Extremal Graph Theory

Ajit A. Diwan

Department of Computer Science and Engineering, I. I. T. Bombay. Email: aad@cse.iitb.ac.in

Basic Question

- Let *H* be a fixed graph.
- What is the maximum number of edges in a graph G with n vertices that does not contain H as a subgraph?
- This number is denoted *ex(n,H)*.
- A graph G with n vertices and ex(n,H) edges that does not contain H is called an extremal graph for H.

Mantel's Theorem (1907)

$$ex(n, K_3) = \left\lfloor \frac{n^2}{4} \right\rfloor$$

• The only extremal graph for a triangle is the complete bipartite graph with parts of nearly equal sizes.

Complete Bipartite graph

Turan's theorem (1941) $ex(n, K_t) \le \left(\frac{t-2}{2(t-1)}\right)n^2$

- Equality holds when *n* is a multiple of *t*-1.
- The only extremal graph is the complete (*t*-1)partite graph with parts of nearly equal sizes.

Complete Multipartite Graph

Proofs of Turan's theorem

- Many different proofs.
- Use different techniques.
- Techniques useful in proving other results.
- Algorithmic applications.
- "BOOK" proofs.

Induction

- The result is trivial if *n* <= *t*-1.
- Suppose n >= t and consider a graph G with maximum number of edges and no K_t.
- G must contain a K_{t-1} .
- Delete all vertices in K_{t-1} .
- The remaining graph contains at most

$$\left(\frac{t-2}{2(t-1)}\right)(n-t+1)^2$$
 edges.

Induction

- No vertex outside K_{t-1} can be joined to all vertices of K_{t-1} .
- Total number of edges is at most

$$\left(\frac{t-2}{2(t-1)}\right)(n-t+1)^2 + \frac{(t-1)(t-2)}{2} + \frac{(t-1)(t-2)}{2} + \frac{(n-t+1)(t-2)}{2} = \left(\frac{t-2}{2(t-1)}\right)n^2$$

Greedy algorithm

- Consider any extremal graph and let v be a vertex with maximum degree Δ.
- The number of edges in the subgraph induced by the neighbors of v is at most

$$\left(\frac{t-3}{2(t-2)}\right)\Delta^2$$

• Total number of edges is at most

$$\Delta(n-\Delta) + \left(\frac{t-3}{2(t-2)}\right)\Delta^2$$

Greedy algorithm

• This is maximized when

$$\Delta = \left(\frac{t-2}{t-1}\right)n$$

• The maximum value for this Δ is

$$\left(\frac{t-2}{2(t-1)}\right)n^2$$

Another Greedy Algorithm

- Consider any graph that does not contain K_t .
- Duplicating a vertex cannot create a K_t .
- If the graph is not a complete multipartite graph, we can increase the number of edges without creating a K_t.
- A graph is multipartite if and only if nonadjacency is an equivalence relation.

Another Greedy Algorithm

- Suppose u, v, w are distinct vertices such that vw is an edge but u is not adjacent to both v and w.
- If degree(u) < degree (v), duplicating v and deleting u increases number of edges, without creating a K_t.
- Same holds if degree(u) < degree(w).
- If degree(u) >= degree(v) and degree(w), then duplicate u twice and delete v and w.

Another Greedy Algorithm

- So the graph with maximum number of edges and not containing K_t must be a complete multipartite graph.
- Amongst all such graphs, the complete (*t*-1)partite graph with nearly equal part sizes has the maximum number of edges.
- This is the only extremal graph.

Erdős-Stone Theorem

- What can one say about *ex(n,H)* for other graphs *H*?
- Observation:

$$ex(n,H) \ge ex(n,K_{\chi(H)})$$

- χ (*H*) is the chromatic number of *H*.
- This is almost exact if $\chi(H) >= 3$.

Erdős-Stone Theorem

 For any ε > 0 and any graph H with χ (H) >= 3 there exists an integer n₀ such that for all n >= n₀

$$ex(n,H) \leq (1+\varepsilon)ex(n,K_{\chi(H)})$$

- What about bipartite graphs $(\chi (H) = 2)$?
- Much less is known.

Four Cycle

 $ex(n, C_4) = \theta(n^{\frac{3}{2}})$

• For all non-bipartite graphs H

 $ex(n,H) = \Omega(n^2)$

Four Cycle

- Consider the number of paths (*u*, *v*, *w*) of length two.
- The number of such paths is
- d_i is the degree of vertex *i*.

$$(n-1)(n-2)$$

2

$$\sum_{i=1}^{n} \frac{d_i(d_i-1)}{2}$$

Four Cycle

which implies the result.

Matching

- A matching is a collection of disjoint edges.
- If *M* is a matching of size *k* then

$$ex(n, M) = \max\left(\binom{2k-1}{2}, \binom{k-1}{2} + (n-k+1)(k-1)\right)$$

• Extremal graphs are K_{2k-1} or $K_{k-1} + E_{n-k+1}$

Path

• If *P* is a path with *k* edges then

$$ex(n,P) <= \left(\frac{k-1}{2}\right)n$$

- Equality holds when *n* is a multiple of *k*.
- Extremal graph is mK_k .
- Erdős-Sós Conjecture : same result holds for any tree T with k edges.

Hamilton Cycle

- Every graph G with n vertices and more than $\frac{(n-1)(n-2)}{2}+1$ edges contains a Hamilton cycle.
- The only extremal graph is a clique of size *n*-1 and 1 more edge.

Colored Edges

- Extremal graph theory for edge-colored graphs.
- Suppose edges have an associated color.
- Edges of different color can be parallel to each other (join same pair of vertices).
- Edges of the same color form a simple graph.
- Maximize the number of edges of each color avoiding a given colored subgraph.

Colored Triangles

• Suppose there are two colors , red and blue.

 What is the largest number *m* such that there exists an *n* vertex graph with *m* red and *m* blue edges, that does not contain a specified colored triangle?

Colored Triangles

- If both red and blue graphs are complete bipartite with the same vertex partition, then no colored triangle exists.
- More than $\left\lfloor \frac{n^2}{4} \right\rfloor$ red and blue edges required.
- Also turns out to be sufficient to ensure existence of all colored triangles.

Colored 4-Cliques

- By the same argument, more than n²/3 red and blue edges are required.
- However, this is not sufficient.
- Different extremal graphs depending upon the coloring of K₄.

Colored 4-Cliques

- Red clique of size n/2 and a disjoint blue clique of size n/2.
- Vertices in different cliques joined by red and blue edges.
- Number of red and blue edges is $\approx \frac{3n^2}{8}$

General Case

- Such colorings, for which the number of edges required is more than the Turan bound exist for k = 4, 6, 8.
- We do not know any others.
- Conjecture: In all other cases, the Turan bound is sufficient!
- Proved it for k = 3 and 5.

Colored Turan's Theorem

- Instead of requiring *m* edges of each color, only require that the total number of edges is *cm*, where *c* is the number of colors.
- How large should *m* be to ensure existence of a particular colored k-clique?
- For what colorings is the Turan bound sufficient?

Star-Colorings

 Consider an edge-coloring of K_k with k-1 colors such that edges of color *i* form a star with *i* edges. (call it a star-coloring)

Conjecture

- Suppose G is a multigraph with edges of k-1 different colors and total number of edges is more than
- G contains every star-colored K_k. Verified only for k <= 4.
- Extremal graphs can be obtained by replicating edges in the Turan graph.
- Other extremal graphs exist.

Colored Matchings

• *G* is a *c* edge-colored multigraph with *n* vertices and number of edges of each color is more than

$$ex(n, M) = \max\left(\binom{2k-1}{2}, \binom{k-1}{2} + (n-k+1)(k-1)\right)$$

- *G* contains every *c* edge-colored matching of size *k*.
- Proved for c = 2 and for all c if $n \ge 3k$.

Colored Hamilton Cycles

- G is c edge-colored multigraph with n vertices and more than $\frac{(n-1)(n-2)}{2} + 1$ edges of each color.
- G contains all possible *c* edge-colored Hamilton cycles.
- Proved for c <= 2, and for c = 3 and n sufficiently large.

References

- M. Aigner and G. M. Ziegler, Proofs from the BOOK, 4th Edition, Chapter 36 (Turan's Graph Theorem).
- 2. B. Bollóbas, Extremal Graph Theory, Academic Press, 1978.
- 3. R. Diestel, Graph Theory, 3rd edition, Chapter 7 (Extremal Graph Theory), Springer 2005.
- 4. A. A. Diwan and D. Mubayi, Turan's theorem with colors, manuscript, (available on Citeseer).

Thank You