
Introduction to Online Algorithms

Naveen Sivadasan

Indian Institute of Technology Hyderabad

Online Computation

• In an online setting, the complete input is not known in advance.

• Input is a request sequence that is revealed gradually over time.

• Can be viewed as a request-answer game between the algorithm and an

adversary.

• Algorithm has to perform well under the lack of information on future requests.

• Applications in scheduling, data structures, OS, networking etc.

Online Makespan Scheduling

• Given m identical machines. That is, processing time for a job is same across

all machines.

• Consider a sequence of requests σ = j1, j2, j3, · · · , jn of length n.

• Let ji denote the processing time of job i.

• Each job ji has to be assigned to exactly one machine. Once a job is

assigned to a machine, it remains there.

• Objective is to minimize the completion time of the last finishing job

(makespan).

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Better Schedule

Competitive Ratio

• Compare the performance of the algorithm against offline optimal strategy.

• Let σ = σ(1), σ(2), σ(3), . . . , σ(t) denote a t length sequence.

• Request σ(i) is revealed to the algorithm in round i.

• Let A(σ) denote the cost incurred by the algorithm A for serving σ (Make

span in prev. example)

• Let OPT (σ) denote the optimal cost incurred if the complete σ is known in

advance.

• A is said to be c–competitive if A(σ) ≤ c ·OPT (σ) + a for any sequence

σ. (Here a is some fixed constant)

Back to Makespan Scheduling

Consider the following greedy approach :

• Schedule the new job to the machine having least total processing time.

(Graham’s list scheduling)

• The scheduling given in the previous example follows this approach.

• How competitive is this approach ?

Competitive ratio of greedy

• Consider any request sequence σ = j1, j2, . . . , jn.

• Focus on the makespan machine. Let w be the last job and r be the

remaining total processing time. Hence A(σ) = r + w.

• When w was assigned greedily, all other machines also have load at least r.

• Hence m · r + w ≤ j1 + j2 + . . .+ jn

• Observe that OPT (σ) is at least the average load and also the size of any

one job.

• That is, m·r+w

m
≤ OPT (σ) and also w ≤ OPT (σ).

• Putting together, A(σ) = r + w ≤ (2− 1

m
)OPT (σ).

Self-organizing lists

• Consider a list L of n elements {a1, a2, . . . , an}.

• Cost of accessing an element x in L is rank(x).

• Algorithm is allowed to reorganize the list using transposition of adjacent

elements.

• Cost of a single transposition is 1.

• Input is an online sequence σ = x1, x2, x3, · · · of elements in L.

• Objective is to minimize the total cost of serving σ.

Self-organizing lists : Move To Front (MTF) algorithm

• Under standard worst case analysis, any algorithm would incur a cost of

|σ| · n if each request is to access the last element of the list.

• This would not allow us to compare algorithms.

• Let analyze a simple, practical algorithm under online setting.

• MTF (Move to Front): When an element is accessed, move it to front of the

list.

• Hence accessing an element x would incur a cost at most 2 · rank(x).

Amortized analysis - Potential functions

• An aggregate cost analysis technique using potential functions.

• Consider a request sequence σ of length s.

• Let Ci denote the cost of MTF to serve ith request. Let C(σ) =
∑

s

i=1
Ci.

• Define a potential function Φi that maps the state of the list after i rounds to a

non negative real number.

• We will define Φ such that Φ0 = 0.

• Amortized cost of the algorithm in step i denoted by Ĉi = Ci +Φi −Φi−1.

• Cost of serving σ is

C(σ) =
∑

s

i=1
(Ĉi +Φi−1 − Φi) = Φ0 − Φs +

∑
s

i=1
Ĉi ≤

∑
s

i=1
Ĉi

MTF - Amortized analysis

• We will bound cost of serving ith request, say x.

• Lets compare the list configurations Li−1 and L∗

i−1 of MTF and OPT

respectively before serving ith request.

• Let r = rank(x) in Li−1 and r∗ be rank(x) in L∗

i−1.

• Hence Ci ≤ 2r.

• Let C∗

i
denote the OPT cost for serving ith request. Let C∗

i
= r∗ + ti,

where ti is the number of transpositions done by OPT.

• Define Φi−1 to be twice the number of inversions in Li−1 with respect to

L∗

i−1.

• That is Φi−1 is the no. of ordered pairs of elements in Li−1 that appear in

opposite order in L∗

i−1.

• Clearly Φi−1 ≥ 0 and Φ0 = 0. (Both start with same list)

MTF - Amortized analysis

• We now bound Φi − Φi−1

x

x

x

Li−1

L
∗

i−1

Li

r

r
∗

A ∪B C ∪D

A ∪ C B ∪D

A ∪B ∪ C ∪D

• MTF step creates |A| new inversions and destroys |B| existing inversions.

• Note that r = |A|+ |B|+ 1 and r∗ = |A|+ |C|+ 1.

• New inversions due to ti transpositions of OPT are at most ti.

• Hence the potential difference ∆Φ is,

Φi − Φi−1 ≤ 2(|A| − |B|+ ti) ≤ 4|A|+ 2 + 2ti − 2r ≤ 4C∗

i
− 2r

MTF - Amortized analysis

• Hence Ĉi = Ci +Φi − Φi−1 ≤ 2r +Φi − Φi−1 ≤ 4C∗

i
.

• Since C(σ) ≤
∑

s

i=1
Ĉi, we obtain C(σ) ≤ 4C∗(σ).

• Thus MTF is 4 competitive.

The Metrical Task Systems Framework

1
2

3
4

5
6

7

1
1

1
1

1
1

Start

ALG[S] = 6 + 4ǫ, opt[S] = 2 + 4ǫ. c.ratio(S) = 6+4ǫ

2+4ǫ
≈ 3

The Metrical Task Systems Framework

1
2

3
4

5
6

7

1
1

1
1

1
1

100

ǫ

ǫ

ǫ

ǫ

ǫ

ǫ

S = τ1

Start

ALG[S] = 6 + 4ǫ, opt[S] = 2 + 4ǫ. c.ratio(S) = 6+4ǫ

2+4ǫ
≈ 3

The Metrical Task Systems Framework

1
2

3
4

5
6

7

1
1

1
1

1
1

100

ǫ

ǫ

ǫ

ǫ

ǫ

100

ǫ

τ2

ǫ

ǫ

ǫ

ǫ

ǫ

ǫ

S = τ1

Start

ALG[S] = 6 + 4ǫ, opt[S] = 2 + 4ǫ. c.ratio(S) = 6+4ǫ

2+4ǫ
≈ 3

The Metrical Task Systems Framework

1
2

3
4

5
6

7

1
1

1
1

1
1

100

ǫ

ǫ

ǫ

ǫ

ǫ

ǫ

ǫ

ǫ

ǫ

ǫ

100

ǫ

100

ǫ

τ2 τ3

ǫ

ǫ

ǫ

ǫ

ǫ

ǫ

S = τ1

Start

ALG[S] = 6 + 4ǫ, opt[S] = 2 + 4ǫ. c.ratio(S) = 6+4ǫ

2+4ǫ
≈ 3

The Metrical Task Systems Framework

1
2

3
4

5
6

7

1
1

1
1

1
1

100

ǫ

ǫ

ǫ

ǫ

ǫ

ǫ

ǫ

ǫ

ǫ

ǫ

ǫ

ǫ

ǫ

ǫ

ǫ

100

ǫ

100

ǫ

100

ǫ

τ2 τ3 τ4

ǫ

ǫ

ǫ

ǫ

ǫ

ǫ

S = τ1

Start

ALG[S] = 6 + 4ǫ, opt[S] = 2 + 4ǫ. c.ratio(S) = 6+4ǫ

2+4ǫ
≈ 3

Metrical Task Systems (MTS) – Lower Bound

Theorem 1 On any n state metric space and for any deterministic algorithm the

c.ratio is at least 2n− 1.

That is, ∃ a bad adversarial instance for the specified graph and the specified

algorithm.

There is an algorithm called work function algorithm that matches this lower

bound.

Metrical Task Systems (MTS) – Lower Bound

• Fix any deterministic algorithm A.

• Consider 2n− 1 algorithms B = {B1, B2, . . . , B2n−1} such that the

following invariant is always maintained.

• One alg from B occupy the same node as A and the rest of the nodes are

occupied by exactly 2 algs from B.

• If A makes a transition to vertex v from u in a round i, then one of the two

algs from v moves to u. Thus invariant is maintained.

• Let vi denote the node where A resides after i rounds.

• The adversarial input σ is such that in round t, processing cost at node vt−1

is ǫ and 0 everywhere else.

Metrical Task Systems (MTS) – Lower Bound

• Let s = |σ|.

• If A makes total k transitions to serve σ then A(σ) = (s− k)ǫ+ T , where

T is the total travel cost.

• Let B(σ) denote the sum total of cost of all algs in B, which is
∑2n−1

i=1
Bi(σ)

• Note that B(σ) = (s− k)ǫ+ T + 2kǫ = A(σ) + 2kǫ.

• Also, OPT (σ) ≤ 1

2n−1
B(σ).

• Hence OPT (σ) ≤ 1

2n−1
(A(σ) + 2kǫ) ≤ 1

2n−1
A(σ)(1 + 2ǫ).

• That is, ALG(σ)/OPT (σ) ≥ 2n− 1.

k-server problem

• There are k machines/servers that can move around in an n node weighted

graph (which is a metric)

• No two servers reside in the same node.

• Each request σ(i) is a node in the graph where the request should be served.

2–server

1

2

3

4

5

6

σ =

2–server

1

2

3

4

5

6

σ = 2

2–server

1

2

3

4

5

6

σ = 2, 1. A(σ) = total travel cost for serving σ.

k-server problem

• There are k machines/servers that can move around in an n node weighted

graph (which is a metric)

• No two servers reside in the same node.

• Each request σ(i) is a node in the graph where the request should be served.

• Algorithm can send any of the k servers to serve the request.

• Cost incurred in a step is the distance the chosen server has to travel to serve

the request.

• Total cost on a request sequence is the sum of the travel cost in each round.

• Generalization of problems such as paging problem.

k-server problem

• Actively researched area to bound the competitive ratio on arbitrary metric

and on special cases.

• It is known that the best possible competitive ratio lies between k and 2k − 1

for any arbitrary metric.

• It is still open whether the competitive ratio of the problem is exactly k.

• It is conjectured so.

References

[1] Allan Borodin and Ran El-Yaniv, Online Computation and Competitive

Analysis, Cambridge Univ. Press, Cambridge, 2005.

[2] S. Albers, Online algorithms: A survey, Mathematical Programming, 97:3-26,

2003.

[3] J. Sgall, On-line scheduling - A survey, Online Algorithms: The State of the

Art, LNCS. 1442, pages 196-231, Springer, 1998.

[4] Elias Koutsoupias, The k-server problem, Survey, 2009.

