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What is it to be Perfect?

* Introduced by Claude Berge in early 1960s

e Coloring number and clique number are one
and the same for all induced subgraphs of a
Graph

* Note that the coloring number is at least the
clique number

* Are the even unequal? - Odd cycles!!!

* To be perfect, induced subgraphs cannot be
odd cycles



Exercise in Coloring

* For any given two integers, o and c, does there
exist a graph whose coloring number is ¢ and
clique number is o.

 For 0=2 and c¢=3, answer is obviously yes.
e Construct a graph for 0=2 and c=4.

 Answered by Lovasz for arbitrary values of o
and c.

* Check text on Graph Theory by Bondy and
Murty.



Perfect Questions

Is a given graph Perfect?
s there a characterization of perfect graphs?

s a graph minimally imperfect?

Do any hard computational exercises become
easy on these graphs?

Are there interesting sub-classes?

his talk: A survey of the first 4 and a sample of
the last question




Characterizations

» Strong Perfect Graph Theorem

A Graph is perfect if and only if it does not
contain a odd cycle or its complement as an
induced subgraph.

» Conjectured by Berge in 1960
* Aforbidden subgraph characterization.

» Conjecture settled after many years of research
in the first decade of this century.

 Come up with a verification algorithm?



Results along the way

 Weak Perfect Graph Theorem [Lovasz,
Fulkerson]

A Graph is perfect if and only if its complement
IS perfect.

Further, G is perfect if and only if for each
iInduced subgraph H, the alpha-omega product
Is at least the number of vertices in H.

e Consequently, independence number is same
as clique cover number for all induced
subgraph of a perfect graph.



Polyhdedral Combinatorics

* Main goal-understanding the geometric
structure of a solution space.

Visualize the convex hull and find a system of
iInequalities that specify exactly the convex hull

 Consider the convex hull of stable set incidence
vectors

« Consider the clique inequalities

* G is perfect if and only if the convex hull and
clique inequality polytope are identical




Summary of Survey

» Perfect graphs are motivated by coloring
ISsues.

» Connects combinatorial understanding to
polyhedral structure in a very rich and
fundamental way

Geometric Algorithms and Combinatorial
Optimization — Groetschel, Lovasz, Schrijver

Algorithmic Graph Theory and Perfect Graphs —
Golumbic

The Sandwich Theorem — Knuth



Interval Graphs

* A subclass of perfect graphs
* Motivated by many applications

* Temporal reasoning issues like register allocation

* Given a set of intervals, consider the natural
intersection graph for which there is one vertex
per interval and an edge indicates a non-empty
iIntersection

 Examples of interval graphs and non interval
graphs



Interval Graphs are perfect

* Given a graph, find an interval representation
* Visualize the intervals as time intervals
» Color the intervals in increasing order of time

 Reuse a color whenever possible and use a
new color greedily

* This proves that interval graphs are perfect.

» Key issues: given a graph, does it have an
interval represenation.



Forbidden subgraphs

* Induced cycles of length more than 3
e Asteroidal triples

3 vertices X, Yy, z form an asteroidal triple if for
all ordering of them, there is a path from the
first to third which avoids the neighbors of the
second.

» Gives a polynomial time algorithm

* Check no four form an induced cycle
 Check no 3 form an asteroidal triple



The interval representation

 Graph is an interval graph if and only if its
maximal cliques can be linearly ordered such
that the set of maximal cliques containing a
vertex occur consecutively in the order.

* Note that this consecutive ordering gives the
interval representation

 For each vertex, the interval associated is the
Interval of indices of maximal cliques that contain it

* Finding the maximal cliques and ordering
them!!



Finding the maximal cliques

 Based on a structural property of graphs that do
not have induced 4 cycles.

e Such graphs are called chordal/triangulated.
 Have two very special properties

 Each minimal vertex separator is a clique

* There are two non-adjacent vertices whose
neighborhood is a clique.

* There is a perfect elimination ordering

* Order of vertices, such that higher nbrs form a
clique



Where are the maximal cliques

 Each maximal clique is in any perfect
elimination ordering

» Can be constructed in polynomial time

« Select a simplicial vertex

 Remove it from the graph, resulting graph is still
chordal

 |terate: the order in which the vertices where output
Is a perfect elimination ordering

« All maximal cliques are now found from this
ordering- each maximal clique has a smallest
number vertex in the order.



The Interval Assignment

* Need to order the maximal cliques linearly, such
that for each vertex, those cligues containing
the vertex occur consecutively in the linear
order

* For each v, consider the set M(v) containing
the maximal cliques containing v.

 |dentify a corner vertex v.

* There must be one if there is an interval ordering

* |f the set of intersections with M(u) not contained in
M(v) form linear order under the containment partial
order.



Completing the Assignment

* |[f a corner not found, report not an interval
graph and exit.

» Else, assign the left most interval to the set

* |teratively, select a set that is not contained in
some already processed set, but intersects with
it, and assign it an interval in a unique way.

* |If the interval cannot be assigned consistent
with the others, meaning check the intersection
cardinality, report failure and exit.



Other results

 Chordal graphs are also perfect

» By a greedy coloring using the perfect elimination
ordering

e Vertex cover, maximum clique and independent
set be computed in polynomial time on perfect
graphs.

 Many more applications in Computational
Geometry by way of visibility graphs etc.
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