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What are geometric graphs?

• The vertices of the graphs are geometric objects.

• The edges are placed based on a geometric relationship

between the objects.
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Geometric graphs: An example

The Unit Disk Graph: Vertices are points, an edge is placed

between x and y if d(x, y) ≤ 1 where d(·, ·) is a distance function.



Amitabha Bagchi, IIT Delhi 3

Geometric graphs: More examples

• Vertices: Line segments in R
d. Edges: Between two line

segments that intersect.

• Vertices: Voronoi cells of a point set in R
d. Edges: Between

two cells that share a d − 1 dimensional facet.

• Vertices: Points in R
d. Edges: From each point to the k points

closest to it.
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What are random graphs?

Given a graph G = (V, E), a random graph is a probability

distribution over the set of all subgraphs of G.
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Random graphs: Some examples

• The Erdös Rényi graph. Given a complete graph on n vertices

and a parameter 0 < p < 1, retain each edge independently

from all others with probability p.

• Random d-regular graphs. A graph on n vertices where each

vertex has d randomly chosen neighbors
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What are geometric random graphs?

Given a geometric graph G = (V, E) a geometric random graph is a

probability distribution over the set of all subgraphs of G.
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Geometric random graphs: Some examples

• The unit disk graph on a randomly distributed set of points.

• The Voronoi graph with each Voronoi cell retained in the graph

independently with probability p and removed with probability

1 − p.
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Modelling wireless networks

• It is not always possible to deterministically predict the

position of the wireless nodes.

• The edges of a wireless network depend on the transmission

and reception capabilities of the wireless antennas that nodes

are equipped with.
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Modelling WNs with Geometric Random Graphs

• We model the placement of wireless nodes (e.g. sensor nodes)

as being placed randomly.

• Connection rules depend on the wireless transmission model.

Unit disk graphs are the simplest model.

Real-life constraints should be respected.
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Analyzing the properties of WNs using GRGs

• Formulate the service requirements of the network and its

constraints in mathematical terms (measurable functions).

• Use the tools of probability and algorithmics to analyze these

quantities.

• The analysis is useful if it provides insight into the working of

the network, or presents demonstrably better ways of

performing essential tasks.
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Case study: Multihop wireless ad hoc sensor

networks

Multihop communication is useful

• System tasks e.g. time synchronization.

• Collaborative tasks e.g. target tracking.

Just like ad hoc wireless networks in general, multihop WASNs

require a connected topology. But there is one major difference

It is not necessary that every sensor be part of a connected

network. It is only necessary that the density of connected

sensors is high enough to perform the sensing function.
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Desirable properties of a multihop WASN

Sparsity. The degree of each node should be bounded.

Constant stretch. The distance between a pair of nodes along the

edges of the network should be at most a constant times the

Euclidean distance between the nodes.

Coverage. The range which has to be sensed must be well covered.

Local Computability. The network should be formed using local

computations and exchange of information between each node

and its neighbors.
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The significance of constant stretch

Given a graph G = (V, E) and a subgraph H ⊆ G the distance

stretch of H is defined as

δ = max
u,v∈V

dH(u, v)

dG(u, v)
,

Given a connection network G and a subgraph H with distance

stretch δ, the power stretch of H is at most δβ for some 2 ≤ β ≤ 5

(Li, Wan, Wang, 2001).
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The model for sensor placement

Sensor locations are modeled by a point set generated by a

homogenous Poisson point process of intensity λ in R
2 i.e.

• Given a region A with area V (A), the number of points in A is

a r.v. XA with distribution

P(XA = k) = e−λV (A) ·
(λV (A))k

k!
.

• The random variables for disjoint regions are independent.
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Two geometric random graph models

Given a set of points S generated by a Poisson point process in R
2

with density λ, we define two random graph models

• UDG(2, λ): there is an edge between points x ∈ S and y ∈ S if

d(x, y) ≤ 1.

• NN(2, k): there is an (undirected) edge between points x ∈ S

the k points in S \ {x} that are closest to x.

We will show that there are settings of the parameters λ and k such

that both these contain subgraphs with the properties we want.
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Critical density for UDG(2, λ)

• There is a finite value λc(2) s. t. for λ > λc(2), UDG(2, λ) has

an infinite connected component.

• Previously, it was known that

0.7698 ≤ λc(2) ≤ 3.372.

Lower bound due to Kong and Zeh (2008), upper bound due to

Hall (1985).

• Upper bound improved to 1.568.
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Critical value for NN(2, k)

• There is a finite value kc(2) s. t. for k > kc(2), NN(2, k) has an

infinite connected component (Häggström and Meester, 1996).

• Previously it was known that

1 < kc(2) < 213.

Lower bound due to Eppstein, Paterson and Yao (1997), upper

bound due to Teng and Yao (2007).

• Upper bound improved to 188. (Subsequently improved to 11

by Balister and Bollobás).
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Overview of our technique

We tile the space with square tiles and look for two kinds of points

Representatives

Relays

Unconnected points

• representative points lie roughly at the centre of the tile.

• relay points help connect representative points.

We call a tile good if it contains both kinds of points.
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Coupling with a process on Z
2

We associate each tile in R
2 with a point in Z

2.

We declare a point in Z
2 open (non-faulty) if the corresponding tile

in R
2 is good and closed (faulty) otherwise.
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Site percolation in Z
2

Setting. L
2 is an infinite graph with vertex set Z

2 and edges

between points x and y such that ‖x − y‖1 = 1.

The stochastic process. Each point of Z
2 is taken to be open

with probability p and closed with probability 1 − p. An edge is

open if both its endpoints are open.

Lemma 1 There is a pc s.t. 0 < pc < 1 such that for p > pc, L
2

a.s. contains an infinite open cluster and for p ≤ pc, L
2 a.s. does

not contain an infinite cluster.

It is known that pc ≈ 0.592...
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A basic property of the coupling

A path in Z
2 ⇒ A path between representative points in R

2.

infinite open component in Z
2 ⇒ infinite component in the

geometric random graph model.

⇒ if the probability of a tile being good exceeds pc, the geometric

random graph model a.s. has an infinite component.
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NN(2, k): When is a tile good? Slide I
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C0, Cl, Cr, Ct, Cb are circles of radius a.

Er: Consider the largest circle centred at any point in C0 or Cr

that lies wholly within the two tiles t and tr. Er is the locus of the

points contained in all such circles.
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NN(2, k): When is a tile good? Slide II
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1. the number of points inside t is at most k/2 and

2. the nine regions C0, Cr, Ct, Cl, Cb, Er, Et, El and Eb contain at

least one point each.
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L
2 edges = paths in NN(2, k)

An edge in L
2 between two points x and y means

There is a path between the representative points

rep(φ−1(x)) and rep(φ−1(y)).
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An upper bound for kc

Theorem 2 For NN(2, k),

kc(2) ≤ 188.

Numerical calculations reveal that k = 188 is the smallest value for

which the probability of a tile being good exceeds pc for L
2.

For all k > k2 we call the infinite component NN-SENS(2, k).
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Constant stretch. Slide I
L

2 edges = short paths in NN(2, k)

An edge in L
2 between two points x and y means there is a

constant ck such that

dk(rep(φ−1(x)), rep(φ−1(y))) ≤ ck · d(rep(φ−1(x)), rep(φ−1(y))).
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Constant stretch. Slide II
Short paths in the percolated L

2

Lemma 3 (Antal and Pisztora, 1996) For any p > pc and any x, y

connected through an open path in a cube Md of the infinite lattice.

For some ρ, c2 > 0 depending only on the dimension and p and for

any a > ρ · D(x, y)

pr(Dp(x, y) > a)) < e−c2a.
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Constant stretch. Slide III
Our result

⇒

Theorem 4 For NN-SENS(2, k), with k ≥ 188 there are constants

β and c2 depending only on k such that

P(dk(x, y) > β · D(x, y)) < e−c2·D(x,y).
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Coverage

Theorem 5 Let us consider a square region of size ℓ × ℓ, call it

B(ℓ). For k ≥ 188 there are constants c1, c2 depending only on k

and λ such that

P[|B(ℓ) ∩ NN-SENS(2, k)| = 0] ≤ c1 · ℓ
2 · e−c2·ℓ.

Hence it follows that

Corollary 6 There is a constant c3 such that for ℓ ≥ c3 log n

P[|B(ℓ) ∩ NN-SENS(2, k)| = 0] <
1

n
.
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Algorithmic issues I: Constructing NN-SENS(2, k)
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We begin with a tiling of R
2

1. Each point uses location information to decide which of the 9

regions it is in, if any.

2. Leader election is used to identify one node within each region.

3. Nodes make connections with neighbouring leaders.
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Algorithmic issues II: Routing

Representative points of a tile emulate open lattice points in L
2.

Any algorithm for routing in a percolated mesh can be used.

1. Try to follow the x − y path between two vertices.

2. If the path is broken at some point, do a distributed BFS in

order to find the next reachable vertex on that path.

Algorithm is due to Angel et. al. (2005) who show that the number

of probes required to route a packet between two nodes n units

apart is O(n).
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Conclusion of the case study

1. Similar results can be shown for UDG(2, λ).

2. Geometric random graphs have properties well suited for sensor

networks: sparsity, constant stretch, coverage and local

computability.

Open question 1. Can all these properties be shown for all

k > kc(2) and λ > λc(2)?

Open question 2. Can the value of kc(2) be brought down to

somewhere near 3?
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Research direction 1: More realistic models of

transmission

• Noise and signal fading need to be taken into account.

• Current work along this direction either makes simplistic

assumptions about the transmission model and solves a

scheduling problem or vice versa.
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Research direction 2: Secure routing

• We assume a model of passive eavesdropper presence in the

region.

• Secret sharing over disjoint paths can be a basis for secure

routing in the presence of eavesdroppers.

What eavesdropper density can a wireless network tolerate and still

maintain reasonable secure throughput?
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Research direction 3: Intruder detection

• A power-constrained sensor network monitoring a region

conserves energy by putting sensors to sleep for periods of time.

• If we consider a random independent sleep schedule then the

coverage region of the waking sensors at any point in time

forms a random subregion.

• We evaluate the sleep schedule by studying how effective it is

in detecting and tracking intruders.
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