Geometric Graphs Sathish Govindarajan Indian Institute of Science, Bangalore Workshop on Introduction to Graph and Geometric Algorithms National Institute of Technology, Suratkal ### Geometric Graph —— - $\star V = \text{set of geometric objects (point set in the plane)}$ - \star $E = \{(u, v)\}$ based on some geometric condition ### Questions on Geometric Graphs — - **★** Problems on graphs - We Independent set, coloring, clique, etc. - ★ Combinatorial/Structural questions - Obtain Bounds - Characterization - ★ Computational questions - Efficient Algorithm - Approximation ### **Geometric graphs** — - $\star V$ set of geometric objects - \star E object i and j satisfy certain geometric condition - ★ Broad classes of geometric graphs (based on edge condition) - Proximity graphs - Intersection graphs - Distance based graphs ### **Proximity Graphs** – - \star P point set in plane - $\star R_{i,j}$ proximity region defined by i and j - $\star V$ point set P - ★ $(i,j) \in E$ if $R_{i,j}$ is empty - ★ Examples Delaunay, Gabriel, Relative Neighborhood Graph - ★ Applications Graphics, wireless networks, GIS, computer vision, etc. ## Delaunay Graph - Classic Example — \star P - point set in plane - $\star V$ point set P - \bigstar (i, j) ∈ E if \exists some empty circle thro' i and j - ★ Triangle (i, j, k) if circumcircle(i, j, k) is empty (Equivalent condition) - * Applications Graphics, mesh generation, computer vision, etc. ### Questions on Delaunay Graph —— - ★ Combinatorial Bounds on - Maximum size of edge set? - Chromatic number? - Maximum independent set? (Over all possible point sets P) - **★** Computational - Efficient Algorithm # Delaunay Graph - Classic Example —— \star P - point set in plane **★** Observations: # Delaunay Graph - Classic Example —— \star P - point set in plane **★** Observations: Planar? # Delaunay Graph - Planar ——— # Delaunay Graph - Planar —— # Delaunay Graph - Planar —— # Delaunay Graph - Planar —— ★ Let, if possible, 2 edges cross ★ Circles c'ant intersect like this (why?) ### Delaunay Graph - Planar - - ★ Circles c'ant intersect like this (why?) - ★ One endpoint of an edge lies within the other circle - Contradiction - ★ Alternate proof using angles ### Questions on Delaunay Graph — - \star Given any *n*-point set P in the plane - Delaunay graph is planar - ★ Maximum size of edge set - $\approx \le 3n 6$ (Euler's formula) - ★ Chromatic number - ≥ 4 (Four color theorem) - **★** Maximum independent set - $\geq n/4$ (Chromatic number) ## **Intersection Graphs** — - **★** Interval Graph Classic example - \star S set of geometric objects s_i (intervals on the real line) - $\star V$ set of object s_i - \star $(s_i, s_j) \in E$ if objects s_i and s_j intersect ### **Interval Graphs** — \star S - set of intervals on the line - $\star V$ set of object s_i - \bigstar $(s_i, s_j) \in E$ if objects s_i and s_j intersect - ★ Graph problems Maximum independent set, Maximum clique, Chromatic number, etc. - **%** Can be computed efficiently ### Intervals ——— \star S - set of intervals on the real line ★ Every 2 intervals in S intersect ____ ★ Claim: All the intervals have a common intersection ### Intervals —— - \star S set of intervals on the real line - ★ Every 2 intervals in S intersect ★ Claim: All the intervals have a common intersection #### **Intervals** - - \star S set of intervals on the real line - ★ Every 2 intervals in S intersect - ★ Claim: All the intervals have a common intersection - **★** Induction proof (Exercise) - **★** Constructive proof - \sim Construct a point p that is contained in all the intervals #### Intervals - - \star S set of intervals on the real line - ★ Every 2 intervals intersect - **★** Constructive proof - \sim Construct a point p that is contained in all the intervals - \star p: Right endpoint of interval that ends first from left - Leftmost right endpoint \star Claim: All the intervals contain p #### Intervals - - \star Construct a point p that is contained in all the intervals - \star p: Right endpoint of interval that ends leftmost - Leftmost right endpoint - \bigstar Claim: All the intervals contain p - **★** Proof by contradiction ## Intersection Graphs of Axis Parallel Rectangles — - \star S set of axis parallel rectangles - ★ Every 2 rectangles intersect - \sim Claim: There exists a point p contained in all the rectangles - Is it true? ## Intersection Graphs of Circles —— - \star S set of circles - ★ Every 2 circles intersect - \sim Claim: There exists a point p contained in all the circles ## Intersection Graphs of Circles —— - \star S set of circles - ★ Every 2 circles intersect - \sim Claim: There exists a point p contained in all the circles - Not true ### Intersection Graphs of Circles —— - \star S set of circles - ★ Every 2 circles intersect - \sim Claim: There exists a point p contained in all the circles - Not true - ★ Every 3 circles intersect - \sim Claim: There exists a point p contained in all the circles - ***** True - ★ Helly Theorem: Statement true for convex objects ### Helly's Theorem - - ★ Helly's Theorem: Let C be a collection of convex objects. If every 3 objects in C have a common intersection, then all the objects in C have a common intersection - **★** Induction proof - **★** Constructive proof - \sim Construct a point p that is contained in all the objects ### Helly's Theorem ★ Helly's Theorem: Let C be a collection of convex objects. If every 3 objects in C have a common intersection, then all the objects in C have a common intersection - $\star p_{ab}$: Lowest point in $C_{ab} = C_a \cap C_b$ - ★ Choose the pair of objects (C_i, C_j) such that p_{ij} is highest among all pairs - \star Claim: p_{ij} is contained in all objects in C ### Helly's Theorem - - \star Claim: p_{ij} is contained in C_k for all k - $\star C_{ij} \cap C_k \neq \emptyset$ (Every 3 objects intersect) - \star If p_{ij} is not contained in C_k ### Helly's Theorem \star Claim: p_{ij} is contained in C_k for all k - $\star C_{ij} \cap C_k \neq \emptyset$ (Every 3 objects intersect) - $\star C_k$ intersect both C_i and C_j below p_{ij} - \star By convexity, p_{ij} is contained in C_k ### Centerpoint Theorem - - ★ Centerpoint Theorem: Let P be a set of n points in the plane. There exists a point p in the plane that is contained in every convex object containing $> \frac{2}{3}n$ points of P - **★** Proof: - ★ Take any 3 convex objects C_i, C_j, C_k containing $> \frac{2}{3}n$ points - $\star C_i \cap C_j \cap C_k \neq \emptyset$ (Counting argument) - \star Applying Helly theorem, there exists a point p contained in all such convex objects - \star The constant $\frac{2}{3}$ is the best possible ### Distance based Graphs — - **★** Unit distance graph - $(i,j) \in E \text{ if } d(i,j) = 1$ - ★ Place points so as to maximize the number of edges - \star Can you get a complete graph? (even for n=4) ## Distance based Graphs — - **★** Unit distance graph - $(i,j) \in E \text{ if } d(i,j) = 1$ ## **Unit Distance Graph** - - $\star V$ point set P - \bigstar $(i,j) \in E$ if d(i,j) = 1 - ★ Maximum number of edges? (Erdos) - [⋄] Over all possible n-point set - \star $O(n^{3/2})$ edges - \aleph Forbidden $K_{2,3}$ - \star $O(n^{4/3})$ edges - & Crossing Lemma, Cuttings, Arrangement of Circles # Unit Distance Graph - Open Problem — - ★ Upper bound - $\partial O(n^{4/3})$ edges - ★ Lower bound - $\approx \Omega(n^{1+\frac{c}{\log\log n}})$ [Erdos] - ★ Conjecture: Lower bound is tight # Unit Distance Graph - Convex Point Set —— ★ Convex Point Set \bigstar Upper bound: $O(n \log n)$ edges \star Lower bound: 2n-7 edges \star Conjecture: Lower bound is tight (2n edges)