Introduction	Area	Inclusion	Hull	Art Gallery

Introduction to Computational Geometry

Partha P. Goswami (ppg.rpe@caluniv.ac.in)

Institute of Radiophysics and Electronics University of Calcutta 92, APC Road, Kolkata - 700009, West Bengal, India.

Introduction	Area	Inclusion	Hull	Art Gallery
Outline				

- 2 Area Computation of a Simple Polygon
- 3 Point Inclusion in a Simple Polygon
- Convex Hull: An application of incremental algorithm
- 5 Art Gallery Problem: A study of combinatorial geometry

Introduction	Area	Inclusion	Hull	Art Gallery
Introduction				

• Computational Geometry (CG) involves study of algorithms for solving geometric problems on a computer. The emphasis is more on discrete and combinatorial geometry.

Introduction	Area	Inclusion	Hull	Art Gallery
Introduction				

- Computational Geometry (CG) involves study of algorithms for solving geometric problems on a computer. The emphasis is more on discrete and combinatorial geometry.
- There are many areas in computer science like computer graphics, computer vision and image processing, robotics, computer-aided designing (CAD), geographic information systems (GIS), etc. that give rise to geometric problems.

Introduction	Area	Inclusion	Hull	Art Gallery
Introduction				

- Computational Geometry (CG) involves study of algorithms for solving geometric problems on a computer. The emphasis is more on discrete and combinatorial geometry.
- There are many areas in computer science like computer graphics, computer vision and image processing, robotics, computer-aided designing (CAD), geographic information systems (GIS), etc. that give rise to geometric problems.
- In CG, the focus is more on discrete nature of geometric problems as opposed to continuous issues.

Introduction	Area	Inclusion	Hull	Art Gallery
Introduction				

- Computational Geometry (CG) involves study of algorithms for solving geometric problems on a computer. The emphasis is more on discrete and combinatorial geometry.
- There are many areas in computer science like computer graphics, computer vision and image processing, robotics, computer-aided designing (CAD), geographic information systems (GIS), etc. that give rise to geometric problems.
- In CG, the focus is more on discrete nature of geometric problems as opposed to continuous issues.
- People deal more with straight or flat objects (lines, line segments, polygons) or simple curved objects as circles, than with high degree algebraic curves.

Introduction	Area	Inclusion	Hull	Art Gallery
Introduction				

- Computational Geometry (CG) involves study of algorithms for solving geometric problems on a computer. The emphasis is more on discrete and combinatorial geometry.
- There are many areas in computer science like computer graphics, computer vision and image processing, robotics, computer-aided designing (CAD), geographic information systems (GIS), etc. that give rise to geometric problems.
- In CG, the focus is more on discrete nature of geometric problems as opposed to continuous issues.
- People deal more with straight or flat objects (lines, line segments, polygons) or simple curved objects as circles, than with high degree algebraic curves.
- This branch of study is around thirty years old if one assumes Michael Ian Shamos's thesis [6] as the starting point.

Introduction	Area	Inclusion	Hull	Art Gallery
Introduction				

• Any problem that is to be solved using a digital computer has to be discrete in form. It is the same with CG.

(ロ)、(型)、(E)、(E)、 E) の(の)

Introduction	Area	Inclusion	Hull	Art Gallery
Introduction				

• Any problem that is to be solved using a digital computer has to be discrete in form. It is the same with CG.

• For CG techniques to be applied to areas that involves continuous issues, discrete approximations to continuous curves or surfaces are needed.

Introduction	Area	Inclusion	Hull	Art Gallery
Introduction				

- Any problem that is to be solved using a digital computer has to be discrete in form. It is the same with CG.
- For CG techniques to be applied to areas that involves continuous issues, discrete approximations to continuous curves or surfaces are needed.
- Programming in CG is a little difficult. Fortunately, libraries like LEDA [7] and CGAL [8] are now available. These libraries implement various data structures and algorithms specific to CG.

Introduction	Area	Inclusion	Hull	Art Gallery
Introduction				

- Any problem that is to be solved using a digital computer has to be discrete in form. It is the same with CG.
- For CG techniques to be applied to areas that involves continuous issues, discrete approximations to continuous curves or surfaces are needed.
- Programming in CG is a little difficult. Fortunately, libraries like LEDA [7] and CGAL [8] are now available. These libraries implement various data structures and algorithms specific to CG.
- CG algorithms suffer from the curse of degeneracies. So, we would make certain simplifying assumptions at times like no three points are collinear, no four points are cocircular, etc.

Introduction	Area	Inclusion	Hull	Art Gallery
Introduction				

• In this lecture, we touch upon a few simple topics for having a glimpse of the area of computational geometry.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Introduction	Area	Inclusion	Hull	Art Gallery
Introduction				

- In this lecture, we touch upon a few simple topics for having a glimpse of the area of computational geometry.
- First we consider some geometric primitives, that is, problems that arise frequently in computational geometry.

Introduction	Area	Inclusion	Hull	Art Gallery
Outline				

1 Introduction

2 Area Computation of a Simple Polygon

- 3 Point Inclusion in a Simple Polygon
- Onvex Hull: An application of incremental algorithm
- 5 Art Gallery Problem: A study of combinatorial geometry

Introduction	Area	Inclusion	Hull	Art Gallery
Area Comp	utation			

Given a simple polygon P of n vertices, compute its area.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	Area	Inclusion	Hull	Art Gallery
Area Comp	utation			

Given a simple polygon P of n vertices, compute its area.

Area of a convex polygon

Find a point inside *P*, draw *n* triangles and compute the area.

Introduction	Area	Inclusion	Hull	Art Gallery
Area Comp	utation			

Given a simple polygon P of n vertices, compute its area.

Area of a convex polygon

Find a point inside *P*, draw *n* triangles and compute the area.

A better idea for convex polygon

We can triangulate P by non-crossing diagonals into n-2triangles and then find the area.

・ロト ・四ト ・ヨト ・ヨ

Introduction	Area	Inclusion	Hull	Art Gallery
Area Comp	utation			

Given a simple polygon P of n vertices, compute its area.

Area of a convex polygon

Find a point inside *P*, draw *n* triangles and compute the area.

A better idea for convex polygon

We can triangulate P by non-crossing diagonals into n-2triangles and then find the area.

A better idea for simple polygon

We can do likewise.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Introduction	Area	Inclusion	Hull	Art Gallery
Area Comp	outation			

Result

If P be a simple polygon with n vertices with coordinates of the vertex p_i being (x_i, y_i) , $1 \le i \le n$, then twice the area of P is given by

$$2\mathcal{A}(P) = \sum_{i=1}^{n} (x_i y_{i+1} - y_i x_{i+1})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction	Area	Inclusion	Hull	Art Gallery
Polygon T	riangulation			

Any simple polygon can be triangulated.

Introduction	Area	Inclusion	Hull	Art Gallery
Polygon Trian	gulation			

Any simple polygon can be triangulated.

Theorem

A simple polygon can be triangulated into (n-2) triangles by (n-3) non-crossing diagonals.

Introduction	Area	Inclusion	Hull	Art Gallery
Polygon Triang	gulation			

Any simple polygon can be triangulated.

Theorem

A simple polygon can be triangulated into (n - 2) triangles by (n - 3) non-crossing diagonals.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proof.

The proof is by induction on n.

Introduction	Area	Inclusion	Hull	Art Gallery
Polygon Trian	gulation			

Any simple polygon can be triangulated.

Theorem

A simple polygon can be triangulated into (n - 2) triangles by (n - 3) non-crossing diagonals.

Proof.

The proof is by induction on *n*.

Time complexity

We can triangulate P by a very complicated O(n) algorithm [2] OR by a more or less simple $O(n \log n)$ time algorithm [1].

Introduction	Area	Inclusion	Hull	Art Gallery
Outline				

- 2 Area Computation of a Simple Polygon
- **③** Point Inclusion in a Simple Polygon
- 4 Convex Hull: An application of incremental algorithm
- 5 Art Gallery Problem: A study of combinatorial geometry

Introduction	Area	Inclusion	Hull	Art Gallery
Point Inclusi	on			

Given a simple polygon P of n points, and a query point q, is $q \in P$?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Given a simple polygon P of n points, and a query point q, is $q \in P$?

What if *P* is convex?

Easy in O(n). Takes a little effort to do it in $O(\log n)$. Left as an exercise.

Introduction	Area	Inclusion	Hull	Art Gallery
Point Inclusion	ı			

Given a simple polygon P of n points, and a query point q, is $q \in P$?

What if P is convex?

Easy in O(n). Takes a little effort to do it in $O(\log n)$. Left as an exercise.

Another idea for convex polygon

Stand at q and walk around the polygon. We can show the same result for a simple polygon also.

Introduction	Area	Inclusion	Hull	Art Gallery
Point Inclusion	n			

Another technique: Ray Shooting Shoot a ray and count the number of crossings with edges of P. If it is odd, then $q \in P$. If it is even, then $q \notin P$. Some degenerate cases need to be handled. Time taken is O(n).

Introduction	Area	Inclusion	Hull	Art Gallery
Outline				

Introduction

- 2 Area Computation of a Simple Polygon
- 3 Point Inclusion in a Simple Polygon

Convex Hull: An application of incremental algorithm

5 Art Gallery Problem: A study of combinatorial geometry

Introduction	Area	Inclusion	Hull	Art Gallery
Definitions				

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Definition

A set $S \subset \mathcal{R}^2$ is convex If for any two points $p, q \in S$, $\overline{pq} \in S$.

Introduction	Area	Inclusion	Hull	Art Gallery
Definitions				

A set $S \subset \mathcal{R}^2$ is convex If for any two points $p, q \in S$, $\overline{pq} \in S$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	Area	Inclusion	Hull	Art Gallery
Definitions				

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition

A set $S \subset \mathcal{R}^2$ is convex If for any two points $p, q \in S$, $\overline{pq} \in S$.

Definition

Let \mathcal{P} be a set of points in \mathcal{R}^2 . Convex hull of \mathcal{P} , denoted by $CH(\mathcal{P})$, is the smallest convex set containing \mathcal{P} .

Introduction	Area	Inclusion	Hull	Art Gallery
Definitions				

A set $S \subset \mathcal{R}^2$ is convex If for any two points $p, q \in S$, $\overline{pq} \in S$.

Definition

Let \mathcal{P} be a set of points in \mathcal{R}^2 . Convex hull of \mathcal{P} , denoted by $CH(\mathcal{P})$, is the smallest convex set containing \mathcal{P} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Area	Inclusion	Hull	Art Gallery
	Area	Area Inclusion	Area Inclusion Hull

A set $S \subset \mathcal{R}^2$ is convex If for any two points $p, q \in S$, $\overline{pq} \in S$.

Definition

Let \mathcal{P} be a set of points in \mathcal{R}^2 . Convex hull of \mathcal{P} , denoted by $CH(\mathcal{P})$, is the smallest convex set containing \mathcal{P} .

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction	Area	Inclusion	Hull	Art Gallery
Definitions				

A set $S \subset \mathcal{R}^2$ is convex If for any two points $p, q \in S$, $\overline{pq} \in S$.

Definition

Let \mathcal{P} be a set of points in \mathcal{R}^2 . Convex hull of \mathcal{P} , denoted by $CH(\mathcal{P})$, is the smallest convex set containing \mathcal{P} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction	Area	Inclusion	Hull	Art Gallery
Convex Hull	Problem			

Given a set of points \mathcal{P} in the plane, compute the convex hull $CH(\mathcal{P})$ of the set \mathcal{P} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	Area	Inclusion	Hull	Art Gallery
A Naive Al	gorithm			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outline

• Consider all line segments determined by $\binom{n}{2} = O(n^2)$ pairs of points.

Introduction	Area	Inclusion	Hull	Art Gallery
A Naive Al	gorithm			

Outline

- Consider all line segments determined by $\binom{n}{2} = O(n^2)$ pairs of points.
- If a line segment has all the other n - 2 points on one side of it, then it is a hull edge.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction	Area	Inclusion	Hull	Art Gallery
A Naive Al	aarithm			
A Malve A	gonunn			

Outline

- Consider all line segments determined by $\binom{n}{2} = O(n^2)$ pairs of points.
- If a line segment has all the other n - 2 points on one side of it, then it is a hull edge.
- We need $\binom{n}{2}(n-2) = O(n^3)$ time.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction	Area	Inclusion	Hull	Art Gallery
Towards a	Better Algor	ithm		

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

How much betterment is possible?

• Better characterizations lead to better algorithms.

Introduction	Area	Inclusion	Hull	Art Gallery
Towards a	Better Algor	rithm		

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

How much betterment is possible?

- Better characterizations lead to better algorithms.
- How much better can we make?

Introduction	Area	Inclusion	Hull	Art Gallery
Towards a	Better Algor	rithm		

How much betterment is possible?

- Better characterizations lead to better algorithms.
- How much better can we make?
- Leads to the notion of lower bound of a problem.

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Introduction	Area	Inclusion	Hull	Art Gallery
Towards a	Better Algor	rithm		

How much betterment is possible?

- Better characterizations lead to better algorithms.
- How much better can we make?
- Leads to the notion of lower bound of a problem.
- The problem of Convex Hull has a lower bound of Ω(n log n). This can be shown by a reduction from the problem of sorting which also has a lower bound of Ω(n log n).

Introduction	Area	Inclusion	Hull	Art Gallery
Optimal A	lgorithms			

- Grahams scan, time complexity O(nlogn). (Graham, R.L., 1972)
- Divide and conquer algorithm, time complexity O(nlogn). (Preparata, F. P. and Hong, S. J., 1977)
- Jarvis's march or gift wrapping algorithm, time complexity O(nh) where *h* is the number of vertices of the convex hull. (Jarvis, R. A., 1973)

 Most efficient algorithm to date is based on the idea of Jarvis's march, time complexity O(nlogh).
 (T. M. Chan, 1996)

Introduction	Area	Inclusion	Hull	Art Gallery
Definitions				

 Consider a walk in clockwise direction on the vertices of a closed polygon.

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Introduction	Area	Inclusion	Hull	Art Gallery
Definitions				

- Consider a walk in clockwise direction on the vertices of a closed polygon.
- Only for a convex polygon, we will make a right turn always.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Introduction	Area	Inclusion	Hull	Art Gallery
Definitions				

- Consider a walk in clockwise direction on the vertices of a closed polygon.
- Only for a convex polygon, we will make a right turn always.

The incremental paradigm

Introduction	Area	Inclusion	Hull	Art Gallery
Definitions				

- Consider a walk in clockwise direction on the vertices of a closed polygon.
- Only for a convex polygon, we will make a right turn always.

The incremental paradigm

• Insert points in P one by one and update the solution at each step.

Introduction	Area	Inclusion	Hull	Art Gallery
Definitions				

- Consider a walk in clockwise direction on the vertices of a closed polygon.
- Only for a convex polygon, we will make a right turn always.

The incremental paradigm

- Insert points in P one by one and update the solution at each step.
- We compute the upper hull first. The upper hull contains the convex hull edges that bound the convex hull from above.

Introduction	Area	Inclusion	Hull	Art Gallery
Definitions				

- Consider a walk in clockwise direction on the vertices of a closed polygon.
- Only for a convex polygon, we will make a right turn always.

The incremental paradigm

- Insert points in P one by one and update the solution at each step.
- We compute the upper hull first. The upper hull contains the convex hull edges that bound the convex hull from above.
- Sort the points in \mathcal{P} from left to right.

Introduction	Area	Inclusion	Hull	Art Gallery
A Naive Al	gorithm			

<□ > < @ > < E > < E > E のQ @

Input: A set P of n points in the plane

Introduction	Area	Inclusion	Hull	Art Gallery
A Naive Al	gorithm			

<□ > < @ > < E > < E > E のQ @

Input: A set P of n points in the plane Output: Convex Hull of P

Introduction	Area	Inclusion	Hull	Art Gallery
A Naive Al	gorithm			

Input: A set P of n points in the plane
Output: Convex Hull of P
Sort P according to x-coordinate to generate
 a sequence of points p[1], p[2], ..., p[n];

Introduction	Area	Inclusion	Hull	Art Gallery
A Naive Al	gorithm			

Input: A set P of n points in the plane
Output: Convex Hull of P
Sort P according to x-coordinate to generate
 a sequence of points p[1], p[2], ..., p[n];
Insert p[1] and then p[2] in a list L_U;

Introduction	Area	Inclusion	Hull	Art Gallery
A Naive Al	gorithm			

```
Input: A set P of n points in the plane
Output: Convex Hull of P
Sort P according to x-coordinate to generate
    a sequence of points p[1], p[2], ..., p[n];
Insert p[1] and then p[2] in a list L_U;
for i = 3 to n {
```

Introduction	Area	Inclusion	Hull	Art Gallery
A Naive Al	gorithm			

```
Input: A set P of n points in the plane
Output: Convex Hull of P
Sort P according to x-coordinate to generate
    a sequence of points p[1], p[2], ..., p[n];
Insert p[1] and then p[2] in a list L_U;
for i = 3 to n {
    Append p[i] to L_U;
```

Introduction	Area	Inclusion	Hull	Art Gallery
A Naive Al	gorithm			

```
Input: A set P of n points in the plane
Output: Convex Hull of P
Sort P according to x-coordinate to generate
    a sequence of points p[1], p[2], ..., p[n];
Insert p[1] and then p[2] in a list L_U;
for i = 3 to n {
    Append p[i] to L_U;
    while(L_U contains more than two points AND
        the last three points in L_U
        do not make a right turn) {
```

}

Introduction	Area	Inclusion	Hull	Art Gallery
A Naive Alg	gorithm			

```
Input: A set P of n points in the plane
Output: Convex Hull of P
Sort P according to x-coordinate to generate
   a sequence of points p[1], p[2], ..., p[n];
Insert p[1] and then p[2] in a list L_U;
for i = 3 to n \in
   Append p[i] to L_U;
   while(L_U contains more than two points AND
      the last three points in L_U
      do not make a right turn) {
         Delete the middle of the last
         three points from L_U;
  }
```

Introduction	Area	Inclusion	Hull	Art Gallery
The Algorith	m in Action			

Introduction	Area	Inclusion	Hull	Art Gallery
The Algorith	m in Action			

◆□ → <圖 → < 差 → < 差 → < 差 → < 2 → < </p>

Introduction	Area	Inclusion	Hull	Art Gallery
The Algorith	m in Action			

Introduction	Area	Inclusion	Hull	Art Gallery
The Algorith	m in Action			

Introduction	Area	Inclusion	Hull	Art Gallery
The Algorith	m in Action			

Introduction	Area	Inclusion	Hull	Art Gallery
The Algorith	m in Action			

Introduction	Area	Inclusion	Hull	Art Gallery
The Algorith	m in Action			

Introduction	Area	Inclusion	Hull	Art Gallery
The Algorith	m in Action			

Introduction	Area	Inclusion	Hull	Art Gallery
The Algorith	m in Action			

Introduction	Area	Inclusion	Hull	Art Gallery
The Algorith	m in Action			

Introduction	Area	Inclusion	Hull	Art Gallery
The Algorith	m in Action			

Introduction	Area	Inclusion	Hull	Art Gallery
The Algorith	m in Action			

Introduction	Area	Inclusion	Hull	Art Gallery
The Algorith	m in Action			

Introduction	Area	Inclusion	Hull	Art Gallery
The Algorith	m in Action			

Introduction	Area	Inclusion	Hull	Art Gallery
Analysis				

• Sorting takes time $O(n \log n)$.

Introduction	Area	Inclusion	Hull	Art Gallery
Analysis				

- Sorting takes time $O(n \log n)$.
- The for loop is executed O(n) times.

Introduction	Area	Inclusion	Hull	Art Gallery
Analysis				

- Sorting takes time $O(n \log n)$.
- The for loop is executed O(n) times.
- For each execution of the for loop, the while loop is encountered once.

Introduction	Area	Inclusion	Hull	Art Gallery
Analysis				

- Sorting takes time $O(n \log n)$.
- The for loop is executed O(n) times.
- For each execution of the for loop, the while loop is encountered once.
- For each execution of the while loop body, a point gets deleted.

Introduction	Area	Inclusion	Hull	Art Gallery
Analysis				

- Sorting takes time $O(n \log n)$.
- The for loop is executed O(n) times.
- For each execution of the for loop, the while loop is encountered once.
- For each execution of the while loop body, a point gets deleted.

• A point once deleted, is never deleted again.

Introduction	Area	Inclusion	Hull	Art Gallery
Analysis				

- Sorting takes time $O(n \log n)$.
- The for loop is executed O(n) times.
- For each execution of the for loop, the while loop is encountered once.
- For each execution of the while loop body, a point gets deleted.
- A point once deleted, is never deleted again.
- So, the total number of executions of the while loop body is bounded by O(n).

Introduction	Area	Inclusion	Hull	Art Gallery
Analysis				

- Sorting takes time $O(n \log n)$.
- The for loop is executed O(n) times.
- For each execution of the for loop, the while loop is encountered once.
- For each execution of the while loop body, a point gets deleted.
- A point once deleted, is never deleted again.
- So, the total number of executions of the while loop body is bounded by O(n).
- Hence, the total time complexity is $O(n \log n)$.

Introduction	Area	Inclusion	Hull	Art Gallery
Outline				

Introduction

- 2 Area Computation of a Simple Polygon
- 3 Point Inclusion in a Simple Polygon
- Onvex Hull: An application of incremental algorithm

5 Art Gallery Problem: A study of combinatorial geometry

Introduction	Area	Inclusion	Hull	Art Gallery
Art Gallerv	Problem			

Given a simple polygon \mathcal{P} of *n* vertices, find the minimum number of cameras that can guard \mathcal{P} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction	Area	Inclusion	Hull	Art Gallery
Art Gallerv	Problem			

Given a simple polygon \mathcal{P} of *n* vertices, find the minimum number of cameras that can guard \mathcal{P} .

Hardness

The above problem is NP-Hard.

Introduction	Area	Inclusion	Hull	Art Gallery
Art Gallerv	Problem			

Given a simple polygon \mathcal{P} of *n* vertices, find the minimum number of cameras that can guard \mathcal{P} .

Hardness

The above problem is NP-Hard.

Any solution?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction	Area	Inclusion	Hull	Art Gallery
Art Gallerv	Problem			

Given a simple polygon \mathcal{P} of *n* vertices, find the minimum number of cameras that can guard \mathcal{P} .

Hardness

The above problem is NP-Hard.

Any solution?

• Can we find, as a function of *n*, the number of cameras that suffices to guard *P*?

Introduction	Area	Inclusion	Hull	Art Gallery
Art Gallerv	Problem			

Given a simple polygon \mathcal{P} of *n* vertices, find the minimum number of cameras that can guard \mathcal{P} .

Hardness

The above problem is NP-Hard.

Any solution?

- Can we find, as a function of *n*, the number of cameras that suffices to guard *P*?
- Recall *P* can be triangulated into n - 2 triangles. Place a guard in each triangle.

Introduction	Area	Inclusion	Hull	Art Gallery
Art Gallery	Problem			

• Place guards at vertices of the triangulation \mathcal{T} of \mathcal{P} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

Introduction	Area	Inclusion	Hull	Art Gallery
Art Gallery	Problem			

- Place guards at vertices of the triangulation \mathcal{T} of \mathcal{P} .
- We do a 3-coloring of the vertices of *T*. Each triangle of *T* has a blue, gray and white vertex.

Introduction	Area	Inclusion	Hull	Art Gallery
Art Gallery	/ Problem			

- Place guards at vertices of the triangulation \mathcal{T} of \mathcal{P} .
- We do a 3-coloring of the vertices of *T*. Each triangle of *T* has a blue, gray and white vertex.
- Choose the smallest color class to guard \mathcal{P} .

Introduction	Area	Inclusion	Hull	Art Gallery
Art Gallery	Problem			

- Place guards at vertices of the triangulation \mathcal{T} of \mathcal{P} .
- We do a 3-coloring of the vertices of *T*. Each triangle of *T* has a blue, gray and white vertex.
- Choose the smallest color class to guard \mathcal{P} .
- Hence, $\lfloor \frac{n}{3} \rfloor$ guards suffice.

Introduction	Area	Inclusion	Hull	Art Gallery
Art Gallery	Problem			

- Place guards at vertices of the triangulation \mathcal{T} of \mathcal{P} .
- We do a 3-coloring of the vertices of *T*. Each triangle of *T* has a blue, gray and white vertex.
- Choose the smallest color class to guard \mathcal{P} .
- Hence, $\lfloor \frac{n}{3} \rfloor$ guards suffice.
- But, does a 3-coloring always exist?

Introduction	Area	Inclusion	Hull	Art Gallery
Art Gallery	Problem			

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction	Area	Inclusion	Hull	Art Gallery
Art Gallery	/ Problem			

• Consider the dual graph $\mathcal{G}_{\mathcal{T}}$ of \mathcal{T} of \mathcal{P} .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Introduction	Area	Inclusion	Hull	Art Gallery
Art Gallery	Problem			

- Consider the dual graph $\mathcal{G}_{\mathcal{T}}$ of \mathcal{T} of \mathcal{P} .
- $\mathcal{G}_{\mathcal{T}}$ is a tree as \mathcal{P} has no holes.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Introduction	Area	Inclusion	Hull	Art Gallery
Art Gallery	Problem			

- Consider the dual graph $\mathcal{G}_{\mathcal{T}}$ of \mathcal{T} of \mathcal{P} .
- $\mathcal{G}_{\mathcal{T}}$ is a tree as $\mathcal P$ has no holes.
- Do a DFS on $\mathcal{G}_\mathcal{T}$ to obtain the coloring.

◆□> ◆□> ◆豆> ◆豆> □豆

Introduction	Area	Inclusion	Hull	Art Gallery
Art Gallery	Problem			

- Consider the dual graph $\mathcal{G}_{\mathcal{T}}$ of \mathcal{T} of \mathcal{P} .
- $\mathcal{G}_{\mathcal{T}}$ is a tree as $\mathcal P$ has no holes.
- Do a DFS on $\mathcal{G}_\mathcal{T}$ to obtain the coloring.
- Place guards at those vertices that have color of the minimum color class. Hence, [n/3] guards are sufficient to guard *P*.

Introduction	Area	Inclusion	Hull	Art Gallery
Art Gallery	Problem			

- Consider the dual graph G_T of T of P.
- $\mathcal{G}_{\mathcal{T}}$ is a tree as $\mathcal P$ has no holes.
- Do a DFS on $\mathcal{G}_\mathcal{T}$ to obtain the coloring.
- Place guards at those vertices that have color of the minimum color class. Hence, [n/3] guards are sufficient to guard *P*.

Necessity?

Are $\lfloor \frac{n}{3} \rfloor$ guards sometimes necessary?

Introduction	Area	Inclusion	Hull	Art Gallery
Art Gallery	Theorem			

Final Result

For a simple polygon with *n* vertices, $\lfloor \frac{n}{3} \rfloor$ cameras are always sufficient and occasionally necessary to have every point in the polygon visible from at least one of the cameras.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction	Area	Inclusion	Hull	Art Gallery
References I				

- Mark de Berg, Marc van Kreveld, Mark Overmars and Otfried Schwarzkof, Computational Geometry: Algorithms and Applications, Springer, 1997.
- B. Chazelle, *Triangulating a simple polygon in linear time*, Discrete Comput. Geom., 6:485524, 1991.
- Herbert Edelsbrunner, *Algorithms in Computational Geometry*, Springer, 1987.
- Joseph O'Rourke, *Computational Geometry in C*, Cambridge University Press, 1998.
- Franco P. Preparata and Michael Ian Shamos, *Computational Geometry: An Introduction*, Springer-Verlag, New York, 1985.
- Michael Ian Shamos, *Computational Geometry*, PhD thesis, Yale University, New Haven., 1978.

Introduction	Area	Inclusion	Hull	Art Gallery
References II				

- http://www.algorithmic-solutions.com
- http://www.cgal.org
- http:

//en.wikipedia.org/wiki/Computational_geometry

Introduction	Area	Inclusion	Hull	Art Gallery

Thank you!