Introduction to Online Algorithms

Naveen Sivadasan

Indian Institute of Technology Hyderabad

Online Computation

- In an online setting, the complete input is not known in advance.
- Input is a request sequence that is revealed gradually over time.
- Can be viewed as a request-answer game between the algorithm and an adversary.
- Algorithm has to perform well under the lack of information on future requests.
- Applications in scheduling, data structures, OS, networking etc.

Online Makespan Scheduling

- Given m identical machines. That is, processing time for a job is same across all machines.
- Consider a sequence of requests $\sigma=j_{1}, j_{2}, j_{3}, \cdots, j_{n}$ of length n.
- Let j_{i} denote the processing time of job i.
- Each job j_{i} has to be assigned to exactly one machine. Once a job is assigned to a machine, it remains there.
- Objective is to minimize the completion time of the last finishing job (makespan).

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Better Schedule

Competitive Ratio

- Compare the performance of the algorithm against offline optimal strategy.
- Let $\sigma=\sigma(1), \sigma(2), \sigma(3), \ldots, \sigma(t)$ denote a t length sequence.
- Request $\sigma(i)$ is revealed to the algorithm in round i.
- Let $A(\sigma)$ denote the cost incurred by the algorithm A for serving σ (Make span in prev. example)
- Let $O P T(\sigma)$ denote the optimal cost incurred if the complete σ is known in advance.
- A is said to be c-competitive if $A(\sigma) \leq c \cdot O P T(\sigma)+a$ for any sequence σ. (Here a is some fixed constant)

Back to Makespan Scheduling

Consider the following greedy approach :

- Schedule the new job to the machine having least total processing time. (Graham's list scheduling)
- The scheduling given in the previous example follows this approach.
- How competitive is this approach?

Competitive ratio of greedy

- Consider any request sequence $\sigma=j_{1}, j_{2}, \ldots, j_{n}$.
- Focus on the makespan machine. Let w be the last job and r be the remaining total processing time. Hence $A(\sigma)=r+w$.
- When w was assigned greedily, all other machines also have load at least r.
- Hence $m \cdot r+w \leq j_{1}+j_{2}+\ldots+j_{n}$
- Observe that $O P T(\sigma)$ is at least the average load and also the size of any one job.
- That is, $\frac{m \cdot r+w}{m} \leq O P T(\sigma)$ and also $w \leq O P T(\sigma)$.
- Putting together, $A(\sigma)=r+w \leq\left(2-\frac{1}{m}\right) O P T(\sigma)$.

Self-organizing lists

- Consider a list L of n elements $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$.
- Cost of accessing an element x in L is $\operatorname{rank}(x)$.
- Algorithm is allowed to reorganize the list using transposition of adjacent elements.
- Cost of a single transposition is 1 .
- Input is an online sequence $\sigma=x_{1}, x_{2}, x_{3}, \cdots$ of elements in L.
- Objective is to minimize the total cost of serving σ.

Self-organizing lists : Move To Front (MTF) algorithm

- Under standard worst case analysis, any algorithm would incur a cost of $|\sigma| \cdot n$ if each request is to access the last element of the list.
- This would not allow us to compare algorithms.
- Let analyze a simple, practical algorithm under online setting.
- MTF (Move to Front): When an element is accessed, move it to front of the list.
- Hence accessing an element x would incur a cost at most $2 \cdot \operatorname{rank}(x)$.

Amortized analysis - Potential functions

- An aggregate cost analysis technique using potential functions.
- Consider a request sequence σ of length s.
- Let C_{i} denote the cost of MTF to serve i th request. Let $C(\sigma)=\sum_{i=1}^{s} C_{i}$.
- Define a potential function Φ_{i} that maps the state of the list after i rounds to a non negative real number.
- We will define Φ such that $\Phi_{0}=0$.
- Amortized cost of the algorithm in step i denoted by $\hat{C}_{i}=C_{i}+\Phi_{i}-\Phi_{i-1}$.
- Cost of serving σ is

$$
C(\sigma)=\sum_{i=1}^{s}\left(\hat{C}_{i}+\Phi_{i-1}-\Phi_{i}\right)=\Phi_{0}-\Phi_{s}+\sum_{i=1}^{s} \hat{C}_{i} \leq \sum_{i=1}^{s} \hat{C}_{i}
$$

MTF - Amortized analysis

- We will bound cost of serving i th request, say x.
- Lets compare the list configurations L_{i-1} and L_{i-1}^{*} of MTF and OPT respectively before serving i th request.
- Let $r=\operatorname{rank}(x)$ in L_{i-1} and r^{*} be $\operatorname{rank}(x)$ in L_{i-1}^{*}.
- Hence $C_{i} \leq 2 r$.
- Let C_{i}^{*} denote the OPT cost for serving i th request. Let $C_{i}^{*}=r^{*}+t_{i}$, where t_{i} is the number of transpositions done by OPT.
- Define Φ_{i-1} to be twice the number of inversions in L_{i-1} with respect to L_{i-1}^{*}.
- That is Φ_{i-1} is the no. of ordered pairs of elements in L_{i-1} that appear in opposite order in L_{i-1}^{*}.
- Clearly $\Phi_{i-1} \geq 0$ and $\Phi_{0}=0$. (Both start with same list)

MTF - Amortized analysis

- We now bound $\Phi_{i}-\Phi_{i-1}$

- MTF step creates $|A|$ new inversions and destroys $|B|$ existing inversions.
- Note that $r=|A|+|B|+1$ and $r^{*}=|A|+|C|+1$.
- New inversions due to t_{i} transpositions of OPT are at most t_{i}.
- Hence the potential difference $\Delta \Phi$ is, $\Phi_{i}-\Phi_{i-1} \leq 2\left(|A|-|B|+t_{i}\right) \leq 4|A|+2+2 t_{i}-2 r \leq 4 C_{i}^{*}-2 r$

MTF - Amortized analysis

- Hence $\hat{C}_{i}=C_{i}+\Phi_{i}-\Phi_{i-1} \leq 2 r+\Phi_{i}-\Phi_{i-1} \leq 4 C_{i}^{*}$.
- Since $C(\sigma) \leq \sum_{i=1}^{s} \hat{C}_{i}$, we obtain $C(\sigma) \leq 4 C^{*}(\sigma)$.
- Thus MTF is 4 competitive.

The Metrical Task Systems Framework

The Metrical Task Systems Framework

$A L G[S]=6+4 \epsilon, \quad$ opt $[S]=2+4 \epsilon . \quad$ c.ratio $(S)=\frac{6+4 \epsilon}{2+4 \epsilon} \approx 3$

Metrical Task Systems (MTS) - Lower Bound

Theorem 1 On any n state metric space and for any deterministic algorithm the c.ratio is at least $2 n-1$.

That is, \exists a bad adversarial instance for the specified graph and the specified algorithm.

There is an algorithm called work function algorithm that matches this lower bound.

Metrical Task Systems (MTS) - Lower Bound

- Fix any deterministic algorithm A.
- Consider $2 n-1$ algorithms $\mathcal{B}=\left\{B_{1}, B_{2}, \ldots, B_{2 n-1}\right\}$ such that the following invariant is always maintained.
- One alg from \mathcal{B} occupy the same node as A and the rest of the nodes are occupied by exactly 2 algs from \mathcal{B}.
- If A makes a transition to vertex v from u in a round i, then one of the two algs from v moves to u. Thus invariant is maintained.
- Let v_{i} denote the node where A resides after i rounds.
- The adversarial input σ is such that in round t, processing cost at node v_{t-1} is ϵ and 0 everywhere else.

Metrical Task Systems (MTS) - Lower Bound

- Let $s=|\sigma|$.
- If A makes total k transitions to serve σ then $A(\sigma)=(s-k) \epsilon+T$, where T is the total travel cost.
- Let $\mathcal{B}(\sigma)$ denote the sum total of cost of all algs in \mathcal{B}, which is $\sum_{i=1}^{2 n-1} B_{i}(\sigma)$
- Note that $\mathcal{B}(\sigma)=(s-k) \epsilon+T+2 k \epsilon=A(\sigma)+2 k \epsilon$.
- Also, $O P T(\sigma) \leq \frac{1}{2 n-1} \mathcal{B}(\sigma)$.
- Hence $O P T(\sigma) \leq \frac{1}{2 n-1}(A(\sigma)+2 k \epsilon) \leq \frac{1}{2 n-1} A(\sigma)(1+2 \epsilon)$.
- That is, $A L G(\sigma) / O P T(\sigma) \geq 2 n-1$.

k-server problem

- There are k machines/servers that can move around in an n node weighted graph (which is a metric)
- No two servers reside in the same node.
- Each request $\sigma(i)$ is a node in the graph where the request should be served.

2-server

$\sigma=$

2-server

$\sigma=2$

2-server

$\sigma=2,1 . A(\sigma)=$ total travel cost for serving σ.

k-server problem

- There are k machines/servers that can move around in an n node weighted graph (which is a metric)
- No two servers reside in the same node.
- Each request $\sigma(i)$ is a node in the graph where the request should be served.
- Algorithm can send any of the k servers to serve the request.
- Cost incurred in a step is the distance the chosen server has to travel to serve the request.
- Total cost on a request sequence is the sum of the travel cost in each round.
- Generalization of problems such as paging problem.

k-server problem

- Actively researched area to bound the competitive ratio on arbitrary metric and on special cases.
- It is known that the best possible competitive ratio lies between k and $2 k-1$ for any arbitrary metric.
- It is still open whether the competitive ratio of the problem is exactly k.
- It is conjectured so.

References

[1] Allan Borodin and Ran El-Yaniv, Online Computation and Competitive Analysis, Cambridge Univ. Press, Cambridge, 2005.
[2] S. Albers, Online algorithms: A survey, Mathematical Programming, 97:3-26, 2003.
[3] J. Sgall, On-line scheduling - A survey, Online Algorithms: The State of the Art, LNCS. 1442, pages 196-231, Springer, 1998.
[4] Elias Koutsoupias, The k-server problem, Survey, 2009.

