
Introduction Area Inclusion Hull Art Gallery

Introduction to Computational Geometry

Partha P. Goswami
(ppg.rpe@caluniv.ac.in)

Institute of Radiophysics and Electronics
University of Calcutta

92, APC Road, Kolkata - 700009, West Bengal, India.



Introduction Area Inclusion Hull Art Gallery

Outline

1 Introduction

2 Area of a Simple Polygon

3 Point Inclusion in a Simple Polygon

4 Convex Hull: An application of incremental algorithm

5 Art Gallery Problem: A study of combinatorial geometry



Introduction Area Inclusion Hull Art Gallery

Introduction

Computational Geometry (CG) involves study of algorithms
for solving geometric problems on a computer. The emphasis
is more on discrete nature of geometric problems as opposed
to continuous issues.

There are many areas in computer science like computer
graphics, computer vision and image processing, robotics,
computer-aided designing (CAD), geographic information
systems (GIS), etc. that give rise to geometric problems.

If one assumes Michael Ian Shamos’s thesis [Shamos M. I.,
1978] as the starting point, then this branch of study is
around thirty five years old.



Introduction Area Inclusion Hull Art Gallery

Introduction

Computational Geometry (CG) involves study of algorithms
for solving geometric problems on a computer. The emphasis
is more on discrete nature of geometric problems as opposed
to continuous issues.

There are many areas in computer science like computer
graphics, computer vision and image processing, robotics,
computer-aided designing (CAD), geographic information
systems (GIS), etc. that give rise to geometric problems.

If one assumes Michael Ian Shamos’s thesis [Shamos M. I.,
1978] as the starting point, then this branch of study is
around thirty five years old.



Introduction Area Inclusion Hull Art Gallery

Introduction

Computational Geometry (CG) involves study of algorithms
for solving geometric problems on a computer. The emphasis
is more on discrete nature of geometric problems as opposed
to continuous issues.

There are many areas in computer science like computer
graphics, computer vision and image processing, robotics,
computer-aided designing (CAD), geographic information
systems (GIS), etc. that give rise to geometric problems.

If one assumes Michael Ian Shamos’s thesis [Shamos M. I.,
1978] as the starting point, then this branch of study is
around thirty five years old.



Introduction Area Inclusion Hull Art Gallery

Introduction

Any problem that is to be solved using a digital computer has
to be discrete in form. It is the same with CG.

For CG techniques to be applied to areas that involves
continuous issues, discrete approximations to continuous
curves or surfaces are needed.

CG algorithms suffer from the curse of degeneracies. So, we
would make certain simplifying assumptions at times like no
three points are collinear, no four points are cocircular, etc.

Programming in CG is a little difficult. Fortunately, libraries
like LEDA [LEDA, www.algorithmic-solutions.com] and CGAL
[CGAL, www.cgal.com] are now available. These libraries
implement various data structures and algorithms specific to
CG.



Introduction Area Inclusion Hull Art Gallery

Introduction

Any problem that is to be solved using a digital computer has
to be discrete in form. It is the same with CG.

For CG techniques to be applied to areas that involves
continuous issues, discrete approximations to continuous
curves or surfaces are needed.

CG algorithms suffer from the curse of degeneracies. So, we
would make certain simplifying assumptions at times like no
three points are collinear, no four points are cocircular, etc.

Programming in CG is a little difficult. Fortunately, libraries
like LEDA [LEDA, www.algorithmic-solutions.com] and CGAL
[CGAL, www.cgal.com] are now available. These libraries
implement various data structures and algorithms specific to
CG.



Introduction Area Inclusion Hull Art Gallery

Introduction

Any problem that is to be solved using a digital computer has
to be discrete in form. It is the same with CG.

For CG techniques to be applied to areas that involves
continuous issues, discrete approximations to continuous
curves or surfaces are needed.

CG algorithms suffer from the curse of degeneracies. So, we
would make certain simplifying assumptions at times like no
three points are collinear, no four points are cocircular, etc.

Programming in CG is a little difficult. Fortunately, libraries
like LEDA [LEDA, www.algorithmic-solutions.com] and CGAL
[CGAL, www.cgal.com] are now available. These libraries
implement various data structures and algorithms specific to
CG.



Introduction Area Inclusion Hull Art Gallery

Introduction

Any problem that is to be solved using a digital computer has
to be discrete in form. It is the same with CG.

For CG techniques to be applied to areas that involves
continuous issues, discrete approximations to continuous
curves or surfaces are needed.

CG algorithms suffer from the curse of degeneracies. So, we
would make certain simplifying assumptions at times like no
three points are collinear, no four points are cocircular, etc.

Programming in CG is a little difficult. Fortunately, libraries
like LEDA [LEDA, www.algorithmic-solutions.com] and CGAL
[CGAL, www.cgal.com] are now available. These libraries
implement various data structures and algorithms specific to
CG.



Introduction Area Inclusion Hull Art Gallery

Introduction

In this lecture, we touch upon a few simple topics for having a
glimpse of the area of computational geometry.

First we consider some geometric primitives, that is, problems
that arise frequently in computational geometry.

Then we study a few classical CG problems.



Introduction Area Inclusion Hull Art Gallery

Introduction

In this lecture, we touch upon a few simple topics for having a
glimpse of the area of computational geometry.

First we consider some geometric primitives, that is, problems
that arise frequently in computational geometry.

Then we study a few classical CG problems.



Introduction Area Inclusion Hull Art Gallery

Introduction

In this lecture, we touch upon a few simple topics for having a
glimpse of the area of computational geometry.

First we consider some geometric primitives, that is, problems
that arise frequently in computational geometry.

Then we study a few classical CG problems.



Introduction Area Inclusion Hull Art Gallery

Outline

1 Introduction

2 Area of a Simple Polygon

3 Point Inclusion in a Simple Polygon

4 Convex Hull: An application of incremental algorithm

5 Art Gallery Problem: A study of combinatorial geometry



Introduction Area Inclusion Hull Art Gallery

Area Computation

Problem

Given a simple polygon P of n
vertices, compute its area.

Definition

A sinple polygon is the region of
a plane bounded by a finite
collection of line segments
forming a simple closed curve.

Let us first solve the
problem for convex polygon.



Introduction Area Inclusion Hull Art Gallery

Area Computation

Problem

Given a simple polygon P of n
vertices, compute its area.

Definition

A sinple polygon is the region of
a plane bounded by a finite
collection of line segments
forming a simple closed curve.

Let us first solve the
problem for convex polygon.

p1

p2pn

pn−1



Introduction Area Inclusion Hull Art Gallery

Area Computation

Problem

Given a simple polygon P of n
vertices, compute its area.

Definition

A sinple polygon is the region of
a plane bounded by a finite
collection of line segments
forming a simple closed curve.

Let us first solve the
problem for convex polygon.

p1

p2pn

pn−1



Introduction Area Inclusion Hull Art Gallery

Area Computation

Area of a convex polygon

Find a point inside P, draw n
triangles and compute the area.

A better idea for convex polygon

We can triangulate P by
non-crossing diagonals into n − 2
triangles and then find the area.

Area of a simple polygon

We can do likewise.



Introduction Area Inclusion Hull Art Gallery

Area Computation

Area of a convex polygon

Find a point inside P, draw n
triangles and compute the area.

A better idea for convex polygon

We can triangulate P by
non-crossing diagonals into n − 2
triangles and then find the area.

Area of a simple polygon

We can do likewise.



Introduction Area Inclusion Hull Art Gallery

Area Computation

Area of a convex polygon

Find a point inside P, draw n
triangles and compute the area.

A better idea for convex polygon

We can triangulate P by
non-crossing diagonals into n − 2
triangles and then find the area.

Area of a simple polygon

We can do likewise.

p1

p2pn

pn−1



Introduction Area Inclusion Hull Art Gallery

Area Computation

Result

If P be a simple polygon with n vertices with coordinates of the
vertex pi being (xi , yi ), 1 ≤ i ≤ n, then twice the area of P is given
by

2A(P) =
n∑

i=1

(xiyi+1 − yixi+1)



Introduction Area Inclusion Hull Art Gallery

Polygon Triangulation

Theorem

Any simple polygon can be triangulated.

Theorem

A simple polygon can be triangulated into (n − 2) triangles by
(n − 3) non-crossing diagonals.

Proof.

The proof is by induction on n.

Time complexity

We can triangulate P by a very complicated O(n) time algorithm
[Chazelle B., 1991] OR by a more or less simple O(n log n) time
algorithm [Berg M. d. et. al., 1997].



Introduction Area Inclusion Hull Art Gallery

Polygon Triangulation

Theorem

Any simple polygon can be triangulated.

Theorem

A simple polygon can be triangulated into (n − 2) triangles by
(n − 3) non-crossing diagonals.

Proof.

The proof is by induction on n.

Time complexity

We can triangulate P by a very complicated O(n) time algorithm
[Chazelle B., 1991] OR by a more or less simple O(n log n) time
algorithm [Berg M. d. et. al., 1997].



Introduction Area Inclusion Hull Art Gallery

Polygon Triangulation

Theorem

Any simple polygon can be triangulated.

Theorem

A simple polygon can be triangulated into (n − 2) triangles by
(n − 3) non-crossing diagonals.

Proof.

The proof is by induction on n.

Time complexity

We can triangulate P by a very complicated O(n) time algorithm
[Chazelle B., 1991] OR by a more or less simple O(n log n) time
algorithm [Berg M. d. et. al., 1997].



Introduction Area Inclusion Hull Art Gallery

Polygon Triangulation

Theorem

Any simple polygon can be triangulated.

Theorem

A simple polygon can be triangulated into (n − 2) triangles by
(n − 3) non-crossing diagonals.

Proof.

The proof is by induction on n.

Time complexity

We can triangulate P by a very complicated O(n) time algorithm
[Chazelle B., 1991] OR by a more or less simple O(n log n) time
algorithm [Berg M. d. et. al., 1997].



Introduction Area Inclusion Hull Art Gallery

Outline

1 Introduction

2 Area of a Simple Polygon

3 Point Inclusion in a Simple Polygon

4 Convex Hull: An application of incremental algorithm

5 Art Gallery Problem: A study of combinatorial geometry



Introduction Area Inclusion Hull Art Gallery

Point Inclusion

Problem

Given a simple polygon P of n
points, and a query point q, is
q ∈ P?

What if P is convex?

Can be done in O(n).

Takes a little effort to do it
in O(log n). Left as an
exercise.

q P



Introduction Area Inclusion Hull Art Gallery

Point Inclusion

Problem

Given a simple polygon P of n
points, and a query point q, is
q ∈ P?

What if P is convex?

Can be done in O(n).

Takes a little effort to do it
in O(log n). Left as an
exercise.



Introduction Area Inclusion Hull Art Gallery

Point Inclusion

Problem

Given a simple polygon P of n
points, and a query point q, is
q ∈ P?

What if P is convex?

Can be done in O(n).

Takes a little effort to do it
in O(log n). Left as an
exercise.

qp1
p2 p3

p4

p5

p6

p7

p8

p9
q

q is always to the right if q ∈ P ,
else, it varies



Introduction Area Inclusion Hull Art Gallery

Point Inclusion

Problem

Given a simple polygon P of n
points, and a query point q, is
q ∈ P?

What if P is convex?

Can be done in O(n).

Takes a little effort to do it
in O(log n). Left as an
exercise.

qp1
p2 p3

p4

p5

p6

p7

p8

p9
q

q is always to the right if q ∈ P ,
else, it varies



Introduction Area Inclusion Hull Art Gallery

Point Inclusion

Another idea for convex polygon

Stand at q and walk around the
polygon.

Point inclusion for polygon

We can show that the same
result holds for a simple polygon
also.

q

p1
p2 p3

p4

p5

p6

p7

p8

p9
q

Total angular turn around q is 2π if q ∈ P ,
else, 0



Introduction Area Inclusion Hull Art Gallery

Point Inclusion

Another idea for convex polygon

Stand at q and walk around the
polygon.

Point inclusion for polygon

We can show that the same
result holds for a simple polygon
also.

q

p1
p2 p3

p4

p5

p6

p7

p8

p9
q

Total angular turn around q is 2π if q ∈ P ,
else, 0



Introduction Area Inclusion Hull Art Gallery

Point Inclusion

Still another technique: Ray
Shooting

Shoot a ray and count the
number of crossings with
edges of P. If it is odd, then
q ∈ P. If it is even, then
q 6∈ P.

Time complexity is O(n).

Some degenerate cases need
to be taken care of.

q
P

q



Introduction Area Inclusion Hull Art Gallery

Point Inclusion

Still another technique: Ray
Shooting

Shoot a ray and count the
number of crossings with
edges of P. If it is odd, then
q ∈ P. If it is even, then
q 6∈ P.

Time complexity is O(n).

Some degenerate cases need
to be taken care of.

q
P

q



Introduction Area Inclusion Hull Art Gallery

Point Inclusion

Still another technique: Ray
Shooting

Shoot a ray and count the
number of crossings with
edges of P. If it is odd, then
q ∈ P. If it is even, then
q 6∈ P.

Time complexity is O(n).

Some degenerate cases need
to be taken care of.

q
P

q



Introduction Area Inclusion Hull Art Gallery

Outline

1 Introduction

2 Area of a Simple Polygon

3 Point Inclusion in a Simple Polygon

4 Convex Hull: An application of incremental algorithm

5 Art Gallery Problem: A study of combinatorial geometry



Introduction Area Inclusion Hull Art Gallery

Definitions

Definition

A set S ⊂ R2 is convex if for any
two points p, q ∈ S, pq ∈ S.

Definition

Let P be a set of points in R2.
Convex hull of P, denoted by
CH(P), is the smallest convex
set containing P.



Introduction Area Inclusion Hull Art Gallery

Definitions

Definition

A set S ⊂ R2 is convex if for any
two points p, q ∈ S, pq ∈ S.

Definition

Let P be a set of points in R2.
Convex hull of P, denoted by
CH(P), is the smallest convex
set containing P.

convex not convex

p

q

p

q

pqpq



Introduction Area Inclusion Hull Art Gallery

Definitions

Definition

A set S ⊂ R2 is convex if for any
two points p, q ∈ S, pq ∈ S.

Definition

Let P be a set of points in R2.
Convex hull of P, denoted by
CH(P), is the smallest convex
set containing P.



Introduction Area Inclusion Hull Art Gallery

Definitions

Definition

A set S ⊂ R2 is convex if for any
two points p, q ∈ S, pq ∈ S.

Definition

Let P be a set of points in R2.
Convex hull of P, denoted by
CH(P), is the smallest convex
set containing P.



Introduction Area Inclusion Hull Art Gallery

Definitions

Definition

A set S ⊂ R2 is convex if for any
two points p, q ∈ S, pq ∈ S.

Definition

Let P be a set of points in R2.
Convex hull of P, denoted by
CH(P), is the smallest convex
set containing P.



Introduction Area Inclusion Hull Art Gallery

Definitions

Definition

A set S ⊂ R2 is convex if for any
two points p, q ∈ S, pq ∈ S.

Definition

Let P be a set of points in R2.
Convex hull of P, denoted by
CH(P), is the smallest convex
set containing P.

Hull edge

Hull vertex



Introduction Area Inclusion Hull Art Gallery

Convex Hull Problem

Problem

Given a set of points P in the plane, compute the convex hull
CH(P) of the set P.



Introduction Area Inclusion Hull Art Gallery

A Naive Algorithm

Outline

Consider all line segments
determined by

(n
2

)
= O(n2)

pairs of points.

If a line segment has all the
other n − 2 points on one
side of it, then it is a hull
edge.

We need(n
2

)
(n − 2) = O(n3) time.



Introduction Area Inclusion Hull Art Gallery

A Naive Algorithm

Outline

Consider all line segments
determined by

(n
2

)
= O(n2)

pairs of points.

If a line segment has all the
other n − 2 points on one
side of it, then it is a hull
edge.

We need(n
2

)
(n − 2) = O(n3) time.

p

q



Introduction Area Inclusion Hull Art Gallery

A Naive Algorithm

Outline

Consider all line segments
determined by

(n
2

)
= O(n2)

pairs of points.

If a line segment has all the
other n − 2 points on one
side of it, then it is a hull
edge.

We need(n
2

)
(n − 2) = O(n3) time.

p

q



Introduction Area Inclusion Hull Art Gallery

Towards a Better Algorithm

How much betterment is possible?

Better characterizations lead to better algorithms.

How much better can we make?

Leads to the notion of lower bound of a problem.

The problem of Convex Hull has a lower bound of Ω(n log n).
This can be shown by a reduction from the problem of sorting
which also has a lower bound of Ω(n log n).



Introduction Area Inclusion Hull Art Gallery

Towards a Better Algorithm

How much betterment is possible?

Better characterizations lead to better algorithms.

How much better can we make?

Leads to the notion of lower bound of a problem.

The problem of Convex Hull has a lower bound of Ω(n log n).
This can be shown by a reduction from the problem of sorting
which also has a lower bound of Ω(n log n).



Introduction Area Inclusion Hull Art Gallery

Towards a Better Algorithm

How much betterment is possible?

Better characterizations lead to better algorithms.

How much better can we make?

Leads to the notion of lower bound of a problem.

The problem of Convex Hull has a lower bound of Ω(n log n).
This can be shown by a reduction from the problem of sorting
which also has a lower bound of Ω(n log n).



Introduction Area Inclusion Hull Art Gallery

Towards a Better Algorithm

How much betterment is possible?

Better characterizations lead to better algorithms.

How much better can we make?

Leads to the notion of lower bound of a problem.

The problem of Convex Hull has a lower bound of Ω(n log n).
This can be shown by a reduction from the problem of sorting
which also has a lower bound of Ω(n log n).



Introduction Area Inclusion Hull Art Gallery

Optimal Algorithms

Grahams scan, time complexity O(nlogn)
(Graham, R.L., 1972).

Divide and conquer algorithm, time complexity O(nlogn)
(Preparata, F. P. and Hong, S. J., 1977).

Jarvis’s march or gift wrapping algorithm, time complexity
O(nh) where h is the number of vertices of the convex hull.
(Jarvis, R. A., 1973)

Most efficient algorithm to date is based on the idea of
Jarvis’s march, time complexity O(nlogh)
(T. M. Chan, 1996).



Introduction Area Inclusion Hull Art Gallery

Definitions

A better characterization

Consider a walk in clockwise direction on
the vertices of a closed polygon.

Only for a convex polygon, we will make a
right turn always.

The incremental approach

Insert points in P one by one and update
the solution at each step.

We compute the upper hull first. The
upper hull contains the convex hull edges
that bound the convex hull from above.

The lower hull can be computed in a
similar fashion.

upper hull

lower hull

p1
pn



Introduction Area Inclusion Hull Art Gallery

Definitions

A better characterization

Consider a walk in clockwise direction on
the vertices of a closed polygon.

Only for a convex polygon, we will make a
right turn always.

The incremental approach

Insert points in P one by one and update
the solution at each step.

We compute the upper hull first. The
upper hull contains the convex hull edges
that bound the convex hull from above.

The lower hull can be computed in a
similar fashion.

upper hull

lower hull

p1
pn



Introduction Area Inclusion Hull Art Gallery

Definitions

A better characterization

Consider a walk in clockwise direction on
the vertices of a closed polygon.

Only for a convex polygon, we will make a
right turn always.

The incremental approach

Insert points in P one by one and update
the solution at each step.

We compute the upper hull first. The
upper hull contains the convex hull edges
that bound the convex hull from above.

The lower hull can be computed in a
similar fashion.

upper hull

lower hull

p1
pn



Introduction Area Inclusion Hull Art Gallery

Definitions

A better characterization

Consider a walk in clockwise direction on
the vertices of a closed polygon.

Only for a convex polygon, we will make a
right turn always.

The incremental approach

Insert points in P one by one and update
the solution at each step.

We compute the upper hull first. The
upper hull contains the convex hull edges
that bound the convex hull from above.

The lower hull can be computed in a
similar fashion.

upper hull

lower hull

p1
pn



Introduction Area Inclusion Hull Art Gallery

Definitions

A better characterization

Consider a walk in clockwise direction on
the vertices of a closed polygon.

Only for a convex polygon, we will make a
right turn always.

The incremental approach

Insert points in P one by one and update
the solution at each step.

We compute the upper hull first. The
upper hull contains the convex hull edges
that bound the convex hull from above.

The lower hull can be computed in a
similar fashion.

upper hull

lower hull

p1
pn



Introduction Area Inclusion Hull Art Gallery

Definitions

A better characterization

Consider a walk in clockwise direction on
the vertices of a closed polygon.

Only for a convex polygon, we will make a
right turn always.

The incremental approach

Insert points in P one by one and update
the solution at each step.

We compute the upper hull first. The
upper hull contains the convex hull edges
that bound the convex hull from above.

The lower hull can be computed in a
similar fashion.

upper hull

lower hull

p1
pn



Introduction Area Inclusion Hull Art Gallery

The pseudocode

Input: A set P of n points in the plane

Output: Vertices of CH(P) in clockwise order

Sort P according to x-coordinate to generate

a sequence of points p[1], p[2], ..., p[n];

Insert p[1] and then p[2] in a list L_U;

for i = 3 to n {

Append p[i] to L_U;

while(L_U contains more than two points AND

the last three points in L_U

do not make a right turn) {

Delete the middle of the last

three points from L_U;

}

}



Introduction Area Inclusion Hull Art Gallery

The pseudocode

Input: A set P of n points in the plane

Output: Vertices of CH(P) in clockwise order

Sort P according to x-coordinate to generate

a sequence of points p[1], p[2], ..., p[n];

Insert p[1] and then p[2] in a list L_U;

for i = 3 to n {

Append p[i] to L_U;

while(L_U contains more than two points AND

the last three points in L_U

do not make a right turn) {

Delete the middle of the last

three points from L_U;

}

}



Introduction Area Inclusion Hull Art Gallery

The pseudocode

Input: A set P of n points in the plane

Output: Vertices of CH(P) in clockwise order

Sort P according to x-coordinate to generate

a sequence of points p[1], p[2], ..., p[n];

Insert p[1] and then p[2] in a list L_U;

for i = 3 to n {

Append p[i] to L_U;

while(L_U contains more than two points AND

the last three points in L_U

do not make a right turn) {

Delete the middle of the last

three points from L_U;

}

}



Introduction Area Inclusion Hull Art Gallery

The pseudocode

Input: A set P of n points in the plane

Output: Vertices of CH(P) in clockwise order

Sort P according to x-coordinate to generate

a sequence of points p[1], p[2], ..., p[n];

Insert p[1] and then p[2] in a list L_U;

for i = 3 to n {

Append p[i] to L_U;

while(L_U contains more than two points AND

the last three points in L_U

do not make a right turn) {

Delete the middle of the last

three points from L_U;

}

}



Introduction Area Inclusion Hull Art Gallery

The pseudocode

Input: A set P of n points in the plane

Output: Vertices of CH(P) in clockwise order

Sort P according to x-coordinate to generate

a sequence of points p[1], p[2], ..., p[n];

Insert p[1] and then p[2] in a list L_U;

for i = 3 to n {

Append p[i] to L_U;

while(L_U contains more than two points AND

the last three points in L_U

do not make a right turn) {

Delete the middle of the last

three points from L_U;

}

}



Introduction Area Inclusion Hull Art Gallery

The pseudocode

Input: A set P of n points in the plane

Output: Vertices of CH(P) in clockwise order

Sort P according to x-coordinate to generate

a sequence of points p[1], p[2], ..., p[n];

Insert p[1] and then p[2] in a list L_U;

for i = 3 to n {

Append p[i] to L_U;

while(L_U contains more than two points AND

the last three points in L_U

do not make a right turn) {

Delete the middle of the last

three points from L_U;

}

}



Introduction Area Inclusion Hull Art Gallery

The pseudocode

Input: A set P of n points in the plane

Output: Vertices of CH(P) in clockwise order

Sort P according to x-coordinate to generate

a sequence of points p[1], p[2], ..., p[n];

Insert p[1] and then p[2] in a list L_U;

for i = 3 to n {

Append p[i] to L_U;

while(L_U contains more than two points AND

the last three points in L_U

do not make a right turn) {

Delete the middle of the last

three points from L_U;

}

}



Introduction Area Inclusion Hull Art Gallery

The pseudocode

Input: A set P of n points in the plane

Output: Vertices of CH(P) in clockwise order

Sort P according to x-coordinate to generate

a sequence of points p[1], p[2], ..., p[n];

Insert p[1] and then p[2] in a list L_U;

for i = 3 to n {

Append p[i] to L_U;

while(L_U contains more than two points AND

the last three points in L_U

do not make a right turn) {

Delete the middle of the last

three points from L_U;

}

}



Introduction Area Inclusion Hull Art Gallery

The Algorithm in Action

p1
pn



Introduction Area Inclusion Hull Art Gallery

The Algorithm in Action

p1
pn



Introduction Area Inclusion Hull Art Gallery

The Algorithm in Action

p1
pn



Introduction Area Inclusion Hull Art Gallery

The Algorithm in Action

p1
pn



Introduction Area Inclusion Hull Art Gallery

The Algorithm in Action

p1
pn



Introduction Area Inclusion Hull Art Gallery

The Algorithm in Action

p1
pn



Introduction Area Inclusion Hull Art Gallery

The Algorithm in Action

p1
pn



Introduction Area Inclusion Hull Art Gallery

The Algorithm in Action

p1
pn



Introduction Area Inclusion Hull Art Gallery

The Algorithm in Action

p1
pn



Introduction Area Inclusion Hull Art Gallery

The Algorithm in Action

p1
pn



Introduction Area Inclusion Hull Art Gallery

The Algorithm in Action

p1
pn



Introduction Area Inclusion Hull Art Gallery

The Algorithm in Action

p1
pn



Introduction Area Inclusion Hull Art Gallery

The Algorithm in Action

p1
pn



Introduction Area Inclusion Hull Art Gallery

The Algorithm in Action

p1
pn



Introduction Area Inclusion Hull Art Gallery

Analysis

Time complexity

Sorting takes time O(n log n).

The for loop is executed O(n) times.

For each execution of the for loop, the while loop is
encountered once.

For each execution of the while loop body, a point gets
deleted.

A point once deleted, is never deleted again.

So, the total number of executions of the while loop body is
bounded by O(n).

Hence, the total time complexity is O(n log n).



Introduction Area Inclusion Hull Art Gallery

Analysis

Time complexity

Sorting takes time O(n log n).

The for loop is executed O(n) times.

For each execution of the for loop, the while loop is
encountered once.

For each execution of the while loop body, a point gets
deleted.

A point once deleted, is never deleted again.

So, the total number of executions of the while loop body is
bounded by O(n).

Hence, the total time complexity is O(n log n).



Introduction Area Inclusion Hull Art Gallery

Analysis

Time complexity

Sorting takes time O(n log n).

The for loop is executed O(n) times.

For each execution of the for loop, the while loop is
encountered once.

For each execution of the while loop body, a point gets
deleted.

A point once deleted, is never deleted again.

So, the total number of executions of the while loop body is
bounded by O(n).

Hence, the total time complexity is O(n log n).



Introduction Area Inclusion Hull Art Gallery

Analysis

Time complexity

Sorting takes time O(n log n).

The for loop is executed O(n) times.

For each execution of the for loop, the while loop is
encountered once.

For each execution of the while loop body, a point gets
deleted.

A point once deleted, is never deleted again.

So, the total number of executions of the while loop body is
bounded by O(n).

Hence, the total time complexity is O(n log n).



Introduction Area Inclusion Hull Art Gallery

Analysis

Time complexity

Sorting takes time O(n log n).

The for loop is executed O(n) times.

For each execution of the for loop, the while loop is
encountered once.

For each execution of the while loop body, a point gets
deleted.

A point once deleted, is never deleted again.

So, the total number of executions of the while loop body is
bounded by O(n).

Hence, the total time complexity is O(n log n).



Introduction Area Inclusion Hull Art Gallery

Analysis

Time complexity

Sorting takes time O(n log n).

The for loop is executed O(n) times.

For each execution of the for loop, the while loop is
encountered once.

For each execution of the while loop body, a point gets
deleted.

A point once deleted, is never deleted again.

So, the total number of executions of the while loop body is
bounded by O(n).

Hence, the total time complexity is O(n log n).



Introduction Area Inclusion Hull Art Gallery

Analysis

Time complexity

Sorting takes time O(n log n).

The for loop is executed O(n) times.

For each execution of the for loop, the while loop is
encountered once.

For each execution of the while loop body, a point gets
deleted.

A point once deleted, is never deleted again.

So, the total number of executions of the while loop body is
bounded by O(n).

Hence, the total time complexity is O(n log n).



Introduction Area Inclusion Hull Art Gallery

Outline

1 Introduction

2 Area of a Simple Polygon

3 Point Inclusion in a Simple Polygon

4 Convex Hull: An application of incremental algorithm

5 Art Gallery Problem: A study of combinatorial geometry



Introduction Area Inclusion Hull Art Gallery

Art Gallery Problem

The problem

Given a simple polygon P of n vertices,
find the minimum number of cameras that
can guard P.

Hardness

The above problem is NP-Hard.

Simplified version

Can we find, as a function of n, the
number of cameras that suffices to
guard P?

Recall P can be triangulated into
n − 2 triangles. Place a guard in each
triangle.



Introduction Area Inclusion Hull Art Gallery

Art Gallery Problem

The problem

Given a simple polygon P of n vertices,
find the minimum number of cameras that
can guard P.

Hardness

The above problem is NP-Hard.

Simplified version

Can we find, as a function of n, the
number of cameras that suffices to
guard P?

Recall P can be triangulated into
n − 2 triangles. Place a guard in each
triangle.



Introduction Area Inclusion Hull Art Gallery

Art Gallery Problem

The problem

Given a simple polygon P of n vertices,
find the minimum number of cameras that
can guard P.

Hardness

The above problem is NP-Hard.

Simplified version

Can we find, as a function of n, the
number of cameras that suffices to
guard P?

Recall P can be triangulated into
n − 2 triangles. Place a guard in each
triangle.



Introduction Area Inclusion Hull Art Gallery

Art Gallery Problem

The problem

Given a simple polygon P of n vertices,
find the minimum number of cameras that
can guard P.

Hardness

The above problem is NP-Hard.

Simplified version

Can we find, as a function of n, the
number of cameras that suffices to
guard P?

Recall P can be triangulated into
n − 2 triangles. Place a guard in each
triangle.



Introduction Area Inclusion Hull Art Gallery

Art Gallery Problem

The problem

Given a simple polygon P of n vertices,
find the minimum number of cameras that
can guard P.

Hardness

The above problem is NP-Hard.

Simplified version

Can we find, as a function of n, the
number of cameras that suffices to
guard P?

Recall P can be triangulated into
n − 2 triangles. Place a guard in each
triangle.



Introduction Area Inclusion Hull Art Gallery

Art Gallery Problem

Can the bound be reduced?

Place guards at vertices of the
triangulation T of P.

We do a 3-coloring of the
vertices of T . Each triangle of
T has a blue, gray and white
vertex.

Choose the smallest color class
to guard P.

Hence, bn3c guards suffice.

But, does a 3-coloring always
exist?



Introduction Area Inclusion Hull Art Gallery

Art Gallery Problem

Can the bound be reduced?

Place guards at vertices of the
triangulation T of P.

We do a 3-coloring of the
vertices of T . Each triangle of
T has a blue, gray and white
vertex.

Choose the smallest color class
to guard P.

Hence, bn3c guards suffice.

But, does a 3-coloring always
exist?



Introduction Area Inclusion Hull Art Gallery

Art Gallery Problem

Can the bound be reduced?

Place guards at vertices of the
triangulation T of P.

We do a 3-coloring of the
vertices of T . Each triangle of
T has a blue, gray and white
vertex.

Choose the smallest color class
to guard P.

Hence, bn3c guards suffice.

But, does a 3-coloring always
exist?



Introduction Area Inclusion Hull Art Gallery

Art Gallery Problem

Can the bound be reduced?

Place guards at vertices of the
triangulation T of P.

We do a 3-coloring of the
vertices of T . Each triangle of
T has a blue, gray and white
vertex.

Choose the smallest color class
to guard P.

Hence, bn3c guards suffice.

But, does a 3-coloring always
exist?



Introduction Area Inclusion Hull Art Gallery

Art Gallery Problem

Can the bound be reduced?

Place guards at vertices of the
triangulation T of P.

We do a 3-coloring of the
vertices of T . Each triangle of
T has a blue, gray and white
vertex.

Choose the smallest color class
to guard P.

Hence, bn3c guards suffice.

But, does a 3-coloring always
exist?



Introduction Area Inclusion Hull Art Gallery

Art Gallery Problem

Theorem

The triangulation graph of a simple polygon P may be 3-colored.

A 3-coloring always exist

Consider the dual graph GT of
T of P.

GT is a tree as P has no holes.

Do a DFS on GT to obtain the
coloring.

Place guards at those vertices
that have color of the minimum
color class. Hence, bn3c guards
are sufficient to guard P.



Introduction Area Inclusion Hull Art Gallery

Art Gallery Problem

Theorem

The triangulation graph of a simple polygon P may be 3-colored.

A 3-coloring always exist

Consider the dual graph GT of
T of P.

GT is a tree as P has no holes.

Do a DFS on GT to obtain the
coloring.

Place guards at those vertices
that have color of the minimum
color class. Hence, bn3c guards
are sufficient to guard P.



Introduction Area Inclusion Hull Art Gallery

Art Gallery Problem

Theorem

The triangulation graph of a simple polygon P may be 3-colored.

A 3-coloring always exist

Consider the dual graph GT of
T of P.

GT is a tree as P has no holes.

Do a DFS on GT to obtain the
coloring.

Place guards at those vertices
that have color of the minimum
color class. Hence, bn3c guards
are sufficient to guard P.



Introduction Area Inclusion Hull Art Gallery

Art Gallery Problem

Theorem

The triangulation graph of a simple polygon P may be 3-colored.

A 3-coloring always exist

Consider the dual graph GT of
T of P.

GT is a tree as P has no holes.

Do a DFS on GT to obtain the
coloring.

Place guards at those vertices
that have color of the minimum
color class. Hence, bn3c guards
are sufficient to guard P.



Introduction Area Inclusion Hull Art Gallery

Art Gallery Problem

Theorem

The triangulation graph of a simple polygon P may be 3-colored.

A 3-coloring always exist

Consider the dual graph GT of
T of P.

GT is a tree as P has no holes.

Do a DFS on GT to obtain the
coloring.

Place guards at those vertices
that have color of the minimum
color class. Hence, bn3c guards
are sufficient to guard P.



Introduction Area Inclusion Hull Art Gallery

Art Gallery Problem

Theorem

The triangulation graph of a simple polygon P may be 3-colored.

A 3-coloring always exist

Consider the dual graph GT of
T of P.

GT is a tree as P has no holes.

Do a DFS on GT to obtain the
coloring.

Place guards at those vertices
that have color of the minimum
color class. Hence, bn3c guards
are sufficient to guard P.



Introduction Area Inclusion Hull Art Gallery

Art Gallery Problem

Necessity?

Are bn3c guards sometimes necessary?



Introduction Area Inclusion Hull Art Gallery

Art Gallery Problem

Necessity?

Are bn3c guards sometimes necessary?

bn3 c prongs
︷ ︸︸ ︷



Introduction Area Inclusion Hull Art Gallery

Art Gallery Theorem

Final Result

For a simple polygon with n vertices, bn3c cameras are always
sufficient and occasionally necessary to have every point in the
polygon visible from at least one of the cameras.



Introduction Area Inclusion Hull Art Gallery

References I

Mark de Berg, Marc van Kreveld, Mark Overmars and Otfried
Schwarzkof, Computational Geometry: Algorithms and
Applications, Springer, 1997.

B. Chazelle, Triangulating a simple polygon in linear time,
Discrete Comput. Geom., 6:485524, 1991.

Herbert Edelsbrunner, Algorithms in Computational Geometry,
Springer, 1987.

Joseph O’Rourke, Computational Geometry in C, Cambridge
University Press, 1998.

Franco P. Preparata and Michael Ian Shamos, Computational
Geometry: An Introduction, Springer-Verlag, New York, 1985.

Michael Ian Shamos, Computational Geometry, PhD thesis,
Yale University, New Haven., 1978.



Introduction Area Inclusion Hull Art Gallery

References II

http://www.algorithmic-solutions.com

http://www.cgal.org

http:

//en.wikipedia.org/wiki/Computational_geometry

http://www.algorithmic-solutions.com
http://www.cgal.org
http://en.wikipedia.org/wiki/Computational_geometry
http://en.wikipedia.org/wiki/Computational_geometry


Introduction Area Inclusion Hull Art Gallery

Thank you!


	Introduction
	Area of a Simple Polygon
	Point Inclusion in a Simple Polygon
	Convex Hull: An application of incremental algorithm
	Art Gallery Problem: A study of combinatorial geometry

