
An Introduction to Randomized algorithms

C.R. Subramanian

The Institute of Mathematical Sciences, Chennai.

Expository talk presented at the Research Promotion Workshop
on ”Introduction to Geometric and Graph Algorithms” at
National Institute of Technology, Suratkal, January 10-12,

2012.

Randomized Algorithms

A deterministic algorithm + auxiliary input of a sequence of
unbiased and independent random bits.

RA - a randomized algorithm to solve π.

At every point during an execution of algorithm RA over I ,
the next move of A can possibly be determined by employing
randomly chosen bits and is not uniquely well-defined.

The execution and running time, intermediate steps and the
final output computed could possibly vary for different
executions of RA over the same I .

Why Randomization ?

Randomness often helps in significantly reducing the work
involved in determining a correct choice when there are
several but finding one is very time consuming.

Reduction of work (and time) can be significant on the
average or in the worst case.

Randomness often leads to very simple and elegant
approaches to solve a problem or it can improve the
performance of the same algorithm.

Risk : loss of confidence in the correctness. This loss can be
made very small by repeated employment of randomness.

Assumes the availability of truly unbiased random bits which
are very expensive to generate in practice.

Some Tail Inequalities

X - random variable : µ = E [X]; Var(X) = E [X 2]− µ2.

Markov : X is nonnegative ;

For every t > 0, Pr(X ≥ t) ≤ µ/t.

Chebyschev : ∀t > 0, Pr(|X − µ| ≥ t) ≤ Var(X)/t2.

∀ε ∈ (0, 1], Pr(|X − µ| ≥ εµ) ≤ Var(X)/ε2µ2.

Chernoff : X = X1 + . . . + Xn; Xi ∈ {0, 1}. independent.

∀ε ∈ (0, 1], Pr(X ≤ µ(1− ε)) ≤ e−ε2µ/2.

∀ε ∈ (0, 1], Pr(X ≥ µ(1 + ε)) ≤ e−ε2µ/3.

Verifying matrix multiplication :

A,B,C ∈ F n×n; Goal : To verify if AB = C .

direct approach - O(n3) time.

algebraic approach - O(n2.376) time.

Randomized Alg :

Choose u.a.r. r ∈ {0, 1}n and check if ABr = Cr .

If so, output YES, otherwise output NO.

If AB 6= C , then Pr(ABr = Cr) ≤ 1/2.

requires O(n2) time.

An example of a Monte-Carlo algorithm : can be incorrect but
guaranteed running time and with a guarantee of confidence.

QuickSort(A, p, q):

If p ≥ q, EXIT.

s ← correct position of A[p] in the sorted order.

Move the ”pivot” A[p] into position s.

Move the remaining elements into ”appropriate” positions.

Quicksort(A, p, s − 1);

Quicksort(A, s + 1, q).

Worse-case Complexity of QuickSort :

T (n) = Worst-case Complexity of QuickSort on an input of
size n. Only comparisons are counted.

T (n) = max{T (π) : π is a permutation of [n]}.

T (n) = Θ(n2).

Worst case input is : π = 〈n, n − 1, . . . , 1〉.

There exist inputs requiring Θ(n2) time.

Randomized Version : RandQSort(A, p, q):

If p ≥ q, EXIT.

Choose uniformly at random r ∈ {p, . . . , q}.

s ← correct position of A[r] in the sorted order.

Move randomly chosen pivot A[r] into position s.

Move the remaining elements into ”appropriate” positions.

RandQSort(A, p, s − 1);

RandQSort(A, s + 1, q).

Analysis of RandQSort :

Every comparison is between a pivot and another element.

two elements are compared at most once.

rank of an element is the position in the sorted order.

xi is the element of rank i . Si ,j = {xi , . . . , xj}.

Xi ,j = 1 if xi and xj are ever compared and 0 otherwise.

E [T (π)] = E [
∑

i<j Xi ,j] =
∑

i<j E [Xi ,j].

E [Xi ,j] = 2
j−i+1 .

E [T (π)] =
∑

i<j
2

j−i+1 ≤ 2nHn = Θ(n(log n)).

Example of randomness improving the efficiency :

Analysis holds for every permutation π.

T (n) = Maximum value of the Expected Time Complexity of
RandQSort on an input of size n.

T (n) = max{E [T (π)] : π is a permutation of [n]}.

T (n) = Θ(n(log n)).

For every π, Pr(T (π) > 8nHn) ≤ 1/4.

introducing randomness very likely improves the efficiency.

An example of a Las Vegas algorithm : always correct but
running time varies but with possibly poly expected time.

Las Vegas vs Monte-Carlo :

Las Vegas → Monte-Carlo

A - Las Vegas algo with E [TA(I)] ≤ poly(n) for every I .

By incorporating a counter which counts every elementary
step into A and stopping after, say, 4poly(n) steps, one gets a
poly time Monte-Carlo algorithm B with a guaranteed
confidence of at least 3/4.

Monte-Carlo → Las Vegas

A - Monte-Carlo alg with poly(n) time and 1/poly(n) success
probability. Suppose correctness of output can be verified in
poly(n) time.

By running the alg A repeatedly (with independent coin
tosses) until one gets a correct solution, we get a Las Vegas
algo with poly expected time.

Randomization provably helps

A simple counting problem :

A[1 . . . n]-array with Ai ∈ {1, 2} for every i .

f(x) = freq(x) ≥ n/5 for each x ∈ {1, 2}.

Goal : Given x ∈ {1, 2} and an ε > 0,

determine ans : ans ∈ [(1− ε)f (x), (1 + ε)f (x)].

Any deter. alg needs Ω(n) queries in the worst case for
ε = 1/10.

∃ rand. alg with O(log n) queries for every fixed ε.

Randomization provably helps

RandAlg(A, x , ε) :

m = 20(log n)/ε2 ; c = 0.

for i = 1, . . . ,m do

Choose uniformly at random j ∈ {1, . . . , n}.

if A[j] = x then increment c .

endfor

Return ans = nc/m.

end

Randomization provably helps

Analysis of RandAlg(A, x , ε) :

Xi = 1 if A[j] = x for j chosen in the ith-iteration.

c =
∑

i Xi ; E [Xi] = f (x)/n.

µ = E [c] = mf (x)/n ≥ m/5. E [ans] = f (x).

Pr(c 6∈ [(1− ε)µ, (1 + ε)µ]) ≤ 2e−ε2µ/3 = o(n−1).

(1− ε)f (x) ≤ ans ≤ (1 + ε)f (x) with probability 1− o(1).

No. of queries = O((log n)/ε2).

No. of queries = O(1) with success probability ≥ 3/4.

Unbiased Estimator

A is a randomized algorithm to approximate #I .

A outputs X such that µ = E [X] = #I .

Pr(X 6∈ [(1± ε)µ]) ≤ Var(X)/ε2µ2 by Chebyshev.

Var(X) = O(µ)⇒ reqd .prob = O(ε−2µ−1).

Example above : Var(X) ≤ µ, helps us !

Often, X is not so nicely defined and Var(X) may not be
small compared to µ2.

Boosting Success Probability - I

Run m independent trials of A(I , ε).

Take ans to be the numerical average of {X1, . . . ,Xm}.

E [ans] = µ and Var(ans) = Var(X)/m.

Pr(ans 6∈ [(1± ε)µ]) ≤ Var(X)/mε2µ2.

Pr(success) ≥ 3/4 provided m ≥ 4E [X 2]/ε2µ2.

a good approximation efficiently computable.

Boosting success probability - II

A is a randomized algorithm to approximate #I .

A runs in time poly(n, 1/ε) and outputs ans :

Pr((1− ε)(#I) ≤ ans ≤ (1 + ε)(#I)) ≥ 1/2 + δ.

Run m independent trials of A(I , ε).

Take ans to be the median of {ans1, . . . , ansm}.

Pr ((1− ε)(#I) ≤ ans ≤ (1 + ε)(#I)) ≥ 1− e−δ2m/2.

Pr(success) = 1− o(n−1) provided m ≥ 4(log n)/(δ2).

a good approximation efficiently computable.

Approximating Frequency Moments

Given A = (a1, . . . , am), aj ∈ {1, . . . , n}.

mi = frequency of i in A, i ∈ {1, . . . , n}.

Determine Fk =
∑

i m
k
i using ”small” space.

F0 = number of distinct elements in A.

F1 = length of the sequence A ; F2 = repeat rate of A.

Determining Fk arises in Data Mining.

Suppose we want to collect some statistical information from

a large stream of data without having to store the data.

Ω(n) bits needed for any deter. alg approximating Fk within a
ratio of 1± 0.1.

Approximating F2 - algorithm (Alon, Matias, Szegedy)

V = {v1, . . . , vh}, h = O(n2), each vi - a n-vector of ±1.

V is four-wise independent. For v ∈R V , ∀i1 ≤ . . . ≤ i4,
∀(ε1, . . . ε4) ∈ {−1, 1}4, Pr(∀j , v(ij) = εj) = 1/16.

Choose p ∈R {1, . . . , h} and store it using O(log n) bits.

vp(i) can be found (for a given i) using only O(log n) bits.

Z =
∑

i εimi . Z can be computed in one pass using
O(log n + log m) bits.

Compute X = Z 2. space = O(log m + log n).

Take s1 = 16/λ2 independent samples Xj = X and take their
average Y .

Take s2 = 2 log(1/ε) independent samples Yi = Y and output
their median.

Approximating F2 - analysis

E [X] = E [(
∑

i εimi)
2] =

∑
i m

2
i = F2.

E [X 2] =
∑

i m
4
i + 6

∑
i<j m2

i m
2
j .

Var(X) = E [X 2]− E [X]2 = 4
∑

i<j m2
i m

2
j ≤ 2F 2

2 .

Pr(|Yi − F2| ≥ λF2) ≤
2F 2

2

s1λ2F 2
2
≤ 1/8.

Pr(|Y − F2| ≥ λF2) ≤ ε.

Total space complexity = O(log(1/ε)(log n + log m)/λ2) bits.

Randomized Rounding

V = {x1, . . . xn} boolean variables.

F = C1 ∧ . . . ∧ Cm ; each Cj is a disjunction of literals.

Eg : Cj = x1 v xc
4 v x5.

MaxSat(F ,V) : Given F over V , find an assignment
satisfying the maximum number of clauses.

This is a NP-hard problem.

A simple deterministic alg satisfies at least m/2 clauses.

Can we do better ?

Randomized Rounding

Randomized Solution : Choose f : V → {T ,F} uar

|Cj | ≥ k ⇒ Pr(f satisfies Cj) ≥ 2−k .

Leads to an randomized approx alg which finds a f satisfying
at least 3m/4 clauses on the average if |Cj | ≥ 2 for every j .

∀j |Cj | ≥ k ⇒ E [#f] ≥ m(1− 2−k).

What if we have a mixture of clauses of different sizes.

E [#f] =
∑

k mk(1− 2−k) where mk = {j : |Cj | = k}.

Can we do better ?

LP-based Randomized Rounding

ILP Formulation : Maximize
∑

1≤j≤m zj

subject to :
∑

i∈C+
j

yi +
∑

i∈C−j
(1− yi) ≥ zj ∀j

yi , zj ∈ {0, 1} for every i and j .

LP Relaxation : allow each yi , zj ∈ [0, 1].

An optimal solution (y∗i , z∗j)i ,j of a LP can be found
efficiently.

Rand. Rounding : Independently and randomly set each
yi = 1 with probability y∗i . Let g be the resulting assignment.

|Cj | = k ⇒ Pr(Cj is satisfied by g) ≥ βkz∗j where

βk = 1− (1− 1/k)k ≥ 1− 1/e.

E [#f] ≥
∑

k

∑
j :|Cj |=k βkz∗j ≥ (1− 1/e)OPT (ILP).

LP-based Randomized Rounding

β1 = 1 and β2 = 0.75 and βk < 1− 2−k for k ≥ 3.

Improved Algorithm B :

Choose f : V → {T ,F} uar and let X1 be the number of
clauses satisfied.

Run the LP-based Randomized Rounding algo and let n2 be
the number of clauses satisfied.

Return the best of the two solutions found which satisfies at
least max{n1, n2} clauses.

max{E [n1],E [n2]} ≥ (0.75)
∑

j z∗j ≥ (0.75)OPT (ILP).

Randomized algorithms

RA - a poly time rand algo for a decision problem π.

each instance has only y/n answer.

For I ∈ YES(π), Pr(ans(RA, I) = y) ≥ 1/2 ;

For I ∈ NO(π), Pr(ans(RA, I) = n) = 1 ;

Number of bits used r = r(n).

RP = {L ⊆ Σ∗ : ∃ such a rand algo RA for π}.

RP ⊆ NP; Is NP ⊆ RP ?

RA is a RP algorithm.

Boosting Success Probability - I

Suppose we want a confidence of 1− δ.

Algorithm RB :

Run m independent trials of RA(I).

Output y if at least one trial says y ;

Otherwise, output n ;

TRB(I) ≤ mTRA(I).

For I ∈ YES(π), Pr(ans(RB(I)) = n) ≤ δ

provided m ≥ log2(1/δ).

To make error prob at most 2−m, we need mr random bits.

Can we do with less random bits ?

Boosting Success Probability - II

Choose R ∈ Zp = {0, . . . , p − 1} u.a.r.

Pr(A(x ,R) = 1) ≥ 1/2 if x ∈ L and is 0 otherwise.

Choose a, b ∈ Zp uniformly and independently at random.

Compute Ri = ai + b(modp) for 1 ≤ i ≤ t.

Each Ri is uniformly distributed over Zp.

Ri s are pairwise independent.

Zi = 1 if A(x ,Ri) = 1 and is 0 otherwise. Z =
∑

i Zi .

E [Z] ≥ t/2 and Var(Z) =
∑

i Var(Zi) ≤ t/4.

By Chebyschev, Pr(Z = 0) ≤ 1/t.

with just 2r independent bits, we get error prob at most 1/t
as against r(log t) random bits required in independent trials.

Conclusions

Employing randomness leads to improved simplicity and
improved efficiency in solving the problem.

However, assumes the availability of a perfect source of
independent and unbiased random bits.

access to truly unbiased and independent sequence of random
bits is expensive and should be considered as an expensive
resource like time and space. One should aim to minimize the
use of randomness to the extent possible.

assumes efficient realizability of any rational bias. However,
this assumption introduces error and increases the work and
the required number of random bits.

There are ways to reduce the randomness from several
algorithms while maintaining the efficiency nearly the same.

