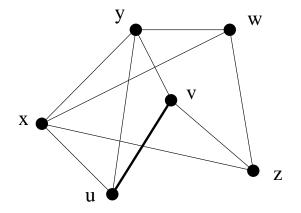
Geometric Graphs

Sathish Govindarajan Indian Institute of Science, Bangalore

Workshop on Introduction to Graph and Geometric Algorithms National Institute of Technology, Suratkal

Geometric Graph ——



- $\star V = \text{set of geometric objects (point set in the plane)}$
- \star $E = \{(u, v)\}$ based on some geometric condition

Questions on Geometric Graphs —

- **★** Problems on graphs
 - We Independent set, coloring, clique, etc.

- ★ Combinatorial/Structural questions
 - Obtain Bounds
 - Characterization

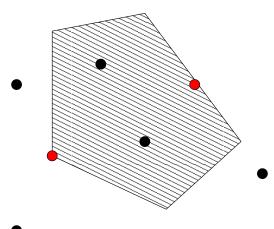
- ★ Computational questions
 - Efficient Algorithm
 - Approximation

Geometric graphs —

- $\star V$ set of geometric objects
- \star E object i and j satisfy certain geometric condition
- ★ Broad classes of geometric graphs (based on edge condition)
 - Proximity graphs
 - Intersection graphs
 - Distance based graphs

Proximity Graphs –

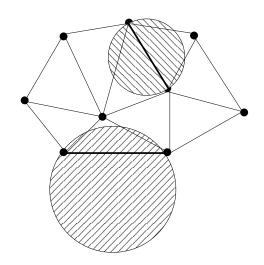
- \star P point set in plane
- $\star R_{i,j}$ proximity region defined by i and j



- $\star V$ point set P
- ★ $(i,j) \in E$ if $R_{i,j}$ is empty
- ★ Examples Delaunay, Gabriel, Relative Neighborhood Graph
- ★ Applications Graphics, wireless networks, GIS, computer vision, etc.

Delaunay Graph - Classic Example —

 \star P - point set in plane



- $\star V$ point set P
- \bigstar (i, j) ∈ E if \exists some empty circle thro' i and j
- ★ Triangle (i, j, k) if circumcircle(i, j, k) is empty (Equivalent condition)
- * Applications Graphics, mesh generation, computer vision, etc.

Questions on Delaunay Graph ——

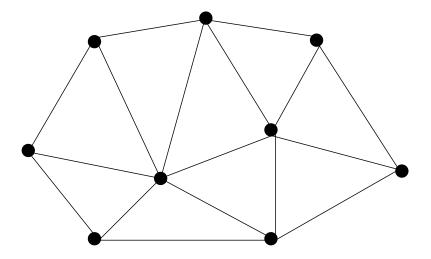
- ★ Combinatorial Bounds on
 - Maximum size of edge set?
 - Chromatic number?
 - Maximum independent set?

(Over all possible point sets P)

- **★** Computational
 - Efficient Algorithm

Delaunay Graph - Classic Example ——

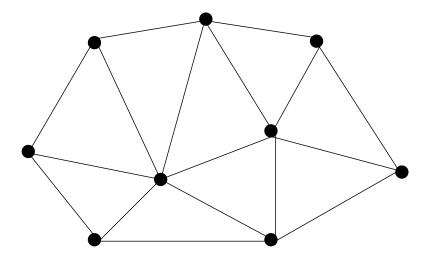
 \star P - point set in plane



★ Observations:

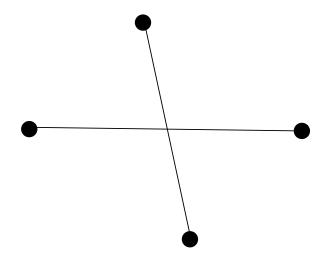
Delaunay Graph - Classic Example ——

 \star P - point set in plane

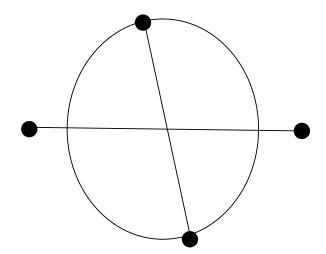


★ Observations: Planar?

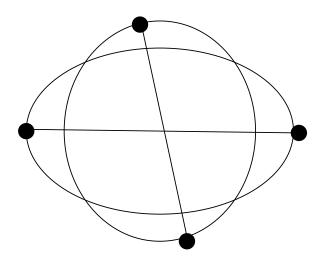
Delaunay Graph - Planar ———



Delaunay Graph - Planar ——

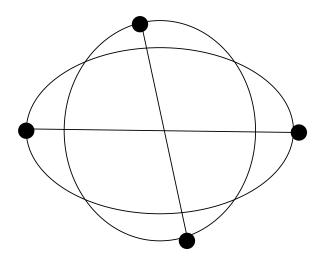


Delaunay Graph - Planar ——



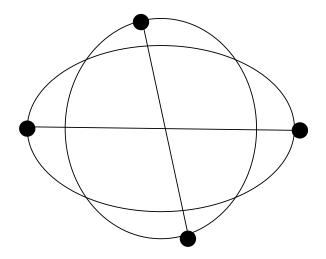
Delaunay Graph - Planar ——

★ Let, if possible, 2 edges cross



★ Circles c'ant intersect like this (why?)

Delaunay Graph - Planar -



- ★ Circles c'ant intersect like this (why?)
- ★ One endpoint of an edge lies within the other circle
 - Contradiction
- ★ Alternate proof using angles

Questions on Delaunay Graph —

- \star Given any *n*-point set P in the plane
 - Delaunay graph is planar
- ★ Maximum size of edge set
 - $\approx \le 3n 6$ (Euler's formula)
- ★ Chromatic number
 - ≥ 4 (Four color theorem)
- **★** Maximum independent set
 - $\geq n/4$ (Chromatic number)

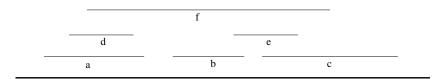
Intersection Graphs —

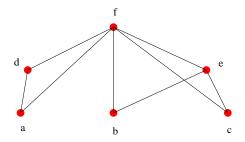
- **★** Interval Graph Classic example
- \star S set of geometric objects s_i (intervals on the real line)

- $\star V$ set of object s_i
- \star $(s_i, s_j) \in E$ if objects s_i and s_j intersect

Interval Graphs —

 \star S - set of intervals on the line





- $\star V$ set of object s_i
- \bigstar $(s_i, s_j) \in E$ if objects s_i and s_j intersect
- ★ Graph problems Maximum independent set, Maximum clique, Chromatic number, etc.
 - **%** Can be computed efficiently

Intervals ———

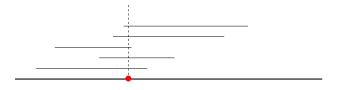
 \star S - set of intervals on the real line

★ Every 2 intervals in S intersect

★ Claim: All the intervals have a common intersection

Intervals ——

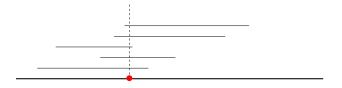
- \star S set of intervals on the real line
- ★ Every 2 intervals in S intersect



★ Claim: All the intervals have a common intersection

Intervals -

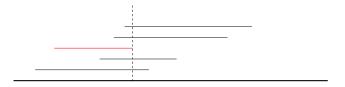
- \star S set of intervals on the real line
- ★ Every 2 intervals in S intersect
- ★ Claim: All the intervals have a common intersection



- **★** Induction proof (Exercise)
- **★** Constructive proof
 - \sim Construct a point p that is contained in all the intervals

Intervals -

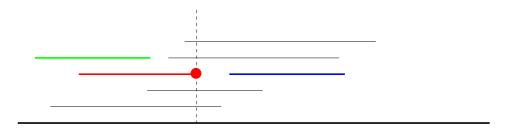
- \star S set of intervals on the real line
- ★ Every 2 intervals intersect
- **★** Constructive proof
 - \sim Construct a point p that is contained in all the intervals
- \star p: Right endpoint of interval that ends first from left
 - Leftmost right endpoint



 \star Claim: All the intervals contain p

Intervals -

- \star Construct a point p that is contained in all the intervals
- \star p: Right endpoint of interval that ends leftmost
 - Leftmost right endpoint
- \bigstar Claim: All the intervals contain p
- **★** Proof by contradiction



Intersection Graphs of Axis Parallel Rectangles —

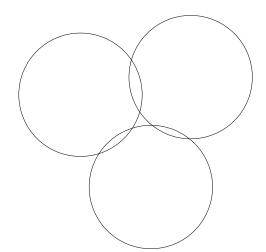
- \star S set of axis parallel rectangles
- ★ Every 2 rectangles intersect
 - \sim Claim: There exists a point p contained in all the rectangles
 - Is it true?

Intersection Graphs of Circles ——

- \star S set of circles
- ★ Every 2 circles intersect
 - \sim Claim: There exists a point p contained in all the circles

Intersection Graphs of Circles ——

- \star S set of circles
- ★ Every 2 circles intersect
 - \sim Claim: There exists a point p contained in all the circles
 - Not true



Intersection Graphs of Circles ——

- \star S set of circles
- ★ Every 2 circles intersect
 - \sim Claim: There exists a point p contained in all the circles
 - Not true
- ★ Every 3 circles intersect
 - \sim Claim: There exists a point p contained in all the circles
 - ***** True
- ★ Helly Theorem: Statement true for convex objects

Helly's Theorem -

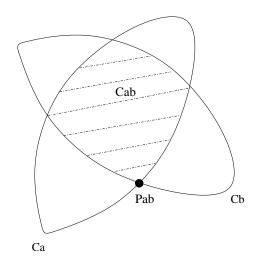
- ★ Helly's Theorem: Let C be a collection of convex objects.

 If every 3 objects in C have a common intersection, then all the objects in C have a common intersection
- **★** Induction proof
- **★** Constructive proof
 - \sim Construct a point p that is contained in all the objects

Helly's Theorem

★ Helly's Theorem: Let C be a collection of convex objects.

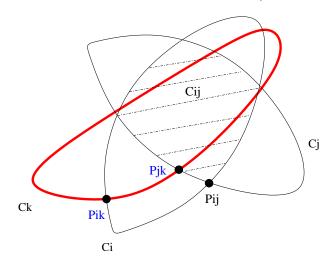
If every 3 objects in C have a common intersection, then all the objects in C have a common intersection



- $\star p_{ab}$: Lowest point in $C_{ab} = C_a \cap C_b$
- ★ Choose the pair of objects (C_i, C_j) such that p_{ij} is highest among all pairs
- \star Claim: p_{ij} is contained in all objects in C

Helly's Theorem -

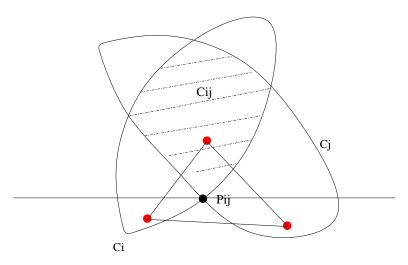
- \star Claim: p_{ij} is contained in C_k for all k
- $\star C_{ij} \cap C_k \neq \emptyset$ (Every 3 objects intersect)



- \star If p_{ij} is not contained in C_k

Helly's Theorem

 \star Claim: p_{ij} is contained in C_k for all k



- $\star C_{ij} \cap C_k \neq \emptyset$ (Every 3 objects intersect)
- $\star C_k$ intersect both C_i and C_j below p_{ij}
- \star By convexity, p_{ij} is contained in C_k

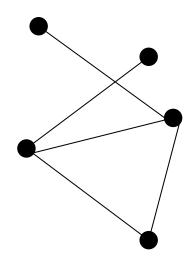
Centerpoint Theorem -

- ★ Centerpoint Theorem: Let P be a set of n points in the plane. There exists a point p in the plane that is contained in every convex object containing $> \frac{2}{3}n$ points of P
- **★** Proof:
- ★ Take any 3 convex objects C_i, C_j, C_k containing $> \frac{2}{3}n$ points
- $\star C_i \cap C_j \cap C_k \neq \emptyset$ (Counting argument)
- \star Applying Helly theorem, there exists a point p contained in all such convex objects
- \star The constant $\frac{2}{3}$ is the best possible

Distance based Graphs —

- **★** Unit distance graph

 - $(i,j) \in E \text{ if } d(i,j) = 1$

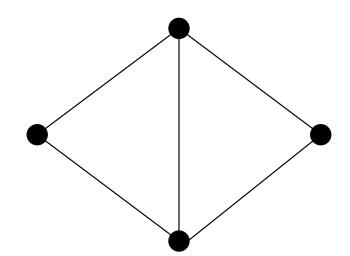


- ★ Place points so as to maximize the number of edges
- \star Can you get a complete graph? (even for n=4)

Distance based Graphs —

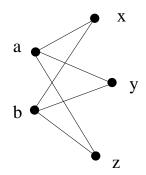
- **★** Unit distance graph

 - $(i,j) \in E \text{ if } d(i,j) = 1$



Unit Distance Graph -

- $\star V$ point set P
- \bigstar $(i,j) \in E$ if d(i,j) = 1
- ★ Maximum number of edges? (Erdos)
 - [⋄] Over all possible n-point set
- \star $O(n^{3/2})$ edges
 - \aleph Forbidden $K_{2,3}$



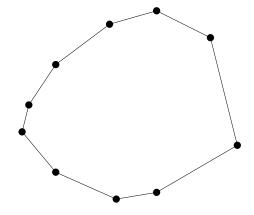
- \star $O(n^{4/3})$ edges
 - & Crossing Lemma, Cuttings, Arrangement of Circles

Unit Distance Graph - Open Problem —

- ★ Upper bound
 - $\partial O(n^{4/3})$ edges
- ★ Lower bound
 - $\approx \Omega(n^{1+\frac{c}{\log\log n}})$ [Erdos]
- ★ Conjecture: Lower bound is tight

Unit Distance Graph - Convex Point Set ——

★ Convex Point Set



 \bigstar Upper bound: $O(n \log n)$ edges

 \star Lower bound: 2n-7 edges

 \star Conjecture: Lower bound is tight (2n edges)

