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Classical complexity

A brief review:

We usually aim for polynomial-time algorithms: the running time is O(nc),

where n is the input size.

Classical polynomial-time algorithms: shortest path, mathching, minimum

spanning tree, 2SAT, convext hull, planar drawing, linear programming, etc.

It is unlikely that polynomial-time algorithms exist for NP-hard problems.

Unfortunately, many problems of interest are NP-hard: Hamiltonian cycle,

3-coloring, 3SAT, etc.

We expect that these problems can be solved only in exponential time (i.e., cn).

Can we say anything nontrivial about NP-hard problems?
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Parameterized complexity

Main idea: Instead of expressing the running time as a function T (n) of n, we

express it as a function T (n, k) of the input size n and some parameter k of the

input.

In other words: we do not want to be efficient on all inputs of size n, only for those

where k is small.
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Parameterized complexity

Main idea: Instead of expressing the running time as a function T (n) of n, we

express it as a function T (n, k) of the input size n and some parameter k of the

input.

In other words: we do not want to be efficient on all inputs of size n, only for those

where k is small.

What can be the parameter k?

The size k of the solution we are looking for.

The maximum degree of the input graph.

The diameter of the input graph.

The length of clauses in the input Boolean formula.

...
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Parameterized complexity

Problem: MINIMUM VERTEX COVER MAXIMUM INDEPENDENT SET

Input: Graph G , integer k Graph G , integer k

Question: Is it possible to cover
the edges with k vertices?

Is it possible to find
k independent vertices?

Complexity: NP-complete NP-complete
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Parameterized complexity

Problem: MINIMUM VERTEX COVER MAXIMUM INDEPENDENT SET

Input: Graph G , integer k Graph G , integer k

Question: Is it possible to cover
the edges with k vertices?

Is it possible to find
k independent vertices?

Complexity: NP-complete NP-complete

Complete O(nk) possibilities O(nk) possibilitiesenumeration:
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Parameterized complexity

Problem: MINIMUM VERTEX COVER MAXIMUM INDEPENDENT SET

Input: Graph G , integer k Graph G , integer k

Question: Is it possible to cover
the edges with k vertices?

Is it possible to find
k independent vertices?

Complexity: NP-complete NP-complete

Complete O(nk) possibilities O(nk) possibilitiesenumeration:
O(2kn2) algorithm exists No no(k) algorithm known
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Bounded search tree method

Algorithm for MINIMUM VERTEX COVER:

e1 = x1y1
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Bounded search tree method

Algorithm for MINIMUM VERTEX COVER:

e1 = x1y1

x1 y1
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Bounded search tree method

Algorithm for MINIMUM VERTEX COVER:

e1 = x1y1

x1 y1

e2 = x2y2
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Bounded search tree method

Algorithm for MINIMUM VERTEX COVER:

e1 = x1y1

x1 y1

e2 = x2y2

x2 y2
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Bounded search tree method

Algorithm for MINIMUM VERTEX COVER:

e1 = x1y1

x1 y1

e2 = x2y2

x2 y2 height: 6 k

Height of the search tree is 6 k ⇒ number of leaves is 6 2k ⇒ complete search

requires 2k · poly steps.
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Fixed-parameter tractability

Definition: A parameterization of a decision problem is a function that assigns an

integer parameter k to each input instance x .

The parameter can be

explicit in the input (for example, if the parameter is the integer k appearing in

the input (G , k) of VERTEX COVER), or

implicit in the input (for example, if the parameter is the diameter d of the input

graph G ).

Main definition:

A parameterized problem is fixed-parameter tractable (FPT) if there is an

f (k)nc time algorithm for some constant c .
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Fixed-parameter tractability

Definition: A parameterization of a decision problem is a function that assigns an

integer parameter k to each input instance x .

Main definition:

A parameterized problem is fixed-parameter tractable (FPT) if there is an

f (k)nc time algorithm for some constant c .

Example: MINIMUM VERTEX COVER parameterized by the required size k is FPT:

we have seen that it can be solved in time O(2k + n2).

Better algorithms are known: e.g, O(1.2832kk + k |V |).

Main goal of parameterized complexity: to find FPT problems.
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FPT problems

Examples of NP-hard problems that are FPT:

Finding a vertex cover of size k .

Finding a path of length k .

Finding k disjoint triangles.

Drawing the graph in the plane with k edge crossings.

Finding disjoint paths that connect k pairs of points.

...
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FPT algorithmic techniques

Significant advances in the past 20 years or so (especially in recent years).

Powerful toolbox for designing FPT algorithms:

Iterative compressionTreewidth

Bounded Search Tree

Graph Minors Theorem
Color coding

Kernelization
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Books

Downey-Fellows: Parameterized Complexity,

Springer, 1999

Flum-Grohe: Parameterized Complexity Theory,

Springer, 2006

Niedermeier: Invitation to Fixed-Parameter Algo-

rithms, Oxford University Press, 2006.
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Kernelization
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Kernelization

Definition: Kernelization is a polynomial-time transformation that maps an

instance (I , k) to an instance (I ′, k ′) such that

(I , k) is a yes-instance if and only if (I ′, k ′) is a yes-instance,

k ′ 6 k , and

|I ′| 6 f (k) for some function f (k).
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Kernelization

Definition: Kernelization is a polynomial-time transformation that maps an

instance (I , k) to an instance (I ′, k ′) such that

(I , k) is a yes-instance if and only if (I ′, k ′) is a yes-instance,

k ′ 6 k , and

|I ′| 6 f (k) for some function f (k).

Simple fact: If a problem has a kernelization algorithm, then it is FPT.

Proof: Solve the instance (I ′, k ′) by brute force.
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Kernelization

Definition: Kernelization is a polynomial-time transformation that maps an

instance (I , k) to an instance (I ′, k ′) such that

(I , k) is a yes-instance if and only if (I ′, k ′) is a yes-instance,

k ′ 6 k , and

|I ′| 6 f (k) for some function f (k).

Simple fact: If a problem has a kernelization algorithm, then it is FPT.

Proof: Solve the instance (I ′, k ′) by brute force.

Converse: Every FPT problem has a kernelization algorithm.

Proof: Suppose there is an f (k)nc algorithm for the problem.

If f (k) 6 n, then solve the instance in time f (k)nc 6 nc+1, and output a trivial

yes- or no-instance.

If n < f (k), then we are done: a kernel of size f (k) is obtained.
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Kernelization for VERTEX COVER

General strategy: We devise a list of reduction rules, and show that if none of the

rules can be applied and the size of the instance is still larger than f (k), then the

answer is trivial.

Reduction rules for VERTEX COVER instance (G , k):

Rule 1: If v is an isolated vertex ⇒ (G \ v , k)

Rule 2: If d(v) > k ⇒ (G \ v , k − 1)
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Kernelization for VERTEX COVER

General strategy: We devise a list of reduction rules, and show that if none of the

rules can be applied and the size of the instance is still larger than f (k), then the

answer is trivial.

Reduction rules for VERTEX COVER instance (G , k):

Rule 1: If v is an isolated vertex ⇒ (G \ v , k)

Rule 2: If d(v) > k ⇒ (G \ v , k − 1)

If neither Rule 1 nor Rule 2 can be applied:

If |V (G)| > k(k + 1) ⇒ There is no solution (every vertex should be the

neighbor of at least one vertex of the cover).

Otherwise, |V (G)| 6 k(k + 1) and we have a k(k + 1) vertex kernel.
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Kernelization for VERTEX COVER

Let us add a third rule:

Rule 1: If v is an isolated vertex ⇒ (G \ v , k)

Rule 2: If d(v) > k ⇒ (G \ v , k − 1)

Rule 3: If d(v) = 1, then we can assume that its neighbor u is in the

solution ⇒ (G \ (u ∪ v), k − 1).

If none of the rules can be applied, then every vertex has degree at least 2.

⇒ |V (G)| 6 |E (G)|

If |E (G)| > k2 ⇒ There is no solution (each vertex of the solution can cover at

most k edges).

Otherwise, |V (G)| 6 |E (G)| 6 k2 and we have a k2 vertex kernel.
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Kernelization for VERTEX COVER

Let us add a fourth rule:

Rule 4a: If v has degree 2, and its neighbors u1 and u2 are adjacent, then we

can assume that u1, u2 are in the solution ⇒ (G \ {u1, u2, v }, k − 2).

v

G

u1

u2
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Kernelization for VERTEX COVER

Let us add a fourth rule:

Rule 4b: If v has degree 2, then G ′ is obtained by identifying

the two neighbors of v and deleting v ⇒ (G ′, k − 1).

v ⇒

G ′G

u

u1

u2
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Kernelization for VERTEX COVER

Let us add a fourth rule:

Rule 4b: If v has degree 2, then G ′ is obtained by identifying

the two neighbors of v and deleting v ⇒ (G ′, k − 1).

v ⇒

G ′G

u

u1

u2

Correctness:

Let S ′ be a vertex cover of size k − 1 for G ′.

If u ∈ S ⇒ (S ′ \ u) ∪ {u1, u2} is a vertex cover of size k for G .

If u 6∈ S ⇒ S ′ ∪ v is a vertex cover of size k for G .
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Kernelization for VERTEX COVER

Let us add a fourth rule:

Rule 4b: If v has degree 2, then G ′ is obtained by identifying

the two neighbors of v and deleting v ⇒ (G ′, k − 1).

⇒

G G ′

v

u2

u1

u

Correctness:

Let S be a vertex cover of size k for G .

If u1, u2 ∈ S ⇒ (S \ {u1, u2, v }) ∪ u is a vertex cover of size k − 1 for G ′.

If exactly one of u1 and u2 is in S , then v ∈ S ⇒ (S \ {u1, u2, v }) ∪ u is a vertex

cover of size k − 1 for G ′.

If u1, u2 6∈ S , then v ∈ S ⇒ (S \ v) is a vertex cover of size k − 1 for G ′.
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the two neighbors of v and deleting v ⇒ (G ′, k − 1).

⇒

G G ′

v

u2

u1

u

Correctness:

Let S be a vertex cover of size k for G .

If u1, u2 ∈ S ⇒ (S \ {u1, u2, v }) ∪ u is a vertex cover of size k − 1 for G ′.

If exactly one of u1 and u2 is in S , then v ∈ S ⇒ (S \ {u1, u2, v }) ∪ u is a vertex

cover of size k − 1 for G ′.

If u1, u2 6∈ S , then v ∈ S ⇒ (S \ v) is a vertex cover of size k − 1 for G ′.
Fixed Parameter Algorithms and Kernelization – p.14/27



Kernelization for VERTEX COVER

Let us add a fourth rule:

Rule 4b: If v has degree 2, then G ′ is obtained by identifying

the two neighbors of v and deleting v ⇒ (G ′, k − 1).

v ⇒

G ′G

u

u1
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Correctness:

Let S be a vertex cover of size k for G .

If u1, u2 ∈ S ⇒ (S \ {u1, u2, v }) ∪ u is a vertex cover of size k − 1 for G ′.

If exactly one of u1 and u2 is in S , then v ∈ S ⇒ (S \ {u1, u2, v }) ∪ u is a vertex

cover of size k − 1 for G ′.
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Kernelization for VERTEX COVER

Let us add a fourth rule:

Rule 4b: If v has degree 2, then G ′ is obtained by identifying

the two neighbors of v and deleting v ⇒ (G ′, k − 1).

v ⇒

G ′G

u

u1

u2

Kernel size:

If |E (G)| > k2 ⇒ There is no solution (each vertex of the solution can cover at

most k edges).

Otherwise, |V (G)| 6 2|E (G)|/3 6
2

3
k2 and we have a 2

3
k2 vertex kernel.
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COVERING POINTS WITH L INES

Task: Given a set P of n points in the plane and an integer k , find k lines that

cover all the points.

Note: We can assume that every line of the solution covers at least 2 points, thus

there are at most n2 candidate lines.
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COVERING POINTS WITH L INES

Task: Given a set P of n points in the plane and an integer k , find k lines that

cover all the points.

Note: We can assume that every line of the solution covers at least 2 points, thus

there are at most n2 candidate lines.

Reduction Rule:

If a candidate line covers a set S of more than k points ⇒ (P \ S , k − 1).

If this rule cannot be applied and there are still more than k2 points, then there is no

solution ⇒ Kernel with at most k2 points.
Fixed Parameter Algorithms and Kernelization – p.15/27



Kernelization

Kernelization can be thought of as a polynomial-time preprocessing before

attacking the problem with whatever method we have. “It does no harm” to try

kernelization.

Some kernelizations use lots of simple reduction rules and require a

complicated analysis to bound the kernel size...

... while other kernelizations are based on surprising nice tricks (Next: Crown

Reduction and the Sunflower Lemma).

Possibility to prove lower bounds.
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Crown Reduction
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Crown Reduction

Definition: A crown decomposition is a partition C ∪ H ∪ B of the vertices such

that

C is an independent set,

there is no edge between C and B ,

there is a matching between C and H that

covers H . B

C

H
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Crown Reduction

Definition: A crown decomposition is a partition C ∪ H ∪ B of the vertices such

that

C is an independent set,

there is no edge between C and B ,

there is a matching between C and H that

covers H .

C

B

H

Crown rule for V ERTEX COVER:

The matching needs to be covered and we can assume that it is covered by H

(makes no sense to use vertices of C )

⇒ (G \ (H ∪ C ), k − |H |).
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Crown Reduction

Definition: A crown decomposition is a partition C ∪ H ∪ B of the vertices such

that

C is an independent set,

there is no edge between C and B ,

there is a matching between C and H that

covers H . B

C

H

Crown rule for V ERTEX COVER:

The matching needs to be covered and we can assume that it is covered by H

(makes no sense to use vertices of C )

⇒ (G \ (H ∪ C ), k − |H |).
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Crown Reduction

Key lemma:

Lemma: Given a graph G without isolated vertices and an integer k , in polynomial

time we can either

find a matching of size k + 1,

find a crown decomposition,

or conclude that the graph has at most 3k vertices.
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Crown Reduction

Key lemma:

Lemma: Given a graph G without isolated vertices and an integer k , in polynomial

time we can either

find a matching of size k + 1, ⇒ No solution!

find a crown decomposition, ⇒ Reduce!

or conclude that the graph has at most 3k vertices.

⇒ 3k vertex kernel!

This gives a 3k vertex kernel for VERTEX COVER.
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Proof

Lemma: Given a graph G without isolated vertices and an integer k , in polynomial

time we can either

find a matching of size k + 1,

find a crown decomposition,

or conclude that the graph has at most 3k vertices.

For the proof, we need the classical Kőnig’s Theorem.

τ(G) : size of the minimum vertex cover

ν(G) : size of the maximum matching (independent set of edges)

Theorem: [Kőnig, 1931] If G is bipartite, then

τ(G ) = ν(G )
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Proof

Lemma: Given a graph G without isolated vertices and an integer k , in polynomial

time we can either

find a matching of size k + 1,

find a crown decomposition,

or conclude that the graph has at most 3k vertices.

Proof: Find (greedily) a maximal matching; if its

size is at least k + 1, then we are done. The rest

of the graph is an independent set I .
IX
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Proof

Lemma: Given a graph G without isolated vertices and an integer k , in polynomial

time we can either

find a matching of size k + 1,

find a crown decomposition,

or conclude that the graph has at most 3k vertices.

Proof: Find (greedily) a maximal matching; if its

size is at least k + 1, then we are done. The rest

of the graph is an independent set I .

Find a maximum matching/minimum vertex cover in

the bipartite graph between X and I .

I

X
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Proof

Lemma: Given a graph G without isolated vertices and an integer k , in polynomial

time we can either

find a matching of size k + 1,

find a crown decomposition,

or conclude that the graph has at most 3k vertices.

Proof:

Case 1: The minimum vertex cover contains at least

one vertex of X

⇒ There is a crown decomposition.

C

HX

I
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Proof

Lemma: Given a graph G without isolated vertices and an integer k , in polynomial

time we can either

find a matching of size k + 1,

find a crown decomposition,

or conclude that the graph has at most 3k vertices.

Proof:

Case 1: The minimum vertex cover contains at least

one vertex of X

⇒ There is a crown decomposition.

Case 2: The minimum vertex cover contains only

vertices of I ⇒ It contains every vertex of I

⇒ There are at most 2k + k vertices.

I

X
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DUAL OF VERTEX COLORING

Parameteric dual of k -COLORING. Also known as SAVING k COLORS.

Task: Given a graph G and an integer k , find a vertex coloring with |V (G)| − k

colors.

Crown rule for D UAL OF VERTEX COLORING:
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DUAL OF VERTEX COLORING

Parameteric dual of k -COLORING. Also known as SAVING k COLORS.

Task: Given a graph G and an integer k , find a vertex coloring with |V (G)| − k

colors.

Crown rule for D UAL OF VERTEX COLORING:

Suppose there is a crown decomposition for the complement graph G .

C is a clique in G : each vertex needs a distinct

color.

Because of the matching, it is possible to color

H using only these |C | colors.

These colors cannot be used for B .

(G \ (H ∪ C ), k − |H |)

B

C

H
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Task: Given a graph G and an integer k , find a vertex coloring with |V (G)| − k

colors.

Crown rule for D UAL OF VERTEX COLORING:

Suppose there is a crown decomposition for the complement graph G .

C is a clique in G : each vertex needs a distinct
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Because of the matching, it is possible to color
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DUAL OF VERTEX COLORING

Parameteric dual of k -COLORING. Also known as SAVING k COLORS.

Task: Given a graph G and an integer k , find a vertex coloring with |V (G)| − k

colors.

Crown rule for D UAL OF VERTEX COLORING:

Suppose there is a crown decomposition for the complement graph G .

C is a clique in G : each vertex needs a distinct

color.

Because of the matching, it is possible to color

H using only these |C | colors.

These colors cannot be used for B .

(G \ (H ∪ C ), k − |H |)

B

C

H
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Crown Reduction for DUAL OF VERTEX
COLORING

Use the key lemma for the complement G of G :

Lemma: Given a graph G without isolated vertices and an integer k , in polynomial

time we can either

find a matching of size k + 1, ⇒ YES: we can save k colors!

find a crown decomposition, ⇒ Reduce!

or conclude that the graph has at most 3k vertices.

⇒ 3k vertex kernel!

This gives a 3k vertex kernel for DUAL OF VERTEX COLORING.
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Sunflower Lemma
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Sunflower lemma

Definition: Sets S1, S2, ... , Sk form a sunflower if the sets

Si \ (S1 ∩ S2 ∩ · · · ∩ Sk ) are disjoint.

petals
center

Lemma: [Erdős and Rado, 1960] If the size of a set system is greater than

(p − 1)d · d! and it contains only sets of size at most d , then the system contains a

sunflower with p petals. Furthermore, in this case such a sunflower can be found in

polynomial time.

Fixed Parameter Algorithms and Kernelization – p.25/27



Sunflowers and d -HITTING SET

d -HITTING SET: Given a collection S of sets of size at most d and an integer k ,

find a set S of k elements that intersects every set of S.

petals
center

Reduction Rule: If k + 1 sets form a sunflower, then remove these sets from S

and add the center C to S (S does not hit one of the petals, thus it has to hit the

center).

Note: if the center is empty (the sets are disjoint), then there is no solution.

If the rule cannot be applied, then there are at most O(kd ) sets.
Fixed Parameter Algorithms and Kernelization – p.26/27



Sunflowers and d -HITTING SET

d -HITTING SET: Given a collection S of sets of size at most d and an integer k ,

find a set S of k elements that intersects every set of S.

petals
center

Reduction Rule (variant): Suppose more than k + 1 sets form a sunflower.

If the sets are disjoint ⇒ No solution.

Otherwise, keep only k + 1 of the sets.

If the rule cannot be applied, then there are at most O(kd ) sets.
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Conclusions

Many nice techniques invented so far — and probably many more to come.

A single technique might provide the key for several problems.

How to find new techniques? By attacking the open problems!

Theory is incomplete if there is no way to say sorry we cant! — recently theory

has evolved to say problems do not have polynomial kernels!!!
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