode the various addresses required
- directly get the cache address of vertices already in cache
- fetch the vertices loaded for the first time or reloaded
- Hardware changes
- decoding logic to compute the case number
- Mux to fetch addresses
- Bypass cache-tag lookup
- Counter for 'F' vertices

Results and Comparisons

- Compressed stream requires 8-9 bits per triangle
- Can potentially exploit coherence between triangles
- 70\% triangles have 1 index common with previous triangle
- 40% triangles have 2 indices common with previous triangle
- Mesh representations by Chow et al. and Deering et al. take 20-40 bits per triangle
- our scheme achieves $\sim 2-4 \mathrm{X}$ better compression

Conclusions

Unified approach for cache efficiency and bandwidth reduction

Near optimal
Pre-processing required
Only applicable for parts of the model where order is not pre-determined

Acknowledgements

- Jonathan Cohen
- Budirijanto Purnomo
- Stanford University for various models
- Johns Hopkins University for tablet model
- NSF

