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Basic Question

• Let H be a fixed graph.

• What is the maximum number of edges in a 
graph G with n vertices that does not contain 
H as a subgraph?

• This number is denoted ex(n,H).

• A graph G with n vertices and ex(n,H) edges 
that does not contain H is called an extremal
graph for H.



Mantel’s Theorem (1907)

• The only extremal graph for a triangle is the 
complete bipartite graph with parts of nearly 
equal sizes.
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Complete Bipartite graph



Turan’s theorem (1941)

• Equality holds when n is a multiple of t-1.

• The only extremal graph is the complete (t-1)-
partite graph with parts of nearly equal sizes.
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Complete Multipartite Graph



Proofs of Turan’s theorem

• Many different proofs.

• Use different techniques.

• Techniques useful in proving other results.

• Algorithmic applications.

• “BOOK” proofs.



Induction

• The result is trivial if  n <= t-1.

• Suppose n >= t and consider a graph G with 
maximum number of edges and no Kt.

• G must contain a Kt-1.

• Delete all vertices in Kt-1.

• The remaining graph contains at most 
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Induction

• No vertex outside Kt-1 can be joined to all 
vertices of Kt-1.

• Total number of edges is at most
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Greedy algorithm

• Consider any extremal graph and let v be a 
vertex with maximum degree ∆.

• The number of edges in the subgraph induced 
by the neighbors of v is at most

• Total number of edges is at most
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Greedy algorithm

• This is maximized when

• The maximum value for this ∆ is
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Another Greedy Algorithm

• Consider any graph that does not contain Kt.

• Duplicating a vertex cannot create a Kt.

• If the graph is not a complete multipartite 
graph, we can increase the number of edges 
without creating a Kt.

• A graph is multipartite if and only if non-
adjacency is an equivalence relation.



Another Greedy Algorithm

• Suppose u, v, w are distinct vertices such that 
vw is an edge but u is not adjacent to both v
and w.

• If degree(u)  < degree (v), duplicating v and 
deleting u increases number of edges, without 
creating a Kt.

• Same holds if degree(u) < degree(w).

• If  degree(u) >= degree(v) and degree(w), then 
duplicate u twice and delete v and w.



Another Greedy Algorithm

• So the graph with maximum number of edges 
and not containing Kt must be a complete 
multipartite graph. 

• Amongst all such graphs, the complete (t-1)-
partite graph with nearly equal part sizes has 
the maximum number of edges.

• This is the only extremal graph.



Erdős-Stone Theorem

• What can one say about ex(n,H) for other 
graphs H?

• Observation:

• χ (H) is the chromatic number of H.

• This is almost exact if χ (H) >= 3.
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Erdős-Stone Theorem

• For any ε > 0 and any graph H with χ (H) >= 3 
there exists an integer n0 such that 

for all n >= n0

• What about bipartite graphs (χ (H) = 2)?

• Much less is known.
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Four Cycle

• For all non-bipartite graphs H
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Four Cycle

• Consider the number of paths (u,v,w) of length 
two. 

• The number of such paths is 

• di is the degree of vertex i.

• The number of such paths can be at most

• No two paths can have the same pair of 
endpoints.
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Four Cycle

If

then

which implies the result.
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Matching

• A matching is a collection of disjoint edges.

• If M is a matching of size k then

• Extremal graphs are K2k-1 or  Kk-1 + En-k+1
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Path

• If P is a path with k edges then

• Equality holds when n is a multiple of k.

• Extremal graph is mKk.

• Erdős-Sós Conjecture : same result holds for 
any tree T with k edges.
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Hamilton Cycle

• Every graph G with n vertices and more than

edges contains a Hamilton cycle.

• The only extremal graph is a clique of size n-1
and 1 more edge.
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Colored Edges

• Extremal graph theory for edge-colored 
graphs.

• Suppose edges have an associated color.

• Edges of different color can be parallel to each 
other (join same pair of vertices).

• Edges of the same color form a simple graph.

• Maximize the number of edges of each color 
avoiding a given colored subgraph.



Colored Triangles

• Suppose there are two colors , red and blue.

• What is the largest number m such that there 
exists an n vertex graph with m red and m
blue edges, that does not contain a specified 
colored triangle?



Colored Triangles

• If both red and blue graphs are complete 
bipartite with the same vertex partition, then 
no colored triangle exists.

• More than             red and blue edges required.

• Also turns out to be sufficient to ensure 
existence of all  colored triangles.
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Colored 4-Cliques

• By the same argument, more than n2/3 red 
and blue edges are required.

• However, this is not sufficient.

• Different extremal graphs depending upon the 
coloring of K4.



Colored 4-Cliques

• Red clique of size n/2 and a disjoint blue 
clique of size n/2.

• Vertices in different cliques joined by red and 
blue edges.

• Number of red and blue edges is 8
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General Case

• Such colorings, for which the number of edges 
required is more than the Turan bound exist 
for k = 4, 6, 8.

• We do not know any others.

• Conjecture: In all other cases, the Turan
bound is sufficient!

• Proved it for k = 3 and 5.



Colored Turan’s Theorem

• Instead of requiring m edges of each color, 
only require that the total number of edges is 
cm, where c is the number of colors.

• How large should m be to ensure existence of 
a particular colored k-clique?

• For what colorings is the Turan bound 
sufficient?



Star-Colorings

• Consider an edge-coloring of Kk with k-1 colors 
such that edges of color i form a star with i
edges. (call it a star-coloring)



Conjecture

• Suppose G is a multigraph with edges of k-1 
different colors and total number of edges is 
more than                 .

• G contains every star-colored Kk . Verified only 
for k <= 4.

• Extremal graphs can be obtained by 
replicating edges in the Turan graph.

• Other extremal graphs exist.
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Colored Matchings

• G is a c edge-colored  multigraph with n
vertices and number of edges of each color is 
more than

• G contains every c edge-colored matching of 
size k.

• Proved for c = 2 and for all c if n >= 3k.
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Colored Hamilton Cycles

• G is c edge-colored multigraph with n vertices 
and more than                               edges of each 
color.

• G contains all possible c edge-colored 
Hamilton cycles.

• Proved for c <= 2, and for c = 3 and n
sufficiently large.
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