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Deterministic Algorithms

Goal: To solve a computational problem correctly and efficiently.
Behaviour of the algorithm is determined completely by the input.
Upon reruns, the algorithm executes in exactly the same manner.
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Randomized Algorithms

In addition to the input, the algorithm execution depends on some
random bits as well.
Behaviour of the algorithm is not determined completely by the
input.
Upon reruns, the algorithm can execute in a different manner,
even with the same input.
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Intuition

Deterministic algorithms can have certain “bad inputs”.
Could make computation go to worst case running time.

Most inputs aren’t so “bad”.
Randomized algorithms use random bits to change the execution.
Any given input is now unlikely to be bad.

Another perspective: random bits choose one algorithm out of
several ones.
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Randomized vs. Deterministic

Deterministic algorithms
Always correct answer.
Always runs within the worst case running time.

Randomized Algorithms
Gives the right answer.
In good running time.
Not necessarily always, but with good probability.
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Broadly two types

Las Vegas Algorithms
Correctness is guaranteed
May not be fast always.
Probability of worst case running time is small.
Expected running time < Worst case running time

Monte Carlo Algorithms
Running time is fixed.
Correctness of the algorithm need not be assured.
Probability of an incorrect output is small.
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Advantages and Disadvantages

Advantages
Simplicity
Good performance
In some cases, no deterministic algorithm exists.
Adversary cannot choose a bad input.

Disadvantages
Randomness is a resource.
With some probability, we can get an incorrect output.
With some probability, can perform in worst case time.
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Probabilistic Analysis

Algorithm output/performance can vary depending on random bits.
Analysis will yield probabilistic statements.

We need mathematical basis to analyze randomized algorithms.
At times, the analysis could be long and complicated.
The analysis could use mathematical tools of varying difficulty.
But most randomized algorithms are extremely simple to describe
and program.
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Preliminaries

Probability is over the distribution of the random bits.
Probability is not over the input distribution.

For a random variable X , Pr(X = x) denotes the probability with
which X takes the value x .

E(X ) denotes the expectation of the random variable X .
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Is a given polynomial equal to zero?

Polynomial Identity Testing
Is a given polynomial P(x) identically equal to 0?

Another form
Are two given polynomials F (x) and G(x) identically equal to one
another?

F (x)
?≡ G(x)
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Polynomial Identity Testing
What can we do deterministically?

Want to check if
F (x) = (x − 1)(x + 3)(x − 6) ≡ x3 + 4x2 − 12x + 18 = G(x).

Deterministic Algorithm
Convert the two polynomials to a standard format.
Check if they are the same.

If polynomials are of degree d , this requires Θ(d2) time.
Always correct.
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Polynomial Identity Testing

A Randomized Algorithm
Choose a value r from a set S of 100d possible values.
Evaluate F (r) and G(r).
Check if F (r) = G(r).

Running time: How long does the evaluation take?
Can use Horner’s Method to evaluate F (r) and G(r) in Θ(d) time.

What about correctness?
If F (x) ≡ G(x), then F (r) = G(r) for any r .
What if F (x) 6≡ G(x)?
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Analysis of Correctness

Fundamental Theorem of Algebra
If P(x) is a polynomial of degree d , it has at most d roots.

Let F (x) 6≡ G(x).
By the above theorem, F (r)−G(r) = 0 for ≤ d values of r ∈ S.
There are at most d values of r which can lead to a wrong answer.
If |S| ≥ 100d , then Pr(F (r) = G(r)) ≤ 1/100.
Probability of error is ≤ 1/100.

Not happy with the probability of success? Then repeat!
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Boosting the Probability of Success

Saw a Monte Carlo algorithm with Pr(success) ≥ 1− 1/100.

Boosting
Repeating a Monte Carlo algorithm to achieve a better probability of
success.

Boosted Algorithm
Choose two values r1, r2 from a set S of 100d possible values.
Evaluate F (r1),F (r2),G(r1) and G(r2).
Check if F (r1) = G(r1) and F (r2) = G(r2).
Report “same” if both F (r1) = G(r1) and F (r2) = G(r2).
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Boosting the Probability of Success

Boosted Algorithm
Choose two values r1, r2 from a set S of 100d possible values.
Evaluate F (r1),F (r2),G(r1) and G(r2).
Check if F (r1) = G(r1) and F (r2) = G(r2).
Report “same” if both F (r1) = G(r1) and F (r2) = G(r2).

Suppose F (x) 6≡ G(x).
If we run two independent trials

Pr(F (r) = G(r) in both trials) ≤ 1/1002

Boosting is a standard technique for achieving desired probability
with Monte Carlo algorithms.
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Multivariate Case

Polynomial Identity Testing: Multivariate Case
Is a given polynomial P(x1, x2, . . . , xn) identically equal to 0?

No known deterministic polynomial time algorithm for the
multivariate case.
Multiplying out a polynomial can result in exponentially many
terms.
For the multivariate case, we need a stronger theorem than the
Fundamental Theorem of Algebra.
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Multivariate Case

A Randomized Algorithm
Choose (r1, r2, . . . , rn) from a set S of 100d possible values.
Evaluate P(r1, r2, . . . , rn).
Report that P(x1, x2, . . . , xn) ≡ 0 if P(r1, r2, . . . , rn) = 0.

DeMillo-Lipton-Schwartz-Zippel Lemma
In the above setting, Pr(P(r1, r2, . . . , rn) = 0) ≤ d/|S|

Probability of failure is ≤ 1/100.
Assumption: P(r1, r2, . . . , rn) can be efficiently evaluated.
Randomization, indeed, seems to help.
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Quicksort

Problem
Given an array A of n elements, arrange the elements in increasing
order.

Quicksort(A, s, t)
1 If s ≥ t , exit.
2 Choose pivot p from {s, s + 1, . . . , t}
3 q =Partition(A, s, t ,p). Partition(A, s, t ,p) partitions A(s, t) in place

into less than pivot, pivot and greater than pivot. It also returns the
correct index of p.

4 Quicksort(A, s,q − 1)
5 Quicksort(A,q + 1, t)
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into less than pivot, pivot and greater than pivot. It also returns the
correct index of p.

4 Quicksort(A, s,q − 1)
5 Quicksort(A,q + 1, t)

Subruk (IITH) Randomized Algorithms TIFR IGGA 22 / 49



Quicksort

Problem
Given an array A of n elements, arrange the elements in increasing
order.

Quicksort(A, s, t)
1 If s ≥ t , exit.
2 Choose pivot p from {s, s + 1, . . . , t}
3 q =Partition(A, s, t ,p). Partition(A, s, t ,p) partitions A(s, t) in place

into less than pivot, pivot and greater than pivot. It also returns the
correct index of p.

4 Quicksort(A, s,q − 1)
5 Quicksort(A,q + 1, t)

Subruk (IITH) Randomized Algorithms TIFR IGGA 22 / 49



Quicksort

Problem
Given an array A of n elements, arrange the elements in increasing
order.

Quicksort(A, s, t)
1 If s ≥ t , exit.
2 Choose pivot p from {s, s + 1, . . . , t}
3 q =Partition(A, s, t ,p). Partition(A, s, t ,p) partitions A(s, t) in place

into less than pivot, pivot and greater than pivot. It also returns the
correct index of p.

4 Quicksort(A, s,q − 1)
5 Quicksort(A,q + 1, t)

Subruk (IITH) Randomized Algorithms TIFR IGGA 22 / 49



Quicksort

Problem
Given an array A of n elements, arrange the elements in increasing
order.

Quicksort(A, s, t)
1 If s ≥ t , exit.
2 Choose pivot p from {s, s + 1, . . . , t}
3 q =Partition(A, s, t ,p). Partition(A, s, t ,p) partitions A(s, t) in place

into less than pivot, pivot and greater than pivot. It also returns the
correct index of p.

4 Quicksort(A, s,q − 1)
5 Quicksort(A,q + 1, t)

Subruk (IITH) Randomized Algorithms TIFR IGGA 22 / 49



Quicksort

Problem
Given an array A of n elements, arrange the elements in increasing
order.

Quicksort(A, s, t)
1 If s ≥ t , exit.
2 Choose pivot p from {s, s + 1, . . . , t}
3 q =Partition(A, s, t ,p). Partition(A, s, t ,p) partitions A(s, t) in place

into less than pivot, pivot and greater than pivot. It also returns the
correct index of p.

4 Quicksort(A, s,q − 1)
5 Quicksort(A,q + 1, t)

Subruk (IITH) Randomized Algorithms TIFR IGGA 22 / 49



Quicksort

Problem
Given an array A of n elements, arrange the elements in increasing
order.

Quicksort(A, s, t)
1 If s ≥ t , exit.
2 Choose pivot p from {s, s + 1, . . . , t}
3 q =Partition(A, s, t ,p). Partition(A, s, t ,p) partitions A(s, t) in place

into less than pivot, pivot and greater than pivot. It also returns the
correct index of p.

4 Quicksort(A, s,q − 1)
5 Quicksort(A,q + 1, t)

Subruk (IITH) Randomized Algorithms TIFR IGGA 22 / 49



Quicksort

Problem
Given an array A of n elements, arrange the elements in increasing
order.

Quicksort(A, s, t)
1 If s ≥ t , exit.
2 Choose pivot p from {s, s + 1, . . . , t}
3 q =Partition(A, s, t ,p). Partition(A, s, t ,p) partitions A(s, t) in place

into less than pivot, pivot and greater than pivot. It also returns the
correct index of p.

4 Quicksort(A, s,q − 1)
5 Quicksort(A,q + 1, t)

Subruk (IITH) Randomized Algorithms TIFR IGGA 22 / 49



Deterministic Quicksort

Quicksort(A, s, t)
If s ≥ t , exit.
Deterministically choose pivot p from {s, s + 1, . . . , t}
q =Partition(A, s, t ,p).
Quicksort(A, s,q − 1)
Quicksort(A,q + 1, t)

For instance, pivot p is always the first element.
The running time is determined by the number of comparisons.
Any deterministic pivot rule requires worst case Ω(n2)
comparisons.
One can come up with a bad input order for any deterministic pivot
rule.
Can randomization help?
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Why randomize?

Worst case occurs when we repeatedly choose the
smallest/largest number as pivot.
A good pivot separates the array into two (roughly) equal parts.
If pivot gives a [n/10,9n/10]-split, we get the recurrence.

T (n) = T (n/10) + T (9n/10) + cn

Even this gives us Θ(n log n) number of comparisons.

A random pivot is likely to work with probability 0.8.
This is still an intuition.
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Randomized Quicksort

Quicksort(A, s, t)
If s ≥ t , exit.
Choose pivot p uniformly at random from {s, s + 1, . . . , t}
q =Partition(A, s, t ,p).
Quicksort(A, s,q − 1)
Quicksort(A,q + 1, t)
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Analysis of Randomized Quicksort

Let the numbers in A be z1 < z2 < . . . < zn.

Let Xi,j denote an indicator random variable for all 1 ≤ i < j ≤ n.
If zi is compared to zj during the execution of the algorithm,
Xi,j = 1.
Otherwise Xi,j = 0

The total no. of comparisons X is given by

X =
n−1∑
i=1

n∑
j=i+1

Xi,j

Correct because Xi,j takes only values from {0,1}.
Also because no two zi and zj are compared more than once.
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Analysis of Randomized Quicksort

Need to calculate expected number of comparisons E(X ).

Linearity of Expectations

E(X ) = E

n−1∑
i=1

n∑
j=i+1

Xi,j

 =
n−1∑
i=1

n∑
j=i+1

E(Xi,j)

For indicator random variable, E(Xi,j) = Pr(Xi,j = 1)

What is the probability that zi was compared to zj?
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Analysis of Randomized Quicksort

Let Zi,j = {zi , zi+1, . . . , zj}
zi is compared to zj if and only if one of them is chosen as pivot.

Claim
Xi,j = 1 (zi is compared to zj ) if and only if the first pivot chosen from
Zi,j is zi or zj .

As long as pivots in Zi,j are not chosen, zi and zj are never
separated by the algorithm.
If zi or zj is the first pivot chosen from Zi,j , then zi is compared to
zj .
If the first pivot is from Zi,j\{zi , zj}, then zi and zj are never
compared.
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Analysis of Randomized Quicksort

What is the probability that zi was compared to zj?
What is the probability that zi or zj is the first chosen pivot from
Zi,j?
Since |Zi,j | = j − i + 1,

E(Xi,j) = Pr(Xi,j = 1) = 2/(j − i + 1).
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Analysis of Randomized Quicksort

E(X ) =
n−1∑
i=1

n∑
j=i+1

E(Xi,j)

=
n−1∑
i=1

n∑
j=i+1

2/(j − i + 1)

= 2 ·
n−1∑
i=1

(
1
2

+
1
3

+ · · ·+ 1
n − i + 1

)

≤ 2 ·
n−1∑
i=1

(
1
2

+
1
3

+ · · ·+ 1
n

)
= 2(n − 1)Hn.
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Analysis of Randomized Quicksort

Hn =
1
2

+
1
3

+ · · ·+ 1
n

≤
∫ n

1

1
y

dy

= ln n − ln 1 = ln n

1 + 1
2 + 1

3 + · · ·+ 1
n is the harmonic series.

Hn is Θ(log n).

E(X ) = 2(n − 1)Hn = Θ(n log n).
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Randomized Quicksort

Theorem
Randomized Quicksort correctly sorts the input array in-place and
requires Θ(n log n) comparisons in expectation.

Can still take Θ(n2) time in worst case.
But with low probability.

Randomized quicksort is a Las Vegas algorithm.
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Global Min-Cut
A cut of a graph is a set of edges, which when removed, disconnects
the graph. Given a connected undirected graph G = (V ,E), find a cut
which has minimum cardinality.

Figure: Courtesy: Andreas Klappenecker

Applications: Clustering, Network Reliability etc.
Various deterministic algorithms known
All are complex to describe
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Edge Contraction
To contract an edge e = {x , y} of G, we merge the vertices x and y to
create a single vertex xy . We retain the multiple edges that may result
but don’t retain the self loops.

Figure: Courtesy: Jeff Erickson

The collapsed graph is denoted by G/e.
G/e need not be a simple graph.
Contraction can be done in Θ(n) time.
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Karger’s Min-Cut Algorithm

Randomized Min-Cut
Pick an edge e = {x , y} at random.
Contract the edge e and get G′ = G/e.
If there are more than 2 vertices, repeat.
Else, output the edges remaining as your cut.

Caution: Picking e at random is not the same as picking two
connected vertices x , y at random.
This algorithms completes in Θ(n2) time.
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Illustration of the Algorithm: Successful

Figure: Courtesy: Andreas Klappenecker
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Illustration of the Algorithm: Unsuccessful

Figure: Courtesy: Andreas Klappenecker
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Observations
A cut of G′ is a cut of G.
The min-cut size of the successive graphs never decrease.
The algorithm returns a cut of the graph.
The cut need not be minimal.

Claim 1
Cut C is returned as long as none of the edges e ∈ C are randomly
chosen.
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More observations

Claim 2
Let C be a min-cut of G. The probability that an edge in C is
contracted in the first step is at most 2/n.

Proof
If |C| = k , then all vertices have degree at least k .
Else the single vertex can form a cut smaller than C.

Total number of edges |E | ≥ kn/2.

Pr(edge e ∈ C is chosen) ≤ k
kn/2 = 2/n.

Subruk (IITH) Randomized Algorithms TIFR IGGA 40 / 49



More observations

Claim 2
Let C be a min-cut of G. The probability that an edge in C is
contracted in the first step is at most 2/n.

Proof
If |C| = k , then all vertices have degree at least k .
Else the single vertex can form a cut smaller than C.

Total number of edges |E | ≥ kn/2.

Pr(edge e ∈ C is chosen) ≤ k
kn/2 = 2/n.

Subruk (IITH) Randomized Algorithms TIFR IGGA 40 / 49



More observations

Claim 2
Let C be a min-cut of G. The probability that an edge in C is
contracted in the first step is at most 2/n.

Proof
If |C| = k , then all vertices have degree at least k .
Else the single vertex can form a cut smaller than C.

Total number of edges |E | ≥ kn/2.

Pr(edge e ∈ C is chosen) ≤ k
kn/2 = 2/n.

Subruk (IITH) Randomized Algorithms TIFR IGGA 40 / 49



More observations

Claim 2
Let C be a min-cut of G. The probability that an edge in C is
contracted in the first step is at most 2/n.

Proof
If |C| = k , then all vertices have degree at least k .
Else the single vertex can form a cut smaller than C.

Total number of edges |E | ≥ kn/2.

Pr(edge e ∈ C is chosen) ≤ k
kn/2 = 2/n.

Subruk (IITH) Randomized Algorithms TIFR IGGA 40 / 49



More observations

Claim 3
Let C be a min-cut of G. If C remains a cut of the graph after i steps,
the probability that an edge in C is contracted in step i + 1 is at most
2/n − i .

Proof
If C remains a cut after i steps, then it is a min-cut of the graph.

Since C is a min-cut, total number of edges |E | ≥ |C|(n − i)/2.

Pr(edge e ∈ C is chosen) ≤ |C|
|C|(n−i)/2 = 2/(n − i).
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Success Probability

Main Theorem
If C is a min-cut of G, then the algorithm outputs C with probability at
least 2/n(n − 1).

Proof
C remains in the graph if none of its edges are chosen till step
n − 2.

Probability that none of its edges are chosen in any step is

≥
(

1− 2
n

)(
1− 2

n − 1

)
. . .

(
1− 2

3

)
=

(
n − 2

n

)(
n − 3
n − 1

)
. . .

(
1
3

)
=

2
n(n − 1)
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Boosting

Main Theorem
If C is a min-cut of G, then the algorithm outputs C with probability at
least 2/n(n − 1).

We can improve this by repeating the algorithm

Pr(C is not chosen in any of t trials) ≤
(

1− 2
n(n − 1)

)t

Setting t = n(n − 1)/2 gives us that the probability of failure is
≤ 1/e.
We can boost even further using more repeats.

Theorem
If C is a min-cut of G, then the probability that any of the n(n − 1)/2
repeated trials of the algorithm does not output C is at most 1/e.
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Boosting

Theorem
If C is a min-cut of G, then the probability that any of the n(n − 1)/2
repeated trials of the algorithm does not output C is at most 1/e.

In Θ(n4) time we can get the probability of failure to any constant
by further repeats.
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Counting Min-Cuts

Main Theorem
If C is a min-cut of G, then the algorithm outputs C with probability at
least 2/n(n − 1).

If G has k min-cuts, C1,C2, . . . ,Ck , then the above theorem can
be applied for each Ci .
Each of these events are mutually exclusive, since the algorithm
outputs only one cut.
The probability of outputting any min-cut is at least 2k/n(n − 1).

Since a probability cannot exceed 1, we can conclude that
k ≤ n(n − 1)/2.
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Some points to take-away

Randomized algorithms usually lead to extremely simple
algorithms to describe and program.
The power of randomness is not clear, it is not clear whether
randomized algorithms help us in solving more problems in
polynomial time.
BPP, RP and ZPP are a few randomized polynomial time
complexity classes. We do not know if any one of them is distinct
from P.
However, it seems that randomness makes it easier to solve
problems.
Randomness must be treated as a resource. Pure, unbiased
random bits are very expensive to obtain.
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Figure: XKCD Webcomic by Randall Munroe
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