Fixed Parameter Algorithms and Kernelization

Saket Saurabh
The Institute of Mathematica Sciences, India

Pre-WorKer 2011 Talk, Vienna, 1st September

Classical complexity

A brief review:
6 We usually aim for polynomial-time algorithms: the running time is $O\left(n^{c}\right)$, where n is the input size.

6 Classical polynomial-time algorithms: shortest path, mathching, minimum spanning tree, 2SAT, convext hull, planar drawing, linear programming, etc.

6 It is unlikely that polynomial-time algorithms exist for NP-hard problems.
(6) Unfortunately, many problems of interest are NP-hard: Hamiltonian cycle, 3-coloring, 3SAT, etc.
(6) We expect that these problems can be solved only in exponential time (i.e., c^{n}).

Can we say anything nontrivial about NP-hard problems?

Parameterized complexity

Main idea: Instead of expressing the running time as a function $T(n)$ of n, we express it as a function $T(n, k)$ of the input size n and some parameter k of the input.

In other words: we do not want to be efficient on all inputs of size n, only for those where k is small.

Parameterized complexity

Main idea: Instead of expressing the running time as a function $T(n)$ of n, we express it as a function $T(n, k)$ of the input size n and some parameter k of the input.

In other words: we do not want to be efficient on all inputs of size n, only for those where k is small.

What can be the parameter k ?
6 The size k of the solution we are looking for.
(6) The maximum degree of the input graph.

6 The diameter of the input graph.
(6) The length of clauses in the input Boolean formula.
© ...

Parameterized complexity

Problem:	Minimum Vertex Cover	MAXImUm Independent SET
Input:	Graph G, integer k	Graph G, integer k
Question:	Is it possible to cover	Is it possible to find
the edges with k vertices?	k independent vertices?	

Parameterized complexity

Problem:	Minimum Vertex Cover	MAXImUm Independent Set
Input:	Graph G, integer k	Graph G, integer k
Question:	Is it possible to cover	
the edges with k vertices?	Is it possible to find k independent vertices?	

Parameterized complexity

Bounded search tree method

Algorithm for Minimum Vertex Cover:

Bounded search tree method

Algorithm for Minimum Vertex Cover:

Bounded search tree method

Algorithm for Minimum Vertex Cover:

Bounded search tree method

Algorithm for Minimum Vertex Cover:

Bounded search tree method

Algorithm for Minimum Vertex Cover:

Height of the search tree is $\leqslant k \Rightarrow$ number of leaves is $\leqslant 2^{k} \Rightarrow$ complete search requires 2^{k}. poly steps.

Fixed-parameter tractability

Definition: A parameterization of a decision problem is a function that assigns an integer parameter k to each input instance x.

The parameter can be
© explicit in the input (for example, if the parameter is the integer k appearing in the input (G, k) of Vertex Cover), or
(6) implicit in the input (for example, if the parameter is the diameter d of the input graph G).

Main definition:

A parameterized problem is fixed-parameter tractable (FPT) if there is an $f(k) n^{c}$ time algorithm for some constant c.

Fixed-parameter tractability

Definition: A parameterization of a decision problem is a function that assigns an integer parameter k to each input instance x.

Main definition:

A parameterized problem is fixed-parameter tractable (FPT) if there is an $f(k) n^{c}$ time algorithm for some constant c.

Example: Minimum Vertex Cover parameterized by the required size k is FPT: we have seen that it can be solved in time $O\left(2^{k}+n^{2}\right)$.

Better algorithms are known: e.g, $O\left(1.2832^{k} k+k|V|\right)$.
Main goal of parameterized complexity: to find FPT problems.

FPT problems

Examples of NP-hard problems that are FPT:
6 Finding a vertex cover of size k.
6 Finding a path of length k.
6 Finding k disjoint triangles.
(6) Drawing the graph in the plane with k edge crossings.
© Finding disjoint paths that connect k pairs of points.

FPT algorithmic techniques

6 Significant advances in the past 20 years or so (especially in recent years).
6 Powerful toolbox for designing FPT algorithms:

Books

Downey-Fellows: Parameterized Complexity, Springer, 1999

Flum-Grohe: Parameterized Complexity Theory, Springer, 2006

Niedermeier: Invitation to Fixed-Parameter Algorithms, Oxford University Press, 2006.

Kernelization

Kernelization

Definition: Kernelization is a polynomial-time transformation that maps an instance (I, k) to an instance (I^{\prime}, k^{\prime}) such that
(6) (I, k) is a yes-instance if and only if $\left(I^{\prime}, k^{\prime}\right)$ is a yes-instance,
(6) $k^{\prime} \leqslant k$, and
© $\left|I^{\prime}\right| \leqslant f(k)$ for some function $f(k)$.

Kernelization

Definition: Kernelization is a polynomial-time transformation that maps an instance (I, k) to an instance (I^{\prime}, k^{\prime}) such that

6 (I, k) is a yes-instance if and only if $\left(I^{\prime}, k^{\prime}\right)$ is a yes-instance,
(6) $k^{\prime} \leqslant k$, and

6 $\left|I^{\prime}\right| \leqslant f(k)$ for some function $f(k)$.
Simple fact: If a problem has a kernelization algorithm, then it is FPT.
Proof: Solve the instance (I^{\prime}, k^{\prime}) by brute force.

Kernelization

Definition: Kernelization is a polynomial-time transformation that maps an instance (I, k) to an instance ($\left.I^{\prime}, k^{\prime}\right)$ such that
(6) (I, k) is a yes-instance if and only if $\left(I^{\prime}, k^{\prime}\right)$ is a yes-instance,
(6) $k^{\prime} \leqslant k$, and

6 $\left|I^{\prime}\right| \leqslant f(k)$ for some function $f(k)$.
Simple fact: If a problem has a kernelization algorithm, then it is FPT.
Proof: Solve the instance (I^{\prime}, k^{\prime}) by brute force.
Converse: Every FPT problem has a kernelization algorithm.
Proof: Suppose there is an $f(k) n^{c}$ algorithm for the problem.
(6) If $f(k) \leqslant n$, then solve the instance in time $f(k) n^{c} \leqslant n^{c+1}$, and output a trivial yes- or no-instance.
6. If $n<f(k)$, then we are done: a kernel of size $f(k)$ is obtained.

Kernelization for Vertex Cover

General strategy: We devise a list of reduction rules, and show that if none of the rules can be applied and the size of the instance is still larger than $f(k)$, then the answer is trivial.

Reduction rules for Vertex Cover instance (G, k):
Rule 1: If v is an isolated vertex $\Rightarrow(G \backslash v, k)$
Rule 2: If $d(v)>k \Rightarrow(G \backslash v, k-1)$

Kernelization for Vertex Cover

General strategy: We devise a list of reduction rules, and show that if none of the rules can be applied and the size of the instance is still larger than $f(k)$, then the answer is trivial.

Reduction rules for Vertex Cover instance (\mathbf{G}, k):
Rule 1: If v is an isolated vertex $\Rightarrow(G \backslash v, k)$
Rule 2: If $d(v)>k \Rightarrow(G \backslash v, k-1)$
If neither Rule 1 nor Rule 2 can be applied:
(6) If $|V(G)|>k(k+1) \Rightarrow$ There is no solution (every vertex should be the neighbor of at least one vertex of the cover).
© Otherwise, $|V(G)| \leqslant k(k+1)$ and we have a $k(k+1)$ vertex kernel.

Kernelization for Vertex Cover

Let us add a third rule:
Rule 1: If v is an isolated vertex $\Rightarrow(G \backslash v, k)$
Rule 2: If $d(v)>k \Rightarrow(G \backslash v, k-1)$
Rule 3: If $d(v)=1$, then we can assume that its neighbor u is in the solution $\Rightarrow(G \backslash(u \cup v), k-1)$.

If none of the rules can be applied, then every vertex has degree at least 2.
$\Rightarrow|V(G)| \leqslant|E(G)|$
6. If $|E(G)|>k^{2} \Rightarrow$ There is no solution (each vertex of the solution can cover at most k edges).
(6) Otherwise, $|V(G)| \leqslant|E(G)| \leqslant k^{2}$ and we have a k^{2} vertex kernel.

Kernelization for Vertex Cover

Let us add a fourth rule:
Rule 4a: If v has degree 2, and its neighbors u_{1} and u_{2} are adjacent, then we can assume that u_{1}, u_{2} are in the solution $\Rightarrow\left(G \backslash\left\{u_{1}, u_{2}, v\right\}, k-2\right)$.

Kernelization for Vertex Cover

Let us add a fourth rule:
Rule 4b: If v has degree 2, then G^{\prime} is obtained by identifying the two neighbors of v and deleting $v \Rightarrow\left(G^{\prime}, k-1\right)$.

Kernelization for Vertex Cover

Let us add a fourth rule:
Rule 4b: If v has degree 2, then G^{\prime} is obtained by identifying the two neighbors of v and deleting $v \Rightarrow\left(G^{\prime}, k-1\right)$.

Correctness:

Let S^{\prime} be a vertex cover of size $k-1$ for G^{\prime}.
If $u \in S \Rightarrow\left(S^{\prime} \backslash u\right) \cup\left\{u_{1}, u_{2}\right\}$ is a vertex cover of size k for G.
If $u \notin S \Rightarrow S^{\prime} \cup v$ is a vertex cover of size k for G.

Kernelization for Vertex Cover

Let us add a fourth rule:
Rule 4b: If v has degree 2, then G^{\prime} is obtained by identifying the two neighbors of v and deleting $v \Rightarrow\left(G^{\prime}, k-1\right)$.

Correctness:

Let S^{\prime} be a vertex cover of size $k-1$ for G^{\prime}.
If $u \in S \Rightarrow\left(S^{\prime} \backslash u\right) \cup\left\{u_{1}, u_{2}\right\}$ is a vertex cover of size k for G.
If $u \notin S \Rightarrow S^{\prime} \cup v$ is a vertex cover of size k for G.

Kernelization for Vertex Cover

Let us add a fourth rule:
Rule 4b: If v has degree 2, then G^{\prime} is obtained by identifying the two neighbors of v and deleting $v \Rightarrow\left(G^{\prime}, k-1\right)$.

Correctness:

Let S^{\prime} be a vertex cover of size $k-1$ for G^{\prime}.
If $u \in S \Rightarrow\left(S^{\prime} \backslash u\right) \cup\left\{u_{1}, u_{2}\right\}$ is a vertex cover of size k for G.
If $u \notin S \Rightarrow S^{\prime} \cup v$ is a vertex cover of size k for G.

Kernelization for Vertex Cover

Let us add a fourth rule:
Rule 4b: If v has degree 2, then G^{\prime} is obtained by identifying the two neighbors of v and deleting $v \Rightarrow\left(G^{\prime}, k-1\right)$.

Correctness:

Let S be a vertex cover of size k for G.
If $u_{1}, u_{2} \in S \Rightarrow\left(S \backslash\left\{u_{1}, u_{2}, v\right\}\right) \cup u$ is a vertex cover of size $k-1$ for G^{\prime}.
If exactly one of u_{1} and u_{2} is in S, then $v \in S \Rightarrow\left(S \backslash\left\{u_{1}, u_{2}, v\right\}\right) \cup u$ is a vertex cover of size $k-1$ for G^{\prime}.
If $u_{1}, u_{2} \notin S$, then $v \in S \Rightarrow(S \backslash v)$ is a vertex cover of size $k-1$ for G^{\prime}.

Kernelization for Vertex Cover

Let us add a fourth rule:
Rule 4b: If v has degree 2, then G^{\prime} is obtained by identifying the two neighbors of v and deleting $v \Rightarrow\left(G^{\prime}, k-1\right)$.

Correctness:

Let S be a vertex cover of size k for G.
If $u_{1}, u_{2} \in S \Rightarrow\left(S \backslash\left\{u_{1}, u_{2}, v\right\}\right) \cup u$ is a vertex cover of size $k-1$ for G^{\prime}.
If exactly one of u_{1} and u_{2} is in S, then $v \in S \Rightarrow\left(S \backslash\left\{u_{1}, u_{2}, v\right\}\right) \cup u$ is a vertex cover of size $k-1$ for G^{\prime}.
If $u_{1}, u_{2} \notin S$, then $v \in S \Rightarrow(S \backslash v)$ is a vertex cover of size $k-1$ for G^{\prime}.

Kernelization for Vertex Cover

Let us add a fourth rule:
Rule 4b: If v has degree 2, then G^{\prime} is obtained by identifying the two neighbors of v and deleting $v \Rightarrow\left(G^{\prime}, k-1\right)$.

Correctness:

Let S be a vertex cover of size k for G.
If $u_{1}, u_{2} \in S \Rightarrow\left(S \backslash\left\{u_{1}, u_{2}, v\right\}\right) \cup u$ is a vertex cover of size $k-1$ for G^{\prime}.
If exactly one of u_{1} and u_{2} is in S, then $v \in S \Rightarrow\left(S \backslash\left\{u_{1}, u_{2}, v\right\}\right) \cup u$ is a vertex cover of size $k-1$ for G^{\prime}.
If $u_{1}, u_{2} \notin S$, then $v \in S \Rightarrow(S \backslash v)$ is a vertex cover of size $k-1$ for G^{\prime}.

Kernelization for Vertex Cover

Let us add a fourth rule:
Rule 4b: If v has degree 2, then G^{\prime} is obtained by identifying the two neighbors of v and deleting $v \Rightarrow\left(G^{\prime}, k-1\right)$.

Kernel size:

6 If $|E(G)|>k^{2} \Rightarrow$ There is no solution (each vertex of the solution can cover at most k edges).
(6) Otherwise, $|V(G)| \leqslant 2|E(G)| / 3 \leqslant \frac{2}{3} k^{2}$ and we have a $\frac{2}{3} k^{2}$ vertex kernel.

Covering Points with Lines

Task: Given a set P of n points in the plane and an integer k, find k lines that cover all the points.

Note: We can assume that every line of the solution covers at least 2 points, thus there are at most n^{2} candidate lines.

Covering Points with Lines

Task: Given a set P of n points in the plane and an integer k, find k lines that cover all the points.

Note: We can assume that every line of the solution covers at least 2 points, thus there are at most n^{2} candidate lines.

Covering Points with Lines

Task: Given a set P of n points in the plane and an integer k, find k lines that cover all the points.

Note: We can assume that every line of the solution covers at least 2 points, thus there are at most n^{2} candidate lines.

Reduction Rule:

If a candidate line covers a set S of more than k points $\Rightarrow(P \backslash S, k-1)$.
If this rule cannot be applied and there are still more than k^{2} points, then there is no solution \Rightarrow Kernel with at most k^{2} points.

Kernelization

6 Kernelization can be thought of as a polynomial-time preprocessing before attacking the problem with whatever method we have. "It does no harm" to try kernelization.

6 Some kernelizations use lots of simple reduction rules and require a complicated analysis to bound the kernel size...

6 ... while other kernelizations are based on surprising nice tricks (Next: Crown Reduction and the Sunflower Lemma).

6 Possibility to prove lower bounds.

Crown Reduction

Definition: A crown decomposition is a partition $C \cup H \cup B$ of the vertices such that

6 C is an independent set,
6 there is no edge between C and B,
6 there is a matching between C and H that covers H.

Crown Reduction

Definition: A crown decomposition is a partition $C \cup H \cup B$ of the vertices such that
6. C is an independent set,

6 there is no edge between C and B,
6 there is a matching between C and H that covers H.

Crown rule for Vertex Cover:
The matching needs to be covered and we can assume that it is covered by H (makes no sense to use vertices of C)
$\Rightarrow(G \backslash(H \cup C), k-|H|)$.

Crown Reduction

Definition: A crown decomposition is a partition $C \cup H \cup B$ of the vertices such that
6. C is an independent set,

6 there is no edge between C and B,
6 there is a matching between C and H that covers H.

Crown rule for Vertex Cover:
The matching needs to be covered and we can assume that it is covered by H (makes no sense to use vertices of C)
$\Rightarrow(G \backslash(H \cup C), k-|H|)$.

Crown Reduction

Key lemma:
Lemma: Given a graph G without isolated vertices and an integer k, in polynomial time we can either

6 find a matching of size $k+1$,
(6) find a crown decomposition,
© or conclude that the graph has at most $3 k$ vertices.

Crown Reduction

Key lemma:
Lemma: Given a graph G without isolated vertices and an integer k, in polynomial time we can either

6 find a matching of size $k+1, \Rightarrow$ No solution!
© find a crown decomposition, \Rightarrow Reduce!
6 or conclude that the graph has at most $3 k$ vertices.
$\Rightarrow 3 \mathrm{k}$ vertex kernel!
This gives a 3k vertex kernel for Vertex Cover.

Proof

Lemma: Given a graph G without isolated vertices and an integer k, in polynomial time we can either
(6) find a matching of size $k+1$,
(6) find a crown decomposition,

6 or conclude that the graph has at most $3 k$ vertices.

For the proof, we need the classical Kőnig's Theorem.
$\tau(G)$: size of the minimum vertex cover
$\nu(G)$: size of the maximum matching (independent set of edges)
Theorem: [Kőnig, 1931] If G is bipartite, then

$$
\tau(G)=\nu(G)
$$

Proof

Lemma: Given a graph G without isolated vertices and an integer k, in polynomial time we can either
© find a matching of size $k+1$,
(6) find a crown decomposition,

6 or conclude that the graph has at most $3 k$ vertices.

Proof: Find (greedily) a maximal matching; if its size is at least $k+1$, then we are done. The rest of the graph is an independent set l.

Proof

Lemma: Given a graph G without isolated vertices and an integer k, in polynomial time we can either
(6) find a matching of size $k+1$,
(6) find a crown decomposition,

6 or conclude that the graph has at most $3 k$ vertices.
Proof: Find (greedily) a maximal matching; if its size is at least $k+1$, then we are done. The rest of the graph is an independent set l.

Find a maximum matching/minimum vertex cover in the bipartite graph between X and I.

Proof

Lemma: Given a graph G without isolated vertices and an integer k, in polynomial time we can either
© find a matching of size $k+1$,
(6) find a crown decomposition,

6 or conclude that the graph has at most $3 k$ vertices.

Proof:

Case 1: The minimum vertex cover contains at least one vertex of X
\Rightarrow There is a crown decomposition.

Proof

Lemma: Given a graph G without isolated vertices and an integer k, in polynomial time we can either
© find a matching of size $k+1$,
(6) find a crown decomposition,

6 or conclude that the graph has at most $3 k$ vertices.

Proof:

Case 1: The minimum vertex cover contains at least one vertex of X
\Rightarrow There is a crown decomposition.
Case 2: The minimum vertex cover contains only
 vertices of $I \Rightarrow$ It contains every vertex of I
\Rightarrow There are at most $2 k+k$ vertices.

Dual of Vertex Coloring

Parameteric dual of k-Coloring. Also known as SAVING k Colors.
Task: Given a graph G and an integer k, find a vertex coloring with $|V(G)|-k$ colors.

Crown rule for Dual of Vertex Coloring:

Dual of Vertex Coloring

Parameteric dual of k-Coloring. Also known as SAVING k Colors.
Task: Given a graph G and an integer k, find a vertex coloring with $|V(G)|-k$ colors.

Crown rule for Dual of Vertex Coloring:
Suppose there is a crown decomposition for the complement graph \bar{G}.
6 C is a clique in G : each vertex needs a distinct color.

6 Because of the matching, it is possible to color H using only these $|C|$ colors.

6 These colors cannot be used for B.
© $(G \backslash(H \cup C), k-|H|)$

Dual of Vertex Coloring

Parameteric dual of k-Coloring. Also known as SAVING k Colors.
Task: Given a graph G and an integer k, find a vertex coloring with $|V(G)|-k$ colors.

Crown rule for Dual of Vertex Coloring:
Suppose there is a crown decomposition for the complement graph \bar{G}.

6 C is a clique in G : each vertex needs a distinct color.

6 Because of the matching, it is possible to color H using only these $|C|$ colors.

6 These colors cannot be used for B.
© $(G \backslash(H \cup C), k-|H|)$

Dual of Vertex Coloring

Parameteric dual of k-Coloring. Also known as SAVING k Colors.
Task: Given a graph G and an integer k, find a vertex coloring with $|V(G)|-k$ colors.

Crown rule for Dual of Vertex Coloring:
Suppose there is a crown decomposition for the complement graph \bar{G}.

6 C is a clique in G : each vertex needs a distinct color.

6 Because of the matching, it is possible to color H using only these $|C|$ colors.

6 These colors cannot be used for B.
© $(G \backslash(H \cup C), k-|H|)$

Crown Reduction for Dual of Vertex Coloring

Use the key lemma for the complement \bar{G} of G :
Lemma: Given a graph G without isolated vertices and an integer k, in polynomial time we can either
(6) find a matching of size $k+1, \Rightarrow$ YES: we can save k colors!
(6) find a crown decomposition, \Rightarrow Reduce!

6 or conclude that the graph has at most $3 k$ vertices.

$$
\Rightarrow 3 k \text { vertex kernel! }
$$

This gives a 3k vertex kernel for Dual of Vertex Coloring.

Sunflower Lemma

Sunflower lemma

Definition: Sets $S_{1}, S_{2}, \ldots, S_{k}$ form a sunflower if the sets $S_{i} \backslash\left(S_{1} \cap S_{2} \cap \cdots \cap S_{k}\right)$ are disjoint.

Lemma: [Erdős and Rado, 1960] If the size of a set system is greater than $(p-1)^{d} \cdot d!$ and it contains only sets of size at most d, then the system contains a sunflower with p petals. Furthermore, in this case such a sunflower can be found in polynomial time.

Sunflowers and d-Hitting Set

d-Hitting Set: Given a collection \mathcal{S} of sets of size at most d and an integer k, find a set S of k elements that intersects every set of \mathcal{S}.

Reduction Rule: If $k+1$ sets form a sunflower, then remove these sets from \mathcal{S} and add the center C to $\mathcal{S}(S$ does not hit one of the petals, thus it has to hit the center).

Note: if the center is empty (the sets are disjoint), then there is no solution.
If the rule cannot be applied, then there are at most $O\left(k^{d}\right)$ sets.

Sunflowers and d-Hitting Set

d-Hitting Set: Given a collection \mathcal{S} of sets of size at most d and an integer k, find a set S of k elements that intersects every set of \mathcal{S}.

Reduction Rule (variant): Suppose more than $k+1$ sets form a sunflower.
(6) If the sets are disjoint \Rightarrow No solution.

6 Otherwise, keep only $k+1$ of the sets.

If the rule cannot be applied, then there are at most $O\left(k^{d}\right)$ sets.

Conclusions

6. Many nice techniques invented so far - and probably many more to come.
(6) A single technique might provide the key for several problems.

6 How to find new techniques? By attacking the open problems!
6 Theory is incomplete if there is no way to say sorry we cant! - recently theory has evolved to say problems do not have polynomial kernels!!!

