Rainbow Coloring of Graphs

L. Sunil Chandran

Computer Science and Automation
Indian Institute of Science, Bangalore
Email: sunil@csa.iisc.ernet.in

Rainbow Connection Number and Graph Powers.

- If G is a connected graph, then $r\left(G^{k}\right) \leq r c(G) \leq 2 \cdot r\left(G^{k}\right)+1$ for any $k \geq 2$.
■ Upper bound is tight up to additive constant of 1.
- Note that $r\left(G^{k}\right)=\left\lceil\frac{r(G)}{k}\right\rceil$

Cartesian Product

■ If G and H are two non-trivial connected graphs, then $r(G \times H) \leq r c(G \times H) \leq 2 r(G \times H)$.

- Bounds are tight.
- Note that $r(G \times H)=r(G)+r(H)$.

Lexico Graphic Products

- If G and H are two non-trivial graphs such that G is connected, then we have the following:
- If $r(G \times H) \geq 2$ then $r(G \times H) \leq r c(G \times H) \leq 2 r(G \times H)$.
- If $r(G \times H)=1$, then $1 \leq r c(G \times H) \leq 3$.
- Both bounds are tight.

Strong Products

- If G and H are two connected, non-trivial graphs, the $r(G \times H) \leq r c(G \times H) \leq 2 \cdot r(G \times H)+2$.
- The upper bound is tight up to an additive constant 2.

■ Note that $r(G \times H)=\max (r(G), r(H))$.

Rainbow Connection Number and Connectivity

Let the vertex connectivity be κ and the edge connectivity be λ. Then

- $r c(G) \leq \frac{3 n}{\lambda+1}+3$
- $r c(G) \leq \frac{3 n}{\kappa+1}+3$

The above result follows from our earlier result: $r c(G) \leq \frac{3 n}{\delta+1}+3$, since $\kappa \leq \lambda \leq \delta$.
Now can we get a better bound in terms of κ and λ ? In terms λ, we cannot improve much, but in terms of κ we can.

Improvement In terms of vertex connectivity

- We can improve it to $r c(G) \leq(2+\epsilon)(n / \kappa)+23 / \epsilon^{2}$, for any $\epsilon>0$.
- We conjecture that $r c(G) \leq n / \kappa(G)+O(1)$

For some Special Cases, we prove that the conjecture is

 true:- For $\kappa(G)=2$:
- For chordal Graphs.
- Graphs of Girth at least 7.

