Introduction to Computational Geometry

Partha P. Goswami
(ppg.rpe@caluniv.ac.in)

Institute of Radiophysics and Electronics
University of Calcutta
92, APC Road, Kolkata - 700009, West Bengal, India.
Outline

1. Introduction

2. Area Computation of a Simple Polygon

3. Point Inclusion in a Simple Polygon

4. Convex Hull: An application of incremental algorithm

5. Art Gallery Problem: A study of combinatorial geometry
Computational Geometry (CG) involves study of algorithms for solving geometric problems on a computer. The emphasis is more on discrete and combinatorial geometry.
Introduction

- Computational Geometry (CG) involves study of algorithms for solving geometric problems on a computer. The emphasis is more on discrete and combinatorial geometry.

- There are many areas in computer science like computer graphics, computer vision and image processing, robotics, computer-aided designing (CAD), geographic information systems (GIS), etc. that give rise to geometric problems.
Introduction

- Computational Geometry (CG) involves study of algorithms for solving geometric problems on a computer. The emphasis is more on discrete and combinatorial geometry.

- There are many areas in computer science like computer graphics, computer vision and image processing, robotics, computer-aided designing (CAD), geographic information systems (GIS), etc. that give rise to geometric problems.

- In CG, the focus is more on discrete nature of geometric problems as opposed to continuous issues.
Computational Geometry (CG) involves study of algorithms for solving geometric problems on a computer. The emphasis is more on discrete and combinatorial geometry.

There are many areas in computer science like computer graphics, computer vision and image processing, robotics, computer-aided designing (CAD), geographic information systems (GIS), etc. that give rise to geometric problems.

In CG, the focus is more on discrete nature of geometric problems as opposed to continuous issues.

People deal more with straight or flat objects (lines, line segments, polygons) or simple curved objects as circles, than with high degree algebraic curves.
Computational Geometry (CG) involves study of algorithms for solving geometric problems on a computer. The emphasis is more on discrete and combinatorial geometry.

There are many areas in computer science like computer graphics, computer vision and image processing, robotics, computer-aided designing (CAD), geographic information systems (GIS), etc. that give rise to geometric problems.

In CG, the focus is more on discrete nature of geometric problems as opposed to continuous issues.

People deal more with straight or flat objects (lines, line segments, polygons) or simple curved objects as circles, than with high degree algebraic curves.

This branch of study is around thirty years old if one assumes Michael Ian Shamos’s thesis [6] as the starting point.
Introduction

Any problem that is to be solved using a digital computer has to be discrete in form. It is the same with CG.
Introduction

- Any problem that is to be solved using a digital computer has to be discrete in form. It is the same with CG.
- For CG techniques to be applied to areas that involves continuous issues, discrete approximations to continuous curves or surfaces are needed.
Introduction

- Any problem that is to be solved using a digital computer has to be discrete in form. It is the same with CG.
- For CG techniques to be applied to areas that involves continuous issues, discrete approximations to continuous curves or surfaces are needed.
- Programming in CG is a little difficult. Fortunately, libraries like LEDA [7] and CGAL [8] are now available. These libraries implement various data structures and algorithms specific to CG.
Any problem that is to be solved using a digital computer has to be discrete in form. It is the same with CG.

For CG techniques to be applied to areas that involves continuous issues, discrete approximations to continuous curves or surfaces are needed.

Programming in CG is a little difficult. Fortunately, libraries like LEDA [7] and CGAL [8] are now available. These libraries implement various data structures and algorithms specific to CG.

CG algorithms suffer from the curse of degeneracies. So, we would make certain simplifying assumptions at times like no three points are collinear, no four points are cocircular, etc.
In this lecture, we touch upon a few simple topics for having a glimpse of the area of computational geometry.
In this lecture, we touch upon a few simple topics for having a glimpse of the area of computational geometry.

First we consider some geometric primitives, that is, problems that arise frequently in computational geometry.
Outline

1. Introduction

2. Area Computation of a Simple Polygon

3. Point Inclusion in a Simple Polygon

4. Convex Hull: An application of incremental algorithm

5. Art Gallery Problem: A study of combinatorial geometry
Area Computation

Problem
Given a simple polygon P of n vertices, compute its area.
Area Computation

Problem

Given a simple polygon \(P \) of \(n \) vertices, compute its area.

Area of a convex polygon

Find a point inside \(P \), draw \(n \) triangles and compute the area.
Area Computation

Problem
Given a simple polygon P of n vertices, compute its area.

Area of a convex polygon
Find a point inside P, draw n triangles and compute the area.

A better idea for convex polygon
We can triangulate P by non-crossing diagonals into $n - 2$ triangles and then find the area.
Area Computation

Problem
Given a simple polygon \(P \) of \(n \) vertices, compute its area.

Area of a convex polygon
Find a point inside \(P \), draw \(n \) triangles and compute the area.

A better idea for convex polygon
We can triangulate \(P \) by non-crossing diagonals into \(n - 2 \) triangles and then find the area.

A better idea for simple polygon
We can do likewise.
Area Computation

Result

If P be a simple polygon with n vertices with coordinates of the vertex p_i being (x_i, y_i), $1 \leq i \leq n$, then twice the area of P is given by

$$2A(P) = \sum_{i=1}^{n} (x_i y_{i+1} - y_i x_{i+1})$$
Theorem

Any simple polygon can be triangulated.
Theorem

Any simple polygon can be triangulated.

Theorem

*A simple polygon can be *triangulated* into \((n - 2)\) *triangles* by \((n - 3)\) *non-crossing diagonals*.

Proof.
The proof is by induction on \(n\).

Time complexity

We can triangulate \(P\) by a very complicated \(O(n)\) algorithm [2] or by a more or less simple \(O(n \log n)\) time algorithm [1].
Theorem

Any simple polygon can be triangulated.

Theorem

A simple polygon can be triangulated into \((n - 2)\) triangles by \((n - 3)\) non-crossing diagonals.

Proof.

The proof is by induction on \(n\).
Polygon Triangulation

Theorem
Any simple polygon can be triangulated.

Theorem
A simple polygon can be triangulated into \((n - 2)\) triangles by \((n - 3)\) non-crossing diagonals.

Proof.
The proof is by induction on \(n\).

Time complexity
We can triangulate \(P\) by a very complicated \(O(n)\) algorithm [2] OR by a more or less simple \(O(n \log n)\) time algorithm [1].
Outline

1. Introduction
2. Area Computation of a Simple Polygon
3. Point Inclusion in a Simple Polygon
4. Convex Hull: An application of incremental algorithm
5. Art Gallery Problem: A study of combinatorial geometry
Point Inclusion

Problem

Given a simple polygon P of n points, and a query point q, is $q \in P$?
Point Inclusion

Problem
Given a simple polygon P of n points, and a query point q, is $q \in P$?

What if P is convex?
Easy in $O(n)$. Takes a little effort to do it in $O(\log n)$. Left as an exercise.

q is always to the right if $q \in P$, else, it varies
Point Inclusion

Problem
Given a simple polygon P of n points, and a query point q, is $q \in P$?

What if P is convex?
Easy in $O(n)$. Takes a little effort to do it in $O(\log n)$. Left as an exercise.

Another idea for convex polygon
Stand at q and walk around the polygon. We can show the same result for a simple polygon also.

Total angular turn around q is 2π if $q \in P$, else, 0
Another technique: Ray Shooting

Shoot a ray and count the number of crossings with edges of \(P \). If it is odd, then \(q \in P \). If it is even, then \(q \notin P \). Some degenerate cases need to be handled. Time taken is \(O(n) \).
Outline

1. Introduction

2. Area Computation of a Simple Polygon

3. Point Inclusion in a Simple Polygon

4. Convex Hull: An application of incremental algorithm

5. Art Gallery Problem: A study of combinatorial geometry
Definitions

Definition

A set \(S \subseteq \mathbb{R}^2 \) is convex if for any two points \(p, q \in S \), \(pq \in S \).
Definitions

Definition

A set $S \subseteq \mathbb{R}^2$ is convex if for any two points $p, q \in S$, $pq \in S$.

![Convex and non-convex examples](image-url)
Definitions

Definition
A set $S \subset \mathbb{R}^2$ is convex if for any two points $p, q \in S$, the line segment $pq \in S$.

Definition
Let \mathcal{P} be a set of points in \mathbb{R}^2. Convex hull of \mathcal{P}, denoted by $CH(\mathcal{P})$, is the smallest convex set containing \mathcal{P}.
Definitions

Definition
A set $S \subset \mathcal{R}^2$ is convex if for any two points $p, q \in S$, $pq \in S$.

Definition
Let \mathcal{P} be a set of points in \mathcal{R}^2. Convex hull of \mathcal{P}, denoted by $CH(\mathcal{P})$, is the smallest convex set containing \mathcal{P}.
Definitions

Definition
A set $S \subset \mathbb{R}^2$ is convex if for any two points $p, q \in S$, $\overline{pq} \in S$.

Definition
Let \mathcal{P} be a set of points in \mathbb{R}^2. Convex hull of \mathcal{P}, denoted by $CH(\mathcal{P})$, is the smallest convex set containing \mathcal{P}.
Definitions

Definition
A set $S \subseteq \mathbb{R}^2$ is convex if for any two points $p, q \in S$, $pq \in S$.

Definition
Let \mathcal{P} be a set of points in \mathbb{R}^2. Convex hull of \mathcal{P}, denoted by $\text{CH}(\mathcal{P})$, is the smallest convex set containing \mathcal{P}.
Convex Hull Problem

Problem

Given a set of points \mathcal{P} in the plane, compute the convex hull $CH(\mathcal{P})$ of the set \mathcal{P}.
A Naive Algorithm

Outline

- Consider all line segments determined by \(\binom{n}{2} = O(n^2) \) pairs of points.
A Naive Algorithm

Outline

- Consider all line segments determined by \(\binom{n}{2} = O(n^2) \) pairs of points.
- If a line segment has all the other \(n - 2 \) points on one side of it, then it is a hull edge.
A Naive Algorithm

Outline

- Consider all line segments determined by $\binom{n}{2} = O(n^2)$ pairs of points.
- If a line segment has all the other $n - 2$ points on one side of it, then it is a hull edge.
- We need $\binom{n}{2}(n - 2) = O(n^3)$ time.
Towards a Better Algorithm

How much betterment is possible?

- Better characterizations lead to better algorithms.
Towards a Better Algorithm

How much betterment is possible?

- Better characterizations lead to better algorithms.
- How much better can we make?
Towards a Better Algorithm

How much betterment is possible?

- Better characterizations lead to better algorithms.
- How much better can we make?
- Leads to the notion of lower bound of a problem.

The problem of Convex Hull has a lower bound of $\Omega(n \log n)$. This can be shown by a reduction from the problem of sorting which also has a lower bound of $\Omega(n \log n)$.
Towards a Better Algorithm

How much betterment is possible?

- Better characterizations lead to better algorithms.
- How much better can we make?
- Leads to the notion of lower bound of a problem.
- The problem of Convex Hull has a lower bound of $\Omega(n \log n)$. This can be shown by a reduction from the problem of sorting which also has a lower bound of $\Omega(n \log n)$.
Optimal Algorithms

- **Grahams scan**, time complexity $O(n \log n)$.
 (Graham, R.L., 1972)

- **Divide and conquer algorithm**, time complexity $O(n \log n)$.
 (Preparata, F. P. and Hong, S. J., 1977)

- **Jarvis’s march or gift wrapping algorithm**, time complexity $O(nh)$ where h is the number of vertices of the convex hull.
 (Jarvis, R. A., 1973)

- Most efficient algorithm to date is based on the idea of Jarvis’s march, time complexity $O(n \log h)$.
 (T. M. Chan, 1996)
A better characterization

- Consider a walk in clockwise direction on the vertices of a closed polygon.
Definitions

A better characterization

- Consider a walk in clockwise direction on the vertices of a closed polygon.
- Only for a convex polygon, we will make a right turn always.
Definitions

A better characterization

- Consider a walk in clockwise direction on the vertices of a closed polygon.
- Only for a convex polygon, we will make a right turn always.

The incremental paradigm

![Diagram showing upper and lower hulls of a polygon with vertices labeled p1 to pn.](image)
Definitions

A better characterization

- Consider a walk in clockwise direction on the vertices of a closed polygon.
- Only for a convex polygon, we will make a right turn always.

The incremental paradigm

- Insert points in P one by one and update the solution at each step.
Definitions

A better characterization
- Consider a walk in clockwise direction on the vertices of a closed polygon.
- Only for a convex polygon, we will make a right turn always.

The incremental paradigm
- Insert points in P one by one and update the solution at each step.
- We compute the upper hull first. The upper hull contains the convex hull edges that bound the convex hull from above.
Definitions

A better characterization

- Consider a walk in clockwise direction on the vertices of a closed polygon.
- Only for a convex polygon, we will make a right turn always.

The incremental paradigm

- Insert points in P one by one and update the solution at each step.
- We compute the upper hull first. The upper hull contains the convex hull edges that bound the convex hull from above.
- Sort the points in P from left to right.
A Naive Algorithm

Input: A set P of n points in the plane
A Naive Algorithm

Input: A set P of n points in the plane
Output: Convex Hull of P
A Naive Algorithm

Input: A set P of n points in the plane
Output: Convex Hull of P

Sort P according to x-coordinate to generate
a sequence of points $p[1], p[2], \ldots, p[n]$;
A Naive Algorithm

Input: A set P of n points in the plane
Output: Convex Hull of P
Sort P according to x-coordinate to generate
 a sequence of points p[1], p[2], ..., p[n];
Insert p[1] and then p[2] in a list L_U;

```plaintext
for i = 3 to n {
    Append p[i] to L_U;
    while (L_U contains more than two points AND
        the last three points in L_U do not make a right turn) {
        Delete the middle of the last
        three points from L_U;
    }
}
```
A Naive Algorithm

Input: A set P of n points in the plane
Output: Convex Hull of P
Sort P according to x-coordinate to generate
 a sequence of points $p[1], p[2], \ldots, p[n]$;
Insert $p[1]$ and then $p[2]$ in a list L_U;
for $i = 3$ to n {

}
A Naive Algorithm

Input: A set P of n points in the plane
Output: Convex Hull of P
Sort P according to x-coordinate to generate
Insert $p[1]$ and then $p[2]$ in a list L_U;
for $i = 3$ to n {
 Append $p[i]$ to L_U;
}

}
A Naive Algorithm

Input: A set P of n points in the plane
Output: Convex Hull of P
Sort P according to x-coordinate to generate a sequence of points $p[1], p[2], \ldots, p[n]$;
Insert $p[1]$ and then $p[2]$ in a list L_U;
for $i = 3$ to n {
 Append $p[i]$ to L_U;
 while (L_U contains more than two points AND the last three points in L_U do not make a right turn) {

 }
}
A Naive Algorithm

Input: A set P of n points in the plane
Output: Convex Hull of P
Sort P according to x-coordinate to generate
Insert $p[1]$ and then $p[2]$ in a list L_U;
f for i = 3 to n {
 Append $p[i]$ to L_U;
 while(L_U contains more than two points AND
 the last three points in L_U
 do not make a right turn) {
 Delete the middle of the last
 three points from L_U;
 }
}
The Algorithm in Action

\[p_1, \ldots, p_n \]
The Algorithm in Action
The Algorithm in Action

\[p_1 \quad p_n \]
The Algorithm in Action
The Algorithm in Action
The Algorithm in Action
The Algorithm in Action

$\{p_1, \ldots, p_n\}$
The Algorithm in Action
The Algorithm in Action
The Algorithm in Action

$p_1 \rightarrow \ldots \rightarrow p_n$
The Algorithm in Action
The Algorithm in Action
The Algorithm in Action
The Algorithm in Action
Analysis

Time complexity

- Sorting takes time $O(n \log n)$.
Analysis

Time complexity

- Sorting takes time $O(n \log n)$.
- The for loop is executed $O(n)$ times.
Analysis

Time complexity

- Sorting takes time $O(n \log n)$.
- The for loop is executed $O(n)$ times.
- For each execution of the for loop, the while loop is encountered once.
Analysis

Time complexity

- Sorting takes time $O(n \log n)$.
- The for loop is executed $O(n)$ times.
- For each execution of the for loop, the while loop is encountered once.
- For each execution of the while loop body, a point gets deleted.
Analysis

Time complexity

- Sorting takes time $O(n \log n)$.
- The for loop is executed $O(n)$ times.
- For each execution of the for loop, the while loop is encountered once.
- For each execution of the while loop body, a point gets deleted.
- A point once deleted, is never deleted again.
Analysis

Time complexity

- Sorting takes time $O(n \log n)$.
- The for loop is executed $O(n)$ times.
- For each execution of the for loop, the while loop is encountered once.
- For each execution of the while loop body, a point gets deleted.
- A point once deleted, is never deleted again.
- So, the total number of executions of the while loop body is bounded by $O(n)$.
Analysis

Time complexity

- Sorting takes time $O(n \log n)$.
- The for loop is executed $O(n)$ times.
- For each execution of the for loop, the while loop is encountered once.
- For each execution of the while loop body, a point gets deleted.
- A point once deleted, is never deleted again.
- So, the total number of executions of the while loop body is bounded by $O(n)$.
- Hence, the total time complexity is $O(n \log n)$.
Outline

1. Introduction
2. Area Computation of a Simple Polygon
3. Point Inclusion in a Simple Polygon
4. Convex Hull: An application of incremental algorithm
5. Art Gallery Problem: A study of combinatorial geometry
Art Gallery Problem

The problem
Given a simple polygon \mathcal{P} of n vertices, find the minimum number of cameras that can guard \mathcal{P}.
Art Gallery Problem

The problem
Given a simple polygon \(\mathcal{P} \) of \(n \) vertices, find the minimum number of cameras that can guard \(\mathcal{P} \).

Hardness
The above problem is NP-Hard.
Art Gallery Problem

The problem
Given a simple polygon \mathcal{P} of n vertices, find the minimum number of cameras that can guard \mathcal{P}.

Hardness
The above problem is NP-Hard.

Any solution?

Recall \mathcal{P} can be triangulated into $n - 2$ triangles. Place a guard in each triangle.
Art Gallery Problem

The problem
Given a simple polygon \(P \) of \(n \) vertices, find the minimum number of cameras that can guard \(P \).

Hardness
The above problem is NP-Hard.

Any solution?
Can we find, as a function of \(n \), the number of cameras that suffices to guard \(P \)?
Art Gallery Problem

The problem
Given a simple polygon \mathcal{P} of n vertices, find the minimum number of cameras that can guard \mathcal{P}.

Hardness
The above problem is NP-Hard.

Any solution?
- Can we find, as a function of n, the number of cameras that suffices to guard \mathcal{P}?
- Recall \mathcal{P} can be triangulated into $n - 2$ triangles. Place a guard in each triangle.
Art Gallery Problem

Can the bound be reduced?

- Place guards at vertices of the triangulation \mathcal{T} of P.

We do a 3-coloring of the vertices of \mathcal{T}. Each triangle of \mathcal{T} has a blue, gray and white vertex.

Choose the smallest color class to guard P.

Hence, $\lfloor \frac{n}{3} \rfloor$ guards suffice.

But, does a 3-coloring always exist?
Art Gallery Problem

Can the bound be reduced?

- Place guards at vertices of the triangulation \mathcal{T} of \mathcal{P}.
- We do a 3-coloring of the vertices of \mathcal{T}. Each triangle of \mathcal{T} has a blue, gray and white vertex.

$\lfloor \frac{n}{3} \rfloor$ guards suffice.

But, does a 3-coloring always exist?
Art Gallery Problem

Can the bound be reduced?

- Place guards at vertices of the triangulation \mathcal{T} of \mathcal{P}.
- We do a 3-coloring of the vertices of \mathcal{T}. Each triangle of \mathcal{T} has a blue, gray and white vertex.
- Choose the smallest color class to guard \mathcal{P}.
Art Gallery Problem

Can the bound be reduced?

- Place guards at vertices of the triangulation \mathcal{T} of \mathcal{P}.
- We do a 3-coloring of the vertices of \mathcal{T}. Each triangle of \mathcal{T} has a blue, gray and white vertex.
- Choose the smallest color class to guard \mathcal{P}.
- Hence, $\lfloor \frac{n}{3} \rfloor$ guards suffice.
Can the bound be reduced?

- Place guards at vertices of the triangulation \mathcal{T} of \mathcal{P}.
- We do a 3-coloring of the vertices of \mathcal{T}. Each triangle of \mathcal{T} has a blue, gray and white vertex.
- Choose the smallest color class to guard \mathcal{P}.
- Hence, $\left\lceil \frac{n}{3} \right\rceil$ guards suffice.
- But, does a 3-coloring always exist?
Art Gallery Problem

A 3-coloring always exist

Consider the dual graph G_T of P. G_T is a tree as P has no holes. Do a DFS on G_T to obtain the coloring. Place guards at those vertices that have color of the minimum color class. Hence, $\lceil n/3 \rceil$ guards are sufficient to guard P.

Necessity? Are $\lceil n/3 \rceil$ guards sometimes necessary?
Art Gallery Problem

A 3-coloring always exist

- Consider the dual graph G_T of T of \mathcal{P}.
Art Gallery Problem

A 3-coloring always exist

- Consider the dual graph G_T of T of P.
- G_T is a tree as P has no holes.
A 3-coloring always exist

- Consider the dual graph G_T of T of P.
- G_T is a tree as P has no holes.
- Do a DFS on G_T to obtain the coloring.
Art Gallery Problem

A 3-coloring always exist

- Consider the dual graph G_T of T of P.
- G_T is a tree as P has no holes.
- Do a DFS on G_T to obtain the coloring.
- Place guards at those vertices that have color of the minimum color class. Hence, $\left\lceil \frac{n}{3} \right\rceil$ guards are sufficient to guard P.

Necessity?

Are $\left\lceil \frac{n}{3} \right\rceil$ guards sometimes necessary?
Art Gallery Problem

A 3-coloring always exist

- Consider the dual graph G_T of T of P.
- G_T is a tree as P has no holes.
- Do a DFS on G_T to obtain the coloring.
- Place guards at those vertices that have color of the minimum color class. Hence, $\lfloor \frac{n}{3} \rfloor$ guards are sufficient to guard P.

Necessity?

Are $\lfloor \frac{n}{3} \rfloor$ guards sometimes necessary?
Art Gallery Theorem

Final Result

For a simple polygon with n vertices, $\left\lfloor \frac{n}{3} \right\rfloor$ cameras are always sufficient and occasionally necessary to have every point in the polygon visible from at least one of the cameras.
References

References II

- http://www.algorithmic-solutions.com
- http://www.cgal.org
Thank you!