Introduction to Randomized Algorithms

Subrahmanyam Kalyanasundaram
subruk@iith.ac.in
Department of Computer Science \& Engineering Indian Institute of Technology Hyderabad

Introduction to Graph and Geometric Algortihms 6 March 2014, IIT Roorkee

Outline

(9) Introduction
(2) Polynomial Identity Testing
(3) Randomized Quicksort

4 Randomized Min-Cut
(5) Finally

Outline

(2) Polynomial Identity Testing

(3) Randomized Quicksort
(4) Randomized Min-Cut
(5) Finally

Deterministic Algorithms

- Goal: To solve a computational problem correctly and efficiently.
- Behaviour of the algorithm is determined completely by the input.
- Upon reruns, the algorithm executes in exactly the same manner.

Deterministic Algorithms

- Goal: To solve a computational problem correctly and efficiently.
- Behaviour of the algorithm is determined completely by the input.
- Upon reruns, the algorithm executes in exactly the same manner.

Randomized Algorithms

- In addition to the input, the algorithm execution depends on some random bits as well.
- Behaviour of the algorithm is not determined completely by the input.
- Upon reruns, the algorithm can execute in a different manner, even with the same input.

Randomized Algorithms

- In addition to the input, the algorithm execution depends on some random bits as well.
- Behaviour of the algorithm is not determined completely by the input.
- Upon reruns, the algorithm can execute in a different manner, even with the same input.

Intuition

- Deterministic algorithms can have certain "bad inputs".
- Could make computation go to worst case running time.
- Most inputs aren't so "bad".
- Randomized algorithms use random bits to change the execution.
- Any given input is now unlikely to be bad.
- Another perspective: random bits choose one algorithm out of several ones.

Intuition

- Deterministic algorithms can have certain "bad inputs".
- Could make computation go to worst case running time.
- Most inputs aren't so "bad".
- Randomized algorithms use random bits to change the execution.
- Any given input is now unlikely to be bad.
- Another perspective: random bits choose one algorithm out of several ones.

Intuition

- Deterministic algorithms can have certain "bad inputs".
- Could make computation go to worst case running time.
- Most inputs aren't so "bad".
- Randomized algorithms use random bits to change the execution.
- Any given input is now unlikely to be bad.
- Another perspective: random bits choose one algorithm out of several ones.

Randomized vs. Deterministic

Deterministic algorithms

- Always correct answer.
- Always runs within the worst case running time.

Randomized Algorithms

- Gives the right answer.
- In good running time.

Randomized vs. Deterministic

Deterministic algorithms

- Always correct answer.
- Always runs within the worst case running time.

Randomized Algorithms

- Gives the right answer.
- In good running time.
- Not necessarily always, but with good probability.

Randomized vs. Deterministic

Deterministic algorithms

- Always correct answer.
- Always runs within the worst case running time.

Randomized Algorithms

- Gives the right answer.
- In good running time.
- Not necessarily always, but with good probability.

Broadly two types

Las Vegas Algorithms

- Correctness is guaranteed
- May not be fast always.
- Probability of worst case running time is small.
- Expected running time < Worst case running time

Monte Carlo Algorithms
 - Runnina time is fixed.
 - Correctness of the algorithm need not be assured.

Broadly two types

Las Vegas Algorithms

- Correctness is guaranteed
- May not be fast always.
- Probability of worst case running time is small.
- Expected running time $<$ Worst case running time

Broadly two types

Las Vegas Algorithms

- Correctness is guaranteed
- May not be fast always.
- Probability of worst case running time is small.
- Expected running time $<$ Worst case running time

Monte Carlo Algorithms

- Running time is fixed.
- Correctness of the algorithm need not be assured.
- Probability of an incorrect output is small.

Broadly two types

Las Vegas Algorithms

- Correctness is guaranteed
- May not be fast always.
- Probability of worst case running time is small.
- Expected running time $<$ Worst case running time

Monte Carlo Algorithms

- Running time is fixed.
- Correctness of the algorithm need not be assured.
- Probability of an incorrect output is small.

Advantages and Disadvantages

Advantages

- Simplicity
- Good performance
- In some cases, no deterministic algorithm exists.
- Adversary cannot choose a bad input.

Disadvantages

- Randomness is a resource.
- With some probability, we can get an incorrect output.
- With some probability, can perform in worst case time.

Advantages and Disadvantages

Advantages

- Simplicity
- Good performance
- In some cases, no deterministic algorithm exists.
- Adversary cannot choose a bad input.

Disadvantages

- Randomness is a resource.
- With some probability, we can get an incorrect output.
- With some probability, can perform in worst case time.

Advantages and Disadvantages

Advantages

- Simplicity
- Good performance
- In some cases, no deterministic algorithm exists.
- Adversary cannot choose a bad input.

Disadvantages

- Randomness is a resource.
- With some probability, we can get an incorrect output.
- With some probability, can perform in worst case time.

Probabilistic Analysis

- Algorithm output/performance can vary depending on random bits.
- Analysis will yield probabilistic statements.
- We need mathematical basis to analyze randomized algorithms.
- At times, the analysis could be long and complicated.
- The analysis could use mathematical tools of varying difficulty.
- But most randomized algorithms are extremely simple to describe and program.

Probabilistic Analysis

- Algorithm output/performance can vary depending on random bits.
- Analysis will yield probabilistic statements.
- We need mathematical basis to analyze randomized algorithms.
- At times, the analysis could be long and complicated.
- The analysis could use mathematical tools of varying difficulty.
- But most randomized algorithms are extremely simple to describe and program.

Preliminaries

- Probability is over the distribution of the random bits.
- Probability is not over the input distribution.
- For a random variable $X, \operatorname{Pr}(X=x)$ denotes the probability with which X takes the value x.
- $E(X)$ denotes the expectation of the random variable X.

Preliminaries

- Probability is over the distribution of the random bits.
- Probability is not over the input distribution.
- For a random variable $X, \operatorname{Pr}(X=x)$ denotes the probability with which X takes the value x.
- $E(X)$ denotes the expectation of the random variable X.

Preliminaries

- Probability is over the distribution of the random bits.
- Probability is not over the input distribution.
- For a random variable $X, \operatorname{Pr}(X=x)$ denotes the probability with which X takes the value x.
- $E(X)$ denotes the expectation of the random variable X.

Outline

(1) Introduction

(2) Polynomial Identity Testing
(3) Randomized Quicksort
(4) Randomized Min-Cut
(5) Finally

Is a given polynomial equal to zero?

Polynomial Identity Testing

Is a given polynomial $P(x)$ identically equal to 0 ?

Another form

Are two given nolynomials $F(x)$ and $G(x)$ identically equal to one another?

$$
F(x) \stackrel{?}{=} G(x)
$$

Is a given polynomial equal to zero?

Polynomial Identity Testing

Is a given polynomial $P(x)$ identically equal to 0 ?

Another form

Are two given polynomials $F(x)$ and $G(x)$ identically equal to one another?

$$
F(x) \stackrel{?}{=} G(x)
$$

Polynomial Identity Testing

What can we do deterministically?

- Want to check if

$$
F(x)=(x-1)(x+3)(x-6) \equiv x^{3}+4 x^{2}-12 x+18=G(x)
$$

Polynomial Identity Testing

What can we do deterministically?

- Want to check if
$F(x)=(x-1)(x+3)(x-6) \equiv x^{3}+4 x^{2}-12 x+18=G(x)$.

Deterministic Algorithm

- Convert the two polynomials to a standard format.
- Check if they are the same.
- If polynomials are of degree d, this requires $\Theta\left(d^{2}\right)$ time.
- Always correct.

Polynomial Identity Testing

What can we do deterministically?

- Want to check if

$$
F(x)=(x-1)(x+3)(x-6) \equiv x^{3}+4 x^{2}-12 x+18=G(x)
$$

Deterministic Algorithm

- Convert the two polynomials to a standard format.
- Check if they are the same.
- If polynomials are of degree d, this requires $\Theta\left(d^{2}\right)$ time.
- Always correct.

Polynomial Identity Testing

What can we do deterministically?

- Want to check if

$$
F(x)=(x-1)(x+3)(x-6) \equiv x^{3}+4 x^{2}-12 x+18=G(x)
$$

Deterministic Algorithm

- Convert the two polynomials to a standard format.
- Check if they are the same.
- If polynomials are of degree d, this requires $\Theta\left(d^{2}\right)$ time.
- Always correct.

Polynomial Identity Testing

What can we do deterministically?

- Want to check if

$$
F(x)=(x-1)(x+3)(x-6) \equiv x^{3}+4 x^{2}-12 x+18=G(x)
$$

Deterministic Algorithm

- Convert the two polynomials to a standard format.
- Check if they are the same.
- If polynomials are of degree d, this requires $\Theta\left(d^{2}\right)$ time.
- Always correct.

Polynomial Identity Testing

A Randomized Algorithm

- Choose a value r from a set S of 100d possible values.
- Evaluate $F(r)$ and $G(r)$.
- Check if $F(r)=G(r)$.
- Running time: How long does the evaluation take?
- Can use Horner's Method to evaluate $F(r)$ and $G(r)$ in $\Theta(d)$ time.
- What about correctness?
- If $F(x)=G(x)$, then $F(r)=G(r)$ for any r.
- What if $F(x) \not \equiv G(x)$?

Polynomial Identity Testing

A Randomized Algorithm

- Choose a value r from a set S of 100d possible values.
- Evaluate $F(r)$ and $G(r)$.
- Check if $F(r)=G(r)$.
- Running time: How long does the evaluation take?
- Can use Horner's Method to evaluate $F(r)$ and $G(r)$ in $\Theta(d)$ time.

$$
6 x^{3}+12 x^{2}-10 x+23=((6 x+12) x-10) x+23
$$

- What about correctness?
- If $F(x) \equiv G(x)$, then $F(r)=G(r)$ for any r.
- What if $F(x) \neq G(x)$?

Polynomial Identity Testing

A Randomized Algorithm

- Choose a value r from a set S of 100d possible values.
- Evaluate $F(r)$ and $G(r)$.
- Check if $F(r)=G(r)$.
- Running time: How long does the evaluation take?
- Can use Horner's Method to evaluate $F(r)$ and $G(r)$ in $\Theta(d)$ time.
- What about correctness?
- If $F(x) \equiv G(x)$, then $F(r)=G(r)$ for any r
- What if $F(x) \not \equiv G(x)$?

Polynomial Identity Testing

A Randomized Algorithm

- Choose a value r from a set S of 100d possible values.
- Evaluate $F(r)$ and $G(r)$.
- Check if $F(r)=G(r)$.
- Running time: How long does the evaluation take?
- Can use Horner's Method to evaluate $F(r)$ and $G(r)$ in $\Theta(d)$ time.
- What about correctness?
- If $F(x) \equiv G(x)$, then $F(r)=G(r)$ for any r.

Polynomial Identity Testing

A Randomized Algorithm

- Choose a value r from a set S of 100d possible values.
- Evaluate $F(r)$ and $G(r)$.
- Check if $F(r)=G(r)$.
- Running time: How long does the evaluation take?
- Can use Horner's Method to evaluate $F(r)$ and $G(r)$ in $\Theta(d)$ time.
- What about correctness?
- If $F(x) \equiv G(x)$, then $F(r)=G(r)$ for any r.
- What if $F(x) \not \equiv G(x)$?

Analysis of Correctness

Fundamental Theorem of Algebra If $P(x)$ is a polynomial of degree d, it has at most d roots.

- Let $F(x) \not \equiv G(x)$.
- By the above theorem, $F(r)-G(r)=0$ for $\leq d$ values of $r \in S$.
- There are at most d values of r which can lead to a wrong answer.
- If $|S| \geq 100 d$, then $\operatorname{Pr}(F(r)=G(r)) \leq 1 / 100$.
- Probability of error is $\leq 1 / 100$.
- Not happy with the probability of success? Then repeat!

Analysis of Correctness

Fundamental Theorem of Algebra If $P(x)$ is a polynomial of degree d, it has at most d roots.

- Let $F(x) \not \equiv G(x)$.
- By the above theorem, $F(r)-G(r)=0$ for $\leq d$ values of $r \in S$.
- There are at most d values of r which can lead to a wrong answer.
- If $|S| \geq 100 d$, then $\operatorname{Pr}(F(r)=G(r)) \leq 1 / 100$.
- Probability of error is $\leq 1 / 100$.
- Not happy with the probability of success? Then repeat!

Analysis of Correctness

Fundamental Theorem of Algebra
If $P(x)$ is a polynomial of degree d, it has at most d roots.

- Let $F(x) \not \equiv G(x)$.
- By the above theorem, $F(r)-G(r)=0$ for $\leq d$ values of $r \in S$.
- There are at most d values of r which can lead to a wrong answer.
- If $|S| \geq 100 d$, then $\operatorname{Pr}(F(r)=G(r)) \leq 1 / 100$.
- Probability of error is $\leq 1 / 100$.
- Not happy with the probability of success? Then repeat!

Analysis of Correctness

Fundamental Theorem of Algebra
If $P(x)$ is a polynomial of degree d, it has at most d roots.

- Let $F(x) \not \equiv G(x)$.
- By the above theorem, $F(r)-G(r)=0$ for $\leq d$ values of $r \in S$.
- There are at most d values of r which can lead to a wrong answer.
- If $|S| \geq 100 d$, then $\operatorname{Pr}(F(r)=G(r)) \leq 1 / 100$.
- Probability of error is $\leq 1 / 100$.
- Not happy with the probability of success? Then repeat!

Analysis of Correctness

Fundamental Theorem of Algebra
If $P(x)$ is a polynomial of degree d, it has at most d roots.

- Let $F(x) \not \equiv G(x)$.
- By the above theorem, $F(r)-G(r)=0$ for $\leq d$ values of $r \in S$.
- There are at most d values of r which can lead to a wrong answer.
- If $|S| \geq 100 d$, then $\operatorname{Pr}(F(r)=G(r)) \leq 1 / 100$.
- Probability of error is $\leq 1 / 100$.
- Not happy with the probability of success? Then repeat!

Analysis of Correctness

Fundamental Theorem of Algebra
If $P(x)$ is a polynomial of degree d, it has at most d roots.

- Let $F(x) \not \equiv G(x)$.
- By the above theorem, $F(r)-G(r)=0$ for $\leq d$ values of $r \in S$.
- There are at most d values of r which can lead to a wrong answer.
- If $|S| \geq 100 d$, then $\operatorname{Pr}(F(r)=G(r)) \leq 1 / 100$.
- Probability of error is $\leq 1 / 100$.
- Not happy with the probability of success? Then repeat!

Boosting the Probability of Success

- Saw a Monte Carlo algorithm with $\operatorname{Pr}($ success $) \geq 1-1 / 100$.

Boosting

Reneating a Monte Carlo algorithm to achieve a better probability of success.

Boosted Algorithm

- Choose two values r_{1}, r_{2} from a set S of $100 d$ possible values.
- Evaluate $F\left(r_{1}\right), F\left(r_{2}\right), G\left(r_{1}\right)$ and $G\left(r_{2}\right)$.
- Check if $F\left(r_{1}\right)=G\left(r_{1}\right)$ and $F\left(r_{2}\right)=G\left(r_{2}\right)$.
- Report "same" if both $F\left(r_{1}\right)=G\left(r_{1}\right)$ and $F\left(r_{2}\right)=G\left(r_{2}\right)$.

Boosting the Probability of Success

- Saw a Monte Carlo algorithm with $\operatorname{Pr}($ success $) \geq 1-1 / 100$.

Boosting

Repeating a Monte Carlo algorithm to achieve a better probability of success.

Boosted Algorithm

- Choose two values r_{1}, r_{2} from a set S of $100 d$ possible values.
- Evaluate $F\left(r_{1}\right), F\left(r_{2}\right), G\left(r_{1}\right)$ and $G\left(r_{2}\right)$
- Check if $F\left(r_{1}\right)=G\left(r_{1}\right)$ and $F\left(r_{2}\right)=G\left(r_{2}\right)$.
- Report "same" if both $F\left(r_{1}\right)=G\left(r_{1}\right)$ and $F\left(r_{2}\right)=G\left(r_{2}\right)$.

Boosting the Probability of Success

- Saw a Monte Carlo algorithm with $\operatorname{Pr}($ success $) \geq 1-1 / 100$.

Boosting

Repeating a Monte Carlo algorithm to achieve a better probability of success.

Boosted Algorithm

- Choose two values r_{1}, r_{2} from a set S of $100 d$ possible values.
- Evaluate $F\left(r_{1}\right), F\left(r_{2}\right), G\left(r_{1}\right)$ and $G\left(r_{2}\right)$.
- Check if $F\left(r_{1}\right)=G\left(r_{1}\right)$ and $F\left(r_{2}\right)=G\left(r_{2}\right)$.
- Report "same" if both $F\left(r_{1}\right)=G\left(r_{1}\right)$ and $F\left(r_{2}\right)=G\left(r_{2}\right)$.

Boosting the Probability of Success

Boosted Algorithm

- Choose two values r_{1}, r_{2} from a set S of 100d possible values.
- Evaluate $F\left(r_{1}\right), F\left(r_{2}\right), G\left(r_{1}\right)$ and $G\left(r_{2}\right)$.
- Check if $F\left(r_{1}\right)=G\left(r_{1}\right)$ and $F\left(r_{2}\right)=G\left(r_{2}\right)$.
- Report "same" if both $F\left(r_{1}\right)=G\left(r_{1}\right)$ and $F\left(r_{2}\right)=G\left(r_{2}\right)$.
- Suppose $F(x) \not \equiv G(x)$.
- If we run two independent trials

- Boosting is a standard technique for achieving desired probability with Monte Carlo algorithms.

Boosting the Probability of Success

Boosted Algorithm

- Choose two values r_{1}, r_{2} from a set S of 100d possible values.
- Evaluate $F\left(r_{1}\right), F\left(r_{2}\right), G\left(r_{1}\right)$ and $G\left(r_{2}\right)$.
- Check if $F\left(r_{1}\right)=G\left(r_{1}\right)$ and $F\left(r_{2}\right)=G\left(r_{2}\right)$.
- Report "same" if both $F\left(r_{1}\right)=G\left(r_{1}\right)$ and $F\left(r_{2}\right)=G\left(r_{2}\right)$.
- Suppose $F(x) \not \equiv G(x)$.
- If we run two independent trials

- Boosting is a standard technique for achieving desired probability with Monte Carlo algorithms.

Boosting the Probability of Success

Boosted Algorithm

- Choose two values r_{1}, r_{2} from a set S of 100d possible values.
- Evaluate $F\left(r_{1}\right), F\left(r_{2}\right), G\left(r_{1}\right)$ and $G\left(r_{2}\right)$.
- Check if $F\left(r_{1}\right)=G\left(r_{1}\right)$ and $F\left(r_{2}\right)=G\left(r_{2}\right)$.
- Report "same" if both $F\left(r_{1}\right)=G\left(r_{1}\right)$ and $F\left(r_{2}\right)=G\left(r_{2}\right)$.
- Suppose $F(x) \not \equiv G(x)$.
- If we run two independent trials

$$
\operatorname{Pr}(F(r)=G(r) \text { in both trials }) \leq 1 / 100^{2}
$$

- Boosting is a standard technique for achieving desired probability with Monte Carlo algorithms.

Boosting the Probability of Success

Boosted Algorithm

- Choose two values r_{1}, r_{2} from a set S of 100d possible values.
- Evaluate $F\left(r_{1}\right), F\left(r_{2}\right), G\left(r_{1}\right)$ and $G\left(r_{2}\right)$.
- Check if $F\left(r_{1}\right)=G\left(r_{1}\right)$ and $F\left(r_{2}\right)=G\left(r_{2}\right)$.
- Report "same" if both $F\left(r_{1}\right)=G\left(r_{1}\right)$ and $F\left(r_{2}\right)=G\left(r_{2}\right)$.
- Suppose $F(x) \not \equiv G(x)$.
- If we run two independent trials

$$
\operatorname{Pr}(F(r)=G(r) \text { in both trials }) \leq 1 / 100^{2}
$$

- Boosting is a standard technique for achieving desired probability with Monte Carlo algorithms.

Multivariate Case

Polynomial Identity Testing: Multivariate Case
Is a given polynomial $P\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ identically equal to 0 ?

- No known deterministic polynomial time algorithm for the multivariate case.
- Multiplying out a polynomial can result in exponentially many terms.
- For the multivariate case, we need a stronger theorem than the Fundamental Theorem of Algebra.

Multivariate Case

Polynomial Identity Testing: Multivariate Case
Is a given polynomial $P\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ identically equal to 0 ?

- No known deterministic polynomial time algorithm for the multivariate case.
- Multiplying out a polynomial can result in exponentially many terms.
- For the multivariate case, we need a stronger theorem than the Fundamental Theorem of Algebra.

Multivariate Case

Polynomial Identity Testing: Multivariate Case
Is a given polynomial $P\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ identically equal to 0 ?

- No known deterministic polynomial time algorithm for the multivariate case.
- Multiplying out a polynomial can result in exponentially many terms.
- For the multivariate case, we need a stronger theorem than the Fundamental Theorem of Algebra.

Multivariate Case

Polynomial Identity Testing: Multivariate Case

Is a given polynomial $P\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ identically equal to 0 ?

- No known deterministic polynomial time algorithm for the multivariate case.
- Multiplying out a polynomial can result in exponentially many terms.
- For the multivariate case, we need a stronger theorem than the Fundamental Theorem of Algebra.

Multivariate Case

A Randomized Algorithm

- Choose $\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ from a set S of $100 d$ possible values.
- Evaluate $P\left(r_{1}, r_{2}, \ldots, r_{n}\right)$.
- Report that $P\left(x_{1}, x_{2}, \ldots, x_{n}\right) \equiv 0$ if $P\left(r_{1}, r_{2}, \ldots, r_{n}\right)=0$.

DeMillo-Lipton-Schwartz-Zippel Lemma
In the above setting, $\operatorname{Pr}\left(P\left(r_{1}, r_{2}, \ldots, r_{n}\right)=0\right) \leq d /|S|$

- Probability of failure is $\leq 1 / 100$.
- Assumption: $P\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ can be efficiently evaluated.
- Randomization, indeed, seems to help.

Multivariate Case

A Randomized Algorithm

- Choose $\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ from a set S of $100 d$ possible values.
- Evaluate $P\left(r_{1}, r_{2}, \ldots, r_{n}\right)$.
- Report that $P\left(x_{1}, x_{2}, \ldots, x_{n}\right) \equiv 0$ if $P\left(r_{1}, r_{2}, \ldots, r_{n}\right)=0$.

DeMillo-Lipton-Schwartz-Zippel Lemma In the above setting, $\operatorname{Pr}\left(P\left(r_{1}, r_{2}, \ldots, r_{n}\right)=0\right) \leq d /|S|$

- Probability of failure is $\leq 1 / 100$.
- Assumption: $P\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ can be efficiently evaluated.
- Randomization, indeed, seems to help.

Multivariate Case

A Randomized Algorithm

- Choose $\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ from a set S of $100 d$ possible values.
- Evaluate $P\left(r_{1}, r_{2}, \ldots, r_{n}\right)$.
- Report that $P\left(x_{1}, x_{2}, \ldots, x_{n}\right) \equiv 0$ if $P\left(r_{1}, r_{2}, \ldots, r_{n}\right)=0$.

DeMillo-Lipton-Schwartz-Zippel Lemma In the above setting, $\operatorname{Pr}\left(P\left(r_{1}, r_{2}, \ldots, r_{n}\right)=0\right) \leq d /|S|$

- Probability of failure is $\leq 1 / 100$.
- Assumption: $P\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ can be efficiently evaluated
- Randomization, indeed, seems to help.

Multivariate Case

A Randomized Algorithm

- Choose $\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ from a set S of 100d possible values.
- Evaluate $P\left(r_{1}, r_{2}, \ldots, r_{n}\right)$.
- Report that $P\left(x_{1}, x_{2}, \ldots, x_{n}\right) \equiv 0$ if $P\left(r_{1}, r_{2}, \ldots, r_{n}\right)=0$.

DeMillo-Lipton-Schwartz-Zippel Lemma In the above setting, $\operatorname{Pr}\left(P\left(r_{1}, r_{2}, \ldots, r_{n}\right)=0\right) \leq d /|S|$

- Probability of failure is $\leq 1 / 100$.
- Assumption: $P\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ can be efficiently evaluated.
- Randomization, indeed, seems to help.

Multivariate Case

A Randomized Algorithm

- Choose $\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ from a set S of 100d possible values.
- Evaluate $P\left(r_{1}, r_{2}, \ldots, r_{n}\right)$.
- Report that $P\left(x_{1}, x_{2}, \ldots, x_{n}\right) \equiv 0$ if $P\left(r_{1}, r_{2}, \ldots, r_{n}\right)=0$.

DeMillo-Lipton-Schwartz-Zippel Lemma In the above setting, $\operatorname{Pr}\left(P\left(r_{1}, r_{2}, \ldots, r_{n}\right)=0\right) \leq d /|S|$

- Probability of failure is $\leq 1 / 100$.
- Assumption: $P\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ can be efficiently evaluated.
- Randomization, indeed, seems to help.

Outline

(1) Introduction

(2) Polynomial Identity Testing

(3) Randomized Quicksort

4 Randomized Min-Cut

(5) Finally

Quicksort

Problem

Given an array A of n elements, arrange the elements in increasing order.

Quicksort(A, s, t)

(1) If $s \geq t$, exit.
(2) Choose pivot p from $\{s, s+1, \ldots, t\}$
(3) $q=\operatorname{Partition}(A, s, t, p)$. Partition (A, s, t, p) partitions $A(s, t)$ in place into less than pivot, pivot and greater than pivot. It also returns the correct index of p.
(4) Quicksort $(A, s, q-1)$
(5) Quicksort $(A, q+1, t)$

Quicksort

Problem

Given an array A of n elements, arrange the elements in increasing order.

Quicksort(A,s,t)

(1) If $s \geq t$, exit.
(2) Choose pivot p from $\{s, s+1, \ldots, t\}$
(3) $q=\operatorname{Partition}(A, s, t, p)$. Partition (A, s, t, p) partitions $A(s, t)$ in place into less than pivot, pivot and greater than pivot. It also returns the correct index of p.
(4) Quicksort $(A, s, q-1)$
(5) Quicksort $(A, q+1, t)$

Quicksort

Problem

Given an array A of n elements, arrange the elements in increasing order.

Quicksort(A,s,t)

(1) If $s \geq t$, exit.
(2) Choose pivot p from $\{s, s+1, \ldots, t\}$
(3) $q=\operatorname{Partition}(A, s, t, p)$. Partition (A, s, t, p) partitions $A(s, t)$ in place into less than pivot, pivot and greater than pivot. It also returns the correct index of p.
4 Quicksort($A, s, q-1$)
(5) Quicksort $(A, q+1, t)$

Quicksort

Problem

Given an array A of n elements, arrange the elements in increasing order.

Quicksort($A, s, t)$

(1) If $s \geq t$, exit.
(2) Choose pivot p from $\{s, s+1, \ldots, t\}$
(3) $q=\operatorname{Partition}(A, s, t, p)$. Partition (A, s, t, p) partitions $A(s, t)$ in place into less than pivot, pivot and greater than pivot. It also returns the correct index of p.
(4) Quicksort($A, s, q-1$)
(5) Quicksort $(A, q+1, t)$

Quicksort

Problem

Given an array A of n elements, arrange the elements in increasing order.

Quicksort(A,s,t)

(1) If $s \geq t$, exit.
(2) Choose pivot p from $\{s, s+1, \ldots, t\}$
(3) $q=\operatorname{Partition}(A, s, t, p)$. Partition (A, s, t, p) partitions $A(s, t)$ in place into less than pivot, pivot and greater than pivot. It also returns the correct index of p.
(4) Quicksort $(A, s, q-1)$
(5) Quicksort($A, q+1, t)$

Quicksort

Problem

Given an array A of n elements, arrange the elements in increasing order.

Quicksort(A, s, t)

(1) If $s \geq t$, exit.
(2) Choose pivot p from $\{s, s+1, \ldots, t\}$
(3) $q=\operatorname{Partition}(A, s, t, p)$. Partition (A, s, t, p) partitions $A(s, t)$ in place into less than pivot, pivot and greater than pivot. It also returns the correct index of p.
(4) Quicksort $(A, s, q-1)$
(5) Quicksort $(A, q+1, t)$

Quicksort

Problem

Given an array A of n elements, arrange the elements in increasing order.

Quicksort(A, s, t)

(1) If $s \geq t$, exit.
(2) Choose pivot p from $\{s, s+1, \ldots, t\}$
(3) $q=\operatorname{Partition}(A, s, t, p)$. Partition (A, s, t, p) partitions $A(s, t)$ in place into less than pivot, pivot and greater than pivot. It also returns the correct index of p.
(4) Quicksort $(A, s, q-1)$
(5) Quicksort $(A, q+1, t)$

Quicksort

Problem

Given an array A of n elements, arrange the elements in increasing order.

Quicksort(A,s,t)

(1) If $s \geq t$, exit.
(2) Choose pivot p from $\{s, s+1, \ldots, t\}$
(3) $q=\operatorname{Partition}(A, s, t, p)$. Partition (A, s, t, p) partitions $A(s, t)$ in place into less than pivot, pivot and greater than pivot. It also returns the correct index of p.
4 Quicksort($A, s, q-1$)
(5) Quicksort $(A, q+1, t)$

Deterministic Quicksort

Quicksort (A, s, t)

- If $s \geq t$, exit.
- Deterministically choose pivot p from $\{s, s+1, \ldots, t\}$
- $q=\operatorname{Partition}(A, s, t, p)$.
- Quicksort($A, s, q-1)$
- Quicksort($A, q+1, t)$
- For instance, pivot p is always the first element.
- The running time is determined by the number of comparisons.
- Any deterministic pivot rule requires worst case $\Omega\left(n^{2}\right)$ comparisons.
- One can come up with a bad input order for any deterministic pivot rule.
- Can randomization help?

Deterministic Quicksort

Quicksort (A, s, t)

- If $s \geq t$, exit.
- Deterministically choose pivot p from $\{s, s+1, \ldots, t\}$
- $q=\operatorname{Partition}(A, s, t, p)$.
- Quicksort($A, s, q-1)$
- Quicksort($A, q+1, t)$
- For instance, pivot p is always the first element.
- The running time is determined by the number of comparisons.
- Any deterministic pivot rule requires worst case $\Omega\left(n^{2}\right)$ comparisons.
- One can come up with a bad input order for any deterministic pivot rule.
- Can randomization help?

Deterministic Quicksort

Quicksort (A, s, t)

- If $s \geq t$, exit.
- Deterministically choose pivot p from $\{s, s+1, \ldots, t\}$
- $q=\operatorname{Partition}(A, s, t, p)$.
- Quicksort($A, s, q-1)$
- Quicksort($A, q+1, t)$
- For instance, pivot p is always the first element.
- The running time is determined by the number of comparisons.
- Any deterministic pivot rule requires worst case $\Omega\left(n^{2}\right)$ comparisons.
- One can come up with a bad input order for any deterministic pivot rule.
- Can randomization help?

Deterministic Quicksort

Quicksort (A, s, t)

- If $s \geq t$, exit.
- Deterministically choose pivot p from $\{s, s+1, \ldots, t\}$
- $q=\operatorname{Partition}(A, s, t, p)$.
- Quicksort($A, s, q-1)$
- Quicksort($A, q+1, t)$
- For instance, pivot p is always the first element.
- The running time is determined by the number of comparisons.
- Any deterministic pivot rule requires worst case $\Omega\left(n^{2}\right)$ comparisons.
- One can come up with a bad input order for any deterministic pivot rule.
- Can randomization help?

Deterministic Quicksort

Quicksort (A, s, t)

- If $s \geq t$, exit.
- Deterministically choose pivot p from $\{s, s+1, \ldots, t\}$
- $q=\operatorname{Partition}(A, s, t, p)$.
- Quicksort($A, s, q-1)$
- Quicksort($A, q+1, t)$
- For instance, pivot p is always the first element.
- The running time is determined by the number of comparisons.
- Any deterministic pivot rule requires worst case $\Omega\left(n^{2}\right)$ comparisons.
- One can come up with a bad input order for any deterministic pivot rule.
- Can randomization help?

Why randomize?

- Worst case occurs when we repeatedly choose the smallest/largest number as pivot.
- A good pivot separates the array into two (roughly) equal parts.
- If pivot gives a [n/10, 9n/10]-split, we get the recurrence.

$$
T(n)=T(n / 10)+T(9 n / 10)+c n
$$

- Even this gives us $\Theta(n \log n)$ number of comparisons.
- A random pivot is likely to work with probability 0.8 .
- This is still an intuition.

Why randomize?

- Worst case occurs when we repeatedly choose the smallest/largest number as pivot.
- A good pivot separates the array into two (roughly) equal parts.
- If pivot gives a [n/10, 9n/10]-split, we get the recurrence.

$$
T(n)=T(n / 10)+T(9 n / 10)+c n
$$

- Even this gives us $\Theta(n \log n)$ number of comparisons.
- A random pivot is likely to work with probability 0.8 .
- This is still an intuition.

Why randomize?

- Worst case occurs when we repeatedly choose the smallest/largest number as pivot.
- A good pivot separates the array into two (roughly) equal parts.
- If we choose the median as the pivot, the recurrence for number of comparisons is

$$
T(n)=2 T(n / 2)+c n
$$

- This solves to $\Theta(n \log n)$
- If pivot gives a [n/10,9n/10]-split, we get the recurrence.

$$
T(n)=T(n / 10)+T(9 n / 10)+c n
$$

- Even this gives us $\Theta(n \log n)$ number of comparisons.
- A random pivot is likely to work with probability 0.8 .
- This is still an intuition.

Why randomize?

- Worst case occurs when we repeatedly choose the smallest/largest number as pivot.
- A good pivot separates the array into two (roughly) equal parts.
- If we choose the median as the pivot, the recurrence for number of comparisons is

$$
T(n)=2 T(n / 2)+c n
$$

- This solves to $\Theta(n \log n)$
- If pivot gives a $[n / 10,9 n / 10]$-split, we get the recurrence.

- Even this gives us $\Theta(n \log n)$ number of comparisons.
- A random pivot is likely to work with probability 0.8 .
- This is still an intuition.

Why randomize?

- Worst case occurs when we repeatedly choose the smallest/largest number as pivot.
- A good pivot separates the array into two (roughly) equal parts.
- If pivot gives a [n/10, $9 n / 10]$-split, we get the recurrence.

$$
T(n)=T(n / 10)+T(9 n / 10)+c n
$$

- Even this gives us $\Theta(n \log n)$ number of comparisons.
- A random pivot is likely to work with probability 0.8 .
- This is still an intuition.

Why randomize?

- Worst case occurs when we repeatedly choose the smallest/largest number as pivot.
- A good pivot separates the array into two (roughly) equal parts.
- If pivot gives a [n/10, $9 n / 10]$-split, we get the recurrence.

$$
T(n)=T(n / 10)+T(9 n / 10)+c n
$$

- Even this gives us $\Theta(n \log n)$ number of comparisons.
- A random pivot is likely to work with probability 0.8 .
- This is still an intuition.

Why randomize?

- Worst case occurs when we repeatedly choose the smallest/largest number as pivot.
- A good pivot separates the array into two (roughly) equal parts.
- If pivot gives a [n/10,9n/10]-split, we get the recurrence.

$$
T(n)=T(n / 10)+T(9 n / 10)+c n
$$

- Even this gives us $\Theta(n \log n)$ number of comparisons.
- A random pivot is likely to work with probability 0.8 .

Why randomize?

- Worst case occurs when we repeatedly choose the smallest/largest number as pivot.
- A good pivot separates the array into two (roughly) equal parts.
- If pivot gives a [n/10,9n/10]-split, we get the recurrence.

$$
T(n)=T(n / 10)+T(9 n / 10)+c n
$$

- Even this gives us $\Theta(n \log n)$ number of comparisons.
- A random pivot is likely to work with probability 0.8 .
- This is still an intuition.

Randomized Quicksort

Quicksort(A, s, $t)$

- If $s \geq t$, exit.
- Choose pivot p uniformly at random from $\{s, s+1, \ldots, t\}$
- $q=\operatorname{Partition}(A, s, t, p)$.
- Quicksort($A, s, q-1)$
- Quicksort($A, q+1, t)$

Analysis of Randomized Quicksort

- Let the numbers in A be $z_{1}<z_{2}<\ldots<z_{n}$.
- Let $X_{i, j}$ denote an indicator random variable for all $1 \leq i<j \leq n$.
- If z_{i} is compared to z_{j} during the execution of the algorithm, $X_{i, j}=1$.
- Otherwise $X_{i, j}=0$

The total no. of comparisons X is given by

- Correct because $X_{i, j}$ takes only values from $\{0,1\}$.
- Also because no two z_{i} and z_{j} are compared more than once.

Analysis of Randomized Quicksort

- Let the numbers in A be $z_{1}<z_{2}<\ldots<z_{n}$.
- Let $X_{i, j}$ denote an indicator random variable for all $1 \leq i<j \leq n$.
- If z_{i} is compared to z_{j} during the execution of the algorithm, $X_{i, j}=1$.
- Otherwise $X_{i, j}=0$

The total no. of comparisons X is given by

- Correct because $X_{i, j}$ takes only values from $\{0,1\}$
- Also because no two z_{i} and z_{j} are compared more than once.

Analysis of Randomized Quicksort

- Let the numbers in A be $z_{1}<z_{2}<\ldots<z_{n}$.
- Let $X_{i, j}$ denote an indicator random variable for all $1 \leq i<j \leq n$.
- If z_{i} is compared to z_{j} during the execution of the algorithm, $X_{i, j}=1$.
- Otherwise $X_{i, j}=0$

The total no. of comparisons X is given by

$$
X=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} x_{i, j}
$$

- Correct because $X_{i, j}$ takes only values from $\{0,1\}$
- Also because no two z_{i} and z_{j} are compared more than once.

Analysis of Randomized Quicksort

- Let the numbers in A be $z_{1}<z_{2}<\ldots<z_{n}$.
- Let $X_{i, j}$ denote an indicator random variable for all $1 \leq i<j \leq n$.
- If z_{i} is compared to z_{j} during the execution of the algorithm, $X_{i, j}=1$.
- Otherwise $X_{i, j}=0$

The total no. of comparisons X is given by

$$
X=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{i, j}
$$

- Correct because $X_{i, j}$ takes only values from $\{0,1\}$.
- Also because no two z_{i} and z_{j} are compared more than once.

Analysis of Randomized Quicksort

- Need to calculate expected number of comparisons $E(X)$.

Linearity of Expectations

- For indicator random variable, $E\left(X_{i, j}\right)=\operatorname{Pr}\left(X_{i, j}=1\right)$
- What is the probability that z_{i} was compared to z_{j} ?

Analysis of Randomized Quicksort

- Need to calculate expected number of comparisons $E(X)$.

Linearity of Expectations

$$
E(X)=E\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{i, j}\right]=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E\left(X_{i, j}\right)
$$

- For indicator random variable, $E\left(X_{i, j}\right)=\operatorname{Pr}\left(X_{i, j}=1\right)$
- What is the probability that z_{i} was compared to z_{j} ?

Analysis of Randomized Quicksort

- Need to calculate expected number of comparisons $E(X)$.

Linearity of Expectations

$$
E(X)=E\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{i, j}\right]=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E\left(X_{i, j}\right)
$$

- For indicator random variable, $E\left(X_{i, j}\right)=\operatorname{Pr}\left(X_{i, j}=1\right)$
- What is the probability that z_{i} was compared to z_{j} ?

Analysis of Randomized Quicksort

- Need to calculate expected number of comparisons $E(X)$.

Linearity of Expectations

$$
E(X)=E\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{i, j}\right]=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E\left(X_{i, j}\right)
$$

- For indicator random variable, $E\left(X_{i, j}\right)=\operatorname{Pr}\left(X_{i, j}=1\right)$
- What is the probability that z_{i} was compared to z_{j} ?

Analysis of Randomized Quicksort

- Let $Z_{i, j}=\left\{z_{i}, z_{i+1}, \ldots, z_{j}\right\}$
- z_{i} is compared to z_{j} if and only if one of them is chosen as pivot.

Claim

```
Xi;=1(\mp@subsup{z}{i}{}\mathrm{ is compared to }\mp@subsup{z}{j}{})\mathrm{ if and only if the first pivot chosen from}
zi,j is zi or zj.
```

- As long as pivots in $Z_{i, j}$ are not chosen, z_{i} and z_{j} are never separated by the algorithm.
- If z_{i} or z_{j} is the first pivot chosen from $z_{i, j}$, then z_{i} is compared to z_{j}.
- If the first pivot is from $z_{i, j} \backslash\left\{z_{i}, z_{j}\right\}$, then z_{i} and z_{j} are never compared.

Analysis of Randomized Quicksort

- Let $Z_{i, j}=\left\{z_{i}, z_{i+1}, \ldots, z_{j}\right\}$
- z_{i} is compared to z_{j} if and only if one of them is chosen as pivot.

```
Claim
\(=1\left(z_{i}\right.\) is compared to \(\left.z_{j}\right)\) if and only if the first pivot chosen from is \(z_{i}\) or \(z_{j}\).
```

- As long as pivots in $Z_{i, j}$ are not chosen, z_{i} and z_{j} are never separated by the algorithm.
- If z_{i} or z_{j} is the first pivot chosen from $z_{i, j}$, then z_{i} is compared to z_{j}.
- If the first pivot is from $z_{i, j} \backslash\left\{z_{i}, z_{j}\right\}$, then z_{i} and z_{j} are never compared.

Analysis of Randomized Quicksort

- Let $Z_{i, j}=\left\{z_{i}, z_{i+1}, \ldots, z_{j}\right\}$
- z_{i} is compared to z_{j} if and only if one of them is chosen as pivot.

Claim

$X_{i, j}=1\left(z_{i}\right.$ is compared to $\left.z_{j}\right)$ if and only if the first pivot chosen from $Z_{i, j}$ is z_{i} or z_{j}.

- As long as pivots in $Z_{i, j}$ are not chosen, z_{i} and z_{j} are never separated by the algorithm.
- If z_{i} or z_{j} is the first pivot chosen from $z_{i, j}$, then z_{i} is compared to
- If the first pivot is from $Z_{i, j} \backslash\left\{z_{i}, z_{j}\right\}$, then z_{i} and z_{j} are never compared.

Analysis of Randomized Quicksort

- Let $Z_{i, j}=\left\{z_{i}, z_{i+1}, \ldots, z_{j}\right\}$
- z_{i} is compared to z_{j} if and only if one of them is chosen as pivot.

Claim

$X_{i, j}=1\left(z_{i}\right.$ is compared to $\left.z_{j}\right)$ if and only if the first pivot chosen from $Z_{i, j}$ is z_{i} or z_{j}.

- As long as pivots in $Z_{i, j}$ are not chosen, z_{i} and z_{j} are never separated by the algorithm.
- If z_{i} or z_{j} is the first pivot chosen from $z_{i, j}$, then z_{i} is compared to
- If the first pivot is from $Z_{i, j} \backslash\left\{z_{i}, z_{j}\right\}$, then z_{i} and z_{j} are never compared.

Analysis of Randomized Quicksort

- Let $Z_{i, j}=\left\{z_{i}, z_{i+1}, \ldots, z_{j}\right\}$
- z_{i} is compared to z_{j} if and only if one of them is chosen as pivot.

Claim

$X_{i, j}=1\left(z_{i}\right.$ is compared to $\left.z_{j}\right)$ if and only if the first pivot chosen from $Z_{i, j}$ is z_{i} or z_{j}.

- As long as pivots in $Z_{i, j}$ are not chosen, z_{i} and z_{j} are never separated by the algorithm.
- If z_{i} or z_{j} is the first pivot chosen from $z_{i, j}$, then z_{i} is compared to z_{j}.
- If the first pivot is from $z_{i, j} \backslash\left\{z_{i}, z_{j}\right\}$, then z_{i} and z_{j} are never compared.

Analysis of Randomized Quicksort

- Let $Z_{i, j}=\left\{z_{i}, z_{i+1}, \ldots, z_{j}\right\}$
- z_{i} is compared to z_{j} if and only if one of them is chosen as pivot.

Claim

$X_{i, j}=1\left(z_{i}\right.$ is compared to $\left.z_{j}\right)$ if and only if the first pivot chosen from $Z_{i, j}$ is z_{i} or z_{j}.

- As long as pivots in $Z_{i, j}$ are not chosen, z_{i} and z_{j} are never separated by the algorithm.
- If z_{i} or z_{j} is the first pivot chosen from $z_{i, j}$, then z_{i} is compared to z_{j}.
- If the first pivot is from $Z_{i, j} \backslash\left\{z_{i}, z_{j}\right\}$, then z_{i} and z_{j} are never compared.

Analysis of Randomized Quicksort

- What is the probability that z_{i} was compared to z_{j} ?
- What is the probability that z_{i} or z_{j} is the first chosen pivot from $Z_{i, j}$?
- Since $\left|z_{i, j}\right|=j-i+1$,

$$
E\left(X_{i, j}\right)=\operatorname{Pr}\left(X_{i, j}=1\right)=2 /(j-i+1) .
$$

Analysis of Randomized Quicksort

- What is the probability that z_{i} was compared to z_{j} ?
- What is the probability that z_{i} or z_{j} is the first chosen pivot from $Z_{i, j}$?

$$
E\left(X_{i, j}\right)=\operatorname{Pr}\left(X_{i, j}=1\right)=2 /(j-i+1) .
$$

Analysis of Randomized Quicksort

- What is the probability that z_{i} was compared to z_{j} ?
- What is the probability that z_{i} or z_{j} is the first chosen pivot from $Z_{i, j}$?
- Since $\left|Z_{i, j}\right|=j-i+1$,

$$
E\left(X_{i, j}\right)=\operatorname{Pr}\left(X_{i, j}=1\right)=2 /(j-i+1) .
$$

Analysis of Randomized Quicksort

$$
\begin{aligned}
E(X) & =\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E\left(X_{i, j}\right) \\
& =\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} 2 /(j-i+1) \\
& =2 \cdot \sum_{i=1}^{n-1}\left(\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n-i+1}\right) \\
& \leq 2 \cdot \sum_{i=1}^{n-1}\left(\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}\right)=2(n-1) H_{n}
\end{aligned}
$$

Analysis of Randomized Quicksort

$$
\begin{aligned}
H_{n} & =\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n} \\
& \leq \int_{1}^{n} \frac{1}{y} d y \\
& =\ln n-\ln 1=\ln n
\end{aligned}
$$

- $1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$ is the harmonic series.
- H_{n} is $\Theta(\log n)$.

$$
E(X)=2(n-1) H_{n}=\Theta(n \log n) .
$$

Analysis of Randomized Quicksort

$$
\begin{aligned}
H_{n} & =\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n} \\
& \leq \int_{1}^{n} \frac{1}{y} d y \\
& =\ln n-\ln 1=\ln n
\end{aligned}
$$

- $1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$ is the harmonic series.
- H_{n} is $\Theta(\log n)$.

$$
E(X)=2(n-1) H_{n}=\Theta(n \log n)
$$

Analysis of Randomized Quicksort

$$
\begin{aligned}
H_{n} & =\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n} \\
& \leq \int_{1}^{n} \frac{1}{y} d y \\
& =\ln n-\ln 1=\ln n
\end{aligned}
$$

- $1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$ is the harmonic series.
- H_{n} is $\Theta(\log n)$.

$$
E(X)=2(n-1) H_{n}=\Theta(n \log n)
$$

Randomized Quicksort

Theorem

Randomized Quicksort correctly sorts the input array in-place and requires $\Theta(n \log n)$ comparisons in expectation.

- Can still take $\Theta\left(n^{2}\right)$ time in worst case.
- But with low probability.
- Randomized quicksort is a Las Vegas algorithm.

Randomized Quicksort

Theorem
 Randomized Quicksort correctly sorts the input array in-place and requires $\Theta(n \log n)$ comparisons in expectation.

- Can still take $\Theta\left(n^{2}\right)$ time in worst case.
- But with low probability.
- Randomized quicksort is a Las Vegas algorithm.

Randomized Quicksort

Theorem
 Randomized Quicksort correctly sorts the input array in-place and requires $\Theta(n \log n)$ comparisons in expectation.

- Can still take $\Theta\left(n^{2}\right)$ time in worst case.
- But with low probability.
- Randomized quicksort is a Las Vegas algorithm.

Randomized Quicksort

Theorem
 Randomized Quicksort correctly sorts the input array in-place and requires $\Theta(n \log n)$ comparisons in expectation.

- Can still take $\Theta\left(n^{2}\right)$ time in worst case.
- But with low probability.
- Randomized quicksort is a Las Vegas algorithm.

Outline

(9) Introduction

(2) Polynomial Identity Testing

(3) Randomized Quicksort

(4) Randomized Min-Cut
(5) Finally

Global Min-Cut

A cut of a graph is a set of edges, which when removed, disconnects the graph. Given a connected undirected graph $G=(V, E)$, find a cut which has minimum cardinality.

Figure: Courtesy: Andreas Klappenecker

- Applications: Clustering, Network Reliability etc.
- Various deterministic algorithms known
- All are complex to describe

Global Min-Cut

A cut of a graph is a set of edges, which when removed, disconnects the graph. Given a connected undirected graph $G=(V, E)$, find a cut which has minimum cardinality.

Figure: Courtesy: Andreas Klappenecker

- Applications: Clustering, Network Reliability etc.
- Various deterministic algorithms known
- All are complex to describe

Edge Contraction

To contract an edge $e=\{x, y\}$ of G, we merge the vertices x and y to create a single vertex $x y$. We retain the multiple edges that may result but don't retain the self loops.

Figure: Courtesy: Jeff Erickson

- The collapsed graph is denoted by G / e.
- G/e need not be a simple graph.
- Contraction can be done in $\Theta(n)$ time.

Edge Contraction

To contract an edge $e=\{x, y\}$ of G, we merge the vertices x and y to create a single vertex $x y$. We retain the multiple edges that may result but don't retain the self loops.

Figure: Courtesy: Jeff Erickson

- The collapsed graph is denoted by G / e.
- G/e need not be a simple graph.
- Contraction can be done in $\Theta(n)$ time.

Edge Contraction

To contract an edge $e=\{x, y\}$ of G, we merge the vertices x and y to create a single vertex $x y$. We retain the multiple edges that may result but don't retain the self loops.

Figure: Courtesy: Jeff Erickson

- The collapsed graph is denoted by G / e.
- G/e need not be a simple graph.
- Contraction can be done in $\Theta(n)$ time.

Karger's Min-Cut Algorithm

Randomized Min-Cut

- Pick an edge $e=\{x, y\}$ at random.
- Contract the edge e and get $G^{\prime}=G / e$.
- If there are more than 2 vertices, repeat.
- Else, output the edges remaining as your cut.
- Caution: Picking e at random is not the same as picking two connected vertices x, y at random.
- This algorithms completes in $\Theta\left(n^{2}\right)$ time.

Illustration of the Algorithm: Successful

Figure: Courtesy: Andreas Klappenecker

Illustration of the Algorithm: Unsuccessful

Figure: Courtesy: Andreas Klappenecker

Observations

- A cut of G^{\prime} is a cut of G.
- The min-cut size of the successive graphs never decrease.
- The algorithm returns a cut of the graph.
- The cut need not be minimal.

```
Claim 1
Cut C is returned as long as none of the edges e e C are randomly
chosen.
```


Observations

- A cut of G^{\prime} is a cut of G.
- The min-cut size of the successive graphs never decrease.
- The algorithm returns a cut of the graph.
- The cut need not be minimal.

```
Claim 1
Cut C is returned as long as none of the edges e e C are randomly chosen.
```


Observations

- A cut of G^{\prime} is a cut of G.
- The min-cut size of the successive graphs never decrease.
- The algorithm returns a cut of the graph.
- The cut need not be minimal.

Claim 1

Cut C is returned as long as none of the edges $e \in C$ are randomly chosen.

More observations

Claim 2

Let C be a min-cut of G. The probability that an edge in C is contracted in the first step is at most $2 / n$.

More observations

Claim 2

Let C be a min-cut of G. The probability that an edge in C is contracted in the first step is at most $2 / n$.

Proof

- If $|C|=k$, then all vertices have degree at least k.
- Else the single vertex can form a cut smaller than C.
- Total number of edges $|E| \geq k n / 2$.
- $\operatorname{Pr}($ edge $e \in C$ is chosen $) \leq \frac{k}{k n / 2}=2 / n$.

More observations

Claim 2

Let C be a min-cut of G. The probability that an edge in C is contracted in the first step is at most $2 / n$.

Proof

- If $|C|=k$, then all vertices have degree at least k.
- Else the single vertex can form a cut smaller than C.
- Total number of edges $|E| \geq k n / 2$.
- $\operatorname{Pr}($ edge $e \in C$ is chosen)

More observations

Claim 2

Let C be a min-cut of G. The probability that an edge in C is contracted in the first step is at most $2 / n$.

Proof

- If $|C|=k$, then all vertices have degree at least k.
- Else the single vertex can form a cut smaller than C.
- Total number of edges $|E| \geq k n / 2$.
- $\operatorname{Pr}($ edge $e \in C$ is chosen $) \leq \frac{k}{k n / 2}=2 / n$.

More observations

Claim 3

Let C be a min-cut of G. If C remains a cut of the graph after i steps, the probability that an edge in C is contracted in step $i+1$ is at most $2 / n-i$.

More observations

Claim 3

Let C be a min-cut of G. If C remains a cut of the graph after i steps, the probability that an edge in C is contracted in step $i+1$ is at most $2 / n-i$.

Proof

- If C remains a cut after i steps, then it is a min-cut of the graph.
- Since C is a min-cut, total number of edges $|E| \geq|C|(n-i) / 2$.
- $\operatorname{Pr}($ edge $e \in C$ is chosen $) \leq \frac{|C|}{|C|(n-i) / 2}=2 /(n-i)$.

More observations

Claim 3

Let C be a min-cut of G. If C remains a cut of the graph after i steps, the probability that an edge in C is contracted in step $i+1$ is at most $2 / n-i$.

Proof

- If C remains a cut after i steps, then it is a min-cut of the graph.
- Since C is a min-cut, total number of edges $|E| \geq|C|(n-i) / 2$. - $\operatorname{Pr}($ edge $e \in C$ is chosen $) \leq \frac{|C|}{\mid C(n-i) / 2}=2 /(n-i)$.

More observations

Claim 3

Let C be a min-cut of G. If C remains a cut of the graph after i steps, the probability that an edge in C is contracted in step $i+1$ is at most $2 / n-i$.

Proof

- If C remains a cut after i steps, then it is a min-cut of the graph.
- Since C is a min-cut, total number of edges $|E| \geq|C|(n-i) / 2$.
- $\operatorname{Pr}($ edge $e \in C$ is chosen $) \leq \frac{|C|}{\mid C(n-i) / 2}=2 /(n-i)$.

Success Probability

Main Theorem
If C is a min-cut of G, then the algorithm outputs C with probability at least $2 / n(n-1)$.

Success Probability

Main Theorem

If C is a min-cut of G, then the algorithm outputs C with probability at least $2 / n(n-1)$.

Proof

- C remains in the graph if none of its edges are chosen till step $n-2$.
- Probability that none of its edges are chosen in any step is

Success Probability

Main Theorem

If C is a min-cut of G, then the algorithm outputs C with probability at least $2 / n(n-1)$.

Proof

- C remains in the graph if none of its edges are chosen till step $n-2$.
- Probability that none of its edges are chosen in any step is

$$
\begin{aligned}
& \geq\left(1-\frac{2}{n}\right)\left(1-\frac{2}{n-1}\right) \ldots\left(1-\frac{2}{3}\right) \\
& =\left(\frac{n-2}{n}\right)\left(\frac{n-3}{n-1}\right) \ldots\left(\frac{1}{3}\right)=\frac{2}{n(n-1)}
\end{aligned}
$$

Boosting

Main Theorem

If C is a min-cut of G, then the algorithm outputs C with probability at least $2 / n(n-1)$.

- We can improve this by repeating the algorithm

```
\operatorname { P r } ( C \text { is not chosen in any of t trials } ) \leq ( 1 - \frac { 2 } { n ( n - 1 ) } )
```

- Setting $t=n(n-1) / 2$ gives us that the probability of failure is
- We can boost even further using more repeats.

> Theorem
> If C is a min-cut of G, then the probability that any of the $n(n-1) / 2$ repeated trials of the algorithm does not output C is at most $1 / e$.

Boosting

Main Theorem

If C is a min-cut of G, then the algorithm outputs C with probability at least $2 / n(n-1)$.

- We can improve this by repeating the algorithm

$$
\operatorname{Pr}(C \text { is not chosen in any of } t \text { trials }) \leq\left(1-\frac{2}{n(n-1)}\right)^{t}
$$

- Setting $t=n(n-1) / 2$ gives us that the probability of failure is
- We can boost even further using more repeats.

Theorem

\square repeated trials of the algorithm does not output C is at most $1 / e$.

Boosting

Main Theorem

If C is a min-cut of G, then the algorithm outputs C with probability at least $2 / n(n-1)$.

- We can improve this by repeating the algorithm

$$
\operatorname{Pr}(C \text { is not chosen in any of } t \text { trials }) \leq\left(1-\frac{2}{n(n-1)}\right)^{t}
$$

- Setting $t=n(n-1) / 2$ gives us that the probability of failure is $\leq 1 / e$.
- We can boost even further using more repeats.

Boosting

Main Theorem

If C is a min-cut of G, then the algorithm outputs C with probability at least $2 / n(n-1)$.

- We can improve this by repeating the algorithm

$$
\operatorname{Pr}(C \text { is not chosen in any of } t \text { trials }) \leq\left(1-\frac{2}{n(n-1)}\right)^{t}
$$

- Setting $t=n(n-1) / 2$ gives us that the probability of failure is $\leq 1 / e$.
- We can boost even further using more repeats.

Theorem

If C is a min-cut of G, then the probability that any of the $n(n-1) / 2$ repeated trials of the algorithm does not output C is at most $1 / e$.

Boosting

Theorem

If C is a min-cut of G, then the probability that any of the $n(n-1) / 2$ repeated trials of the algorithm does not output C is at most $1 / e$.

- In $\Theta\left(n^{4}\right)$ time we can get the probability of failure to any constant by further repeats.

Counting Min-Cuts

Main Theorem

If C is a min-cut of G, then the algorithm outputs C with probability at least $2 / n(n-1)$.

- If G has k min-cuts, $C_{1}, C_{2}, \ldots, C_{k}$, then the above theorem can be applied for each C_{i}.
- Each of these events are mutually exclusive, since the algorithm outputs only one cut.
- The probability of outputting any min-cut is at least $2 k / n(n-1)$.
- Since a probability cannot exceed 1, we can conclude that $k \leq n(n-1) / 2$

Counting Min-Cuts

Main Theorem

If C is a min-cut of G, then the algorithm outputs C with probability at least $2 / n(n-1)$.

- If G has k min-cuts, $C_{1}, C_{2}, \ldots, C_{k}$, then the above theorem can be applied for each C_{i}.
- Each of these events are mutually exclusive, since the algorithm outputs only one cut.
- The probability of outputting any min-cut is at least $2 k / n(n-1)$.
- Since a probability cannot exceed 1 , we can conclude that $k \leq n(n-1) / 2$.

Counting Min-Cuts

Main Theorem

If C is a min-cut of G, then the algorithm outputs C with probability at least $2 / n(n-1)$.

- If G has k min-cuts, $C_{1}, C_{2}, \ldots, C_{k}$, then the above theorem can be applied for each C_{i}.
- Each of these events are mutually exclusive, since the algorithm outputs only one cut.
- The probability of outputting any min-cut is at least $2 k / n(n-1)$.
- Since a probability cannot exceed 1 , we can conclude that $k \leq n(n-1) / 2$.

Counting Min-Cuts

Main Theorem

If C is a min-cut of G, then the algorithm outputs C with probability at least $2 / n(n-1)$.

- If G has k min-cuts, $C_{1}, C_{2}, \ldots, C_{k}$, then the above theorem can be applied for each C_{i}.
- Each of these events are mutually exclusive, since the algorithm outputs only one cut.
- The probability of outputting any min-cut is at least $2 k / n(n-1)$.
- Since a probability cannot exceed 1 , we can conclude that $k \leq n(n-1) / 2$.

Counting Min-Cuts

Main Theorem

If C is a min-cut of G, then the algorithm outputs C with probability at least $2 / n(n-1)$.

- If G has k min-cuts, $C_{1}, C_{2}, \ldots, C_{k}$, then the above theorem can be applied for each C_{i}.
- Each of these events are mutually exclusive, since the algorithm outputs only one cut.
- The probability of outputting any min-cut is at least $2 k / n(n-1)$.
- Since a probability cannot exceed 1 , we can conclude that $k \leq n(n-1) / 2$.

Outline

(1) Introduction

(2) Polynomial Identity Testing

(3) Randomized Quicksort

4 Randomized Min-Cut

(5) Finally

Some points to take-away

- Randomized algorithms usually lead to extremely simple algorithms to describe and program.
- The power of randomness is not clear, it is not clear whether randomized algorithms help us in solving more problems in polynomial time.
BPP, RP and ZPP are a few randomized polynomial time complexity classes. We do not know if any one of them is distinct from P.
- However, it seems that randomness makes it easier to solve problems.
- Randomness must be treated as a resource. Pure, unbiased random bits are very expensive to obtain.

Some points to take-away

- Randomized algorithms usually lead to extremely simple algorithms to describe and program.
- The power of randomness is not clear, it is not clear whether randomized algorithms help us in solving more problems in polynomial time. BPP, RP and ZPP are a few randomized polynomial time complexity classes. We do not know if any one of them is distinct from P.
- However, it seems that randomness makes it easier to solve problems.
- Randomness must be treated as a resource. Pure, unbiased random bits are very expensive to obtain.

Some points to take-away

- Randomized algorithms usually lead to extremely simple algorithms to describe and program.
- The power of randomness is not clear, it is not clear whether randomized algorithms help us in solving more problems in polynomial time.
BPP, RP and ZPP are a few randomized polynomial time complexity classes. We do not know if any one of them is distinct from P.
- However, it seems that randomness makes it easier to solve problems.
- Randomness must be treated as a resource. Pure, unbiased random bits are very expensive to obtain.

Some points to take-away

- Randomized algorithms usually lead to extremely simple algorithms to describe and program.
- The power of randomness is not clear, it is not clear whether randomized algorithms help us in solving more problems in polynomial time.
BPP, RP and ZPP are a few randomized polynomial time complexity classes. We do not know if any one of them is distinct from P.
- However, it seems that randomness makes it easier to solve problems.
- Randomness must be treated as a resource. Pure, unbiased random bits are very expensive to obtain.

References

Michael Mitzenmacher and Eli Upfal, Probability and Computing: Randomized Algorithms and Probabilistic Analysis, Cambridge University Press, 2005.

Rajeev Motwani and Prabhakar Raghavan, Randomized Algorithms, Cambridge University Press, 1997.

回 Various lecture notes.

int getRandomNumber()
 \{
 return 4; // chosen by fair dice roll. // guaranteed to be random.

\}

Figure: XKCD Webcomic by Randall Munroe

Thank You

