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Helly’s Theorem

Theorem

Let C be a collection of convex objects in Rd . If every d + 1 objects in
C have a common intersection, then all the objects in C have a
common intersection.
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Helly’s Theorem

Theorem

Let C be a collection of convex objects in Rd . If every d + 1 objects in
C have a common intersection, then all the objects in C have a
common intersection.

Generalized in different directions [survey by Eckhoff ’93]
Different proofs

Radon’s theorem [1921]
Induction
Shrinking ball technique
Brouwer’s theorem
Extremal proof [Mustafa and Ray, 2007]
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Extremal proof for Helly’s Theorem

Theorem

Let C be a collection of convex objects in Rd . If every d + 1 objects in
C have a common intersection, then all the objects in C have a
common intersection.
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Let C be a collection of convex objects in Rd . If every d + 1 objects in
C have a common intersection, then all the objects in C have a
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Extremal proof [Mustafa and Ray ’07]
Construct a point p that is contained in all the objects
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Theorem

Let C be a collection of convex objects in Rd . If every d + 1 objects in
C have a common intersection, then all the objects in C have a
common intersection.

Extremal proof [Mustafa and Ray ’07]
Construct a point p that is contained in all the objects

d = 1 : Intervals in 1D

Extend to d = 2
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Extremal proof for Helly’s Theorem

Theorem

Let C be a collection of convex objects in Rd . If every d + 1 objects in
C have a common intersection, then all the objects in C have a
common intersection.

Extremal proof [Mustafa and Ray ’07]
Construct a point p that is contained in all the objects

d = 1 : Intervals in 1D

Extend to d = 2
Proof generalizes to d dimensions.
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Intervals in 1D

S - set of intervals on the real line

Every 2 intervals in S intersect

Claim: All the intervals have a common intersection
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Intervals in 1D

S - set of intervals on the real line

Every 2 intervals intersect

Extremal proof
Construct a point p that is contained in all the intervals

p : Leftmost right endpoint
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Intervals in 1D

S - set of intervals on the real line

Every 2 intervals intersect

Extremal proof
Construct a point p that is contained in all the intervals

p : Leftmost right endpoint
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Intervals in 1D

Construct a point p that is contained in all the intervals

p : Leftmost right endpoint
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Intervals in 1D

Construct a point p that is contained in all the intervals

p : Leftmost right endpoint

Claim: All the intervals contain p

Proof by contradiction
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Interval Graphs

S - set of intervals on the line
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Interval Graphs

S - set of intervals on the line

a b c

ed

f

a b c

ed

f

V - set of intervals si

(si , sj ) ∈ E if intervals si and sj intersect
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Applications of Interval Graphs

Operations Research, Computational Biology, Mobile Networks
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Consultant problem:
Jobs: (6, 12), (8, 10), (7, 13), (9, 17), (11, 15), (12, 16), (15, 18)
Choose the maximum number of (non-conflicting) jobs
Optimal choice: (8, 10), (11, 15), (15, 18)
Connection between this problem and interval graphs?
Maximum independent set in Interval graph

Greedy Algorithm to solve the problem (Exercise)
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Applications of Interval Graphs

Operations Research, Computational Biology, Mobile Networks

Consultant problem:
Jobs: (6, 12), (8, 10), (7, 13), (9, 17), (11, 15), (12, 16), (15, 18)
Choose the maximum number of (non-conflicting) jobs
Optimal choice: (8, 10), (11, 15), (15, 18)
Connection between this problem and interval graphs?
Maximum independent set in Interval graph

Greedy Algorithm to solve the problem (Exercise)
with Proof of correctness

Extension: What if jobs have different profits?
(Use dynamic programming)
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S - set of axis parallel rectangles

Every 2 rectangles intersect

Claim: There exists a point p contained in all the rectangles
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Axis Parallel Rectangles in 2D

S - set of axis parallel rectangles

Every 2 rectangles intersect

Claim: There exists a point p contained in all the rectangles
Is it true?
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Circles in 2D

S - set of circles

Every 2 circles intersect

Claim: There exists a point p contained in all the circles
Not true

Sathish Govindarajan (Indian Institute of Science)Introduction to Combinatorial Geometry
Research promotion workshop on Graphs and

/ 29



Circles in 2D

S - set of circles

Every 2 circles intersect

Claim: There exists a point p contained in all the circles
Not true

Sathish Govindarajan (Indian Institute of Science)Introduction to Combinatorial Geometry
Research promotion workshop on Graphs and

/ 29



Helly’s Theorem in R2

Theorem (Helly’s Theorem in R2)

Let C be a collection of convex objects in R2. If every 3 objects in C
have a common intersection, then all the objects in C have a common
intersection
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Helly’s Theorem in R2

Theorem (Helly’s Theorem in R2)

Let C be a collection of convex objects in R2. If every 3 objects in C
have a common intersection, then all the objects in C have a common
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Extremal proof [Mustafa and Ray ’07]
Construct a point p that is contained in all the objects
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Helly’s Theorem in R2

Theorem (Helly’s Theorem in R2)

Let C be a collection of convex objects in R2. If every 3 objects in C
have a common intersection, then all the objects in C have a common
intersection
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Helly’s Theorem in R2

Theorem (Helly’s Theorem in R2)

Let C be a collection of convex objects in R2. If every 3 objects in C
have a common intersection, then all the objects in C have a common
intersection

Ca

CbPab

Cab

pab : Lowest point in Cab = Ca ∩ Cb
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Helly’s Theorem in R2

Theorem (Helly’s Theorem in R2)

Let C be a collection of convex objects in R2. If every 3 objects in C
have a common intersection, then all the objects in C have a common
intersection

Ca

CbPab

Cab

pab : Lowest point in Cab = Ca ∩ Cb

Choose the pair of objects (Ci ,Cj) such that pij is highest among
all pairs
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Helly’s Theorem in R2

Theorem (Helly’s Theorem in R2)

Let C be a collection of convex objects in R2. If every 3 objects in C
have a common intersection, then all the objects in C have a common
intersection

Ca

CbPab

Cab

pab : Lowest point in Cab = Ca ∩ Cb

Choose the pair of objects (Ci ,Cj) such that pij is highest among
all pairs
Claim: pij is contained in all objects in C
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Helly’s Theorem in R2

Claim: pij is contained in Ck for all k
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Helly’s Theorem in R2

Claim: pij is contained in Ck for all k

Cij ∩ Ck 6= ∅ (Every 3 objects intersect)
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Helly’s Theorem in R2

Claim: pij is contained in Ck for all k

Cij ∩ Ck 6= ∅ (Every 3 objects intersect)

Ci

Pij

Cij

Cj

Ck

Pjk

Pik
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Helly’s Theorem in R2

Claim: pij is contained in Ck for all k

Cij ∩ Ck 6= ∅ (Every 3 objects intersect)

Ci

Pij

Cij

Cj

Ck

Pjk

Pik

If pij is not contained in Ck
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Helly’s Theorem in R2

Claim: pij is contained in Ck for all k

Cij ∩ Ck 6= ∅ (Every 3 objects intersect)

Ci

Pij

Cij

Cj

Ck

Pjk

Pik

If pij is not contained in Ck

pjk higher than pij - Contradiction

Sathish Govindarajan (Indian Institute of Science)Introduction to Combinatorial Geometry
Research promotion workshop on Graphs and

/ 29



Helly’s Theorem in R2

Claim: pij is contained in Ck for all k

Ci

Pij

Cij

Cj
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Helly’s Theorem in R2

Claim: pij is contained in Ck for all k

Ci

Pij

Cij

Cj

Cij ∩ Ck 6= ∅ (Every 3 objects intersect)
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Helly’s Theorem in R2

Claim: pij is contained in Ck for all k

Ci

Pij

Cij

Cj

Cij ∩ Ck 6= ∅ (Every 3 objects intersect)
Ck intersect both Ci and Cj below pij

pik and pjk must be lower than pij
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Helly’s Theorem in R2

Claim: pij is contained in Ck for all k

Ci

Pij

Cij

Cj

Cij ∩ Ck 6= ∅ (Every 3 objects intersect)
Ck intersect both Ci and Cj below pij

pik and pjk must be lower than pij

By convexity, pij is contained in Ck
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Hadwiger-Debrunner (p, q) problem

Definition

For any positive integers, p,q, let C be a family of convex objects C in
R

d with [p,q]-property. How many points are needed to pierce C?
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Hadwiger-Debrunner (p, q) problem

Definition

For any positive integers, p,q, let C be a family of convex objects C in
R

d with [p,q]-property. How many points are needed to pierce C?

Helly’s theorem: For p = 3,q = 3, 1 point is sufficient
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Hadwiger-Debrunner (p, q) problem

Definition

For any positive integers, p,q, let C be a family of convex objects C in
R

d with [p,q]-property. How many points are needed to pierce C?

Helly’s theorem: For p = 3,q = 3, 1 point is sufficient

Theorem (Alon and Kleitman ’92)

C is pierced by constant (f (p,q,d)) number of points
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Hadwiger-Debrunner (p, q) problem

Definition

For any positive integers, p,q, let C be a family of convex objects C in
R

d with [p,q]-property. How many points are needed to pierce C?

Helly’s theorem: For p = 3,q = 3, 1 point is sufficient

Theorem (Alon and Kleitman ’92)

C is pierced by constant (f (p,q,d)) number of points

α fraction of d + 1-tuples intersect (counting argument)
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Hadwiger-Debrunner (p, q) problem

Definition

For any positive integers, p,q, let C be a family of convex objects C in
R

d with [p,q]-property. How many points are needed to pierce C?

Helly’s theorem: For p = 3,q = 3, 1 point is sufficient

Theorem (Alon and Kleitman ’92)

C is pierced by constant (f (p,q,d)) number of points

α fraction of d + 1-tuples intersect (counting argument)
∃ a point contained in β-fraction of all convex objects
(by Fractional Helly)
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Hadwiger-Debrunner (p, q) problem

Definition

For any positive integers, p,q, let C be a family of convex objects C in
R

d with [p,q]-property. How many points are needed to pierce C?

Helly’s theorem: For p = 3,q = 3, 1 point is sufficient

Theorem (Alon and Kleitman ’92)

C is pierced by constant (f (p,q,d)) number of points

α fraction of d + 1-tuples intersect (counting argument)
∃ a point contained in β-fraction of all convex objects
(by Fractional Helly)
Add points iteratively such that all convex objects have a large
fraction of points contained in them (by Iterative re-weighting)
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Hadwiger-Debrunner (p, q) problem

Definition

For any positive integers, p,q, let C be a family of convex objects C in
R

d with [p,q]-property. How many points are needed to pierce C?

Helly’s theorem: For p = 3,q = 3, 1 point is sufficient

Theorem (Alon and Kleitman ’92)

C is pierced by constant (f (p,q,d)) number of points

α fraction of d + 1-tuples intersect (counting argument)
∃ a point contained in β-fraction of all convex objects
(by Fractional Helly)
Add points iteratively such that all convex objects have a large
fraction of points contained in them (by Iterative re-weighting)
Constant number of points pierce all objects (Weak ǫ-nets)
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Centerpoint Theorem

Theorem (Centerpoint Theorem)

Let P be a set of n points in the plane. There exists a point p in the
plane that is contained in every convex object containing > 2

3n points
of P.
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Centerpoint Theorem

Theorem (Centerpoint Theorem)

Let P be a set of n points in the plane. There exists a point p in the
plane that is contained in every convex object containing > 2

3n points
of P.

Take any 3 convex objects Ci ,Cj ,Ck containing > 2
3n points
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Centerpoint Theorem

Theorem (Centerpoint Theorem)

Let P be a set of n points in the plane. There exists a point p in the
plane that is contained in every convex object containing > 2

3n points
of P.

Take any 3 convex objects Ci ,Cj ,Ck containing > 2
3n points

Ci ∩ Cj ∩ Ck 6= ∅ (Counting argument)
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Centerpoint Theorem

Theorem (Centerpoint Theorem)

Let P be a set of n points in the plane. There exists a point p in the
plane that is contained in every convex object containing > 2

3n points
of P.

Take any 3 convex objects Ci ,Cj ,Ck containing > 2
3n points

Ci ∩ Cj ∩ Ck 6= ∅ (Counting argument)

Applying Helly theorem, there exists a point p contained in all
such convex objects
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Centerpoint Theorem

Theorem (Centerpoint Theorem)

Let P be a set of n points in the plane. There exists a point p in the
plane that is contained in every convex object containing > 2

3n points
of P.

Take any 3 convex objects Ci ,Cj ,Ck containing > 2
3n points

Ci ∩ Cj ∩ Ck 6= ∅ (Counting argument)

Applying Helly theorem, there exists a point p contained in all
such convex objects

The constant 2
3 is the best possible
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Strong Centerpoint

Can we restrict the centerpoint to belong to P?
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Strong Centerpoint

Can we restrict the centerpoint to belong to P?
NO
No, even for halfspaces
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Strong Centerpoint for axis parallel rectangles

Theorem (Strong Centerpoint Theorem (Ashok, Azmi, G. ’14))

Let P be a set of n points in the plane. There exists a point p ∈ P that
is contained in every rectangle containing > 3

4n points of P.
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Strong Centerpoint for axis parallel rectangles

Theorem (Strong Centerpoint Theorem (Ashok, Azmi, G. ’14))

Let P be a set of n points in the plane. There exists a point p ∈ P that
is contained in every rectangle containing > 3

4n points of P.

The constant 3
4 is the best possible
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Axis-Parallel Rectangles

n/2 + 2

n/4 − 1

n/4 − 1
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Axis-Parallel Rectangles

n/2 + 2

n/4 − 1

n/4 − 1 The second column contains
n
2 + 2 points.
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Axis-Parallel Rectangles

n/2 + 2

n/4 − 1

n/4 − 1 The second column contains
n
2 + 2 points.

Since regions (1,2) and (3,2)
contain at most n

4 − 1 points
each, the region (2,2) is not
empty
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Axis-Parallel Rectangles

n/2 + 2

n/4 − 1

n/4 − 1 Select any point from region
(2,2) as the ǫ-net.
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Axis-Parallel Rectangles

n/2 + 2

n/4 − 1

n/4 − 1 Select any point from region
(2,2) as the ǫ-net.

Any axis-parallel rectangle
that does not contain the
chosen point will have ≤ 3n

4
points.
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Small Weak Epsilon Nets
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Small Weak Epsilon Nets

Select many points instead of just one

Theorem (Generalized Centerpoints)

Let P be a set of n points in the plane. There exists a set of i points Q
in the plane such that c ∩ Q 6= ∅ for any convex object c containing
> ǫin points of P.
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Small Weak Epsilon Nets

Select many points instead of just one

Theorem (Generalized Centerpoints)

Let P be a set of n points in the plane. There exists a set of i points Q
in the plane such that c ∩ Q 6= ∅ for any convex object c containing
> ǫin points of P.

Bounds for ǫi?
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Small Weak Epsilon Nets

Select many points instead of just one

Theorem (Generalized Centerpoints)

Let P be a set of n points in the plane. There exists a set of i points Q
in the plane such that c ∩ Q 6= ∅ for any convex object c containing
> ǫin points of P.

Bounds for ǫi?

Centerpoint Theorem: ǫ1 = 2/3
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Small Weak Epsilon Nets

Select many points instead of just one

Theorem (Generalized Centerpoints)

Let P be a set of n points in the plane. There exists a set of i points Q
in the plane such that c ∩ Q 6= ∅ for any convex object c containing
> ǫin points of P.

Bounds for ǫi?

Centerpoint Theorem: ǫ1 = 2/3

Extension: ǫ2 = 4/7
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Small Weak Epsilon Nets
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Small Weak Epsilon Nets

Select many points instead of just one
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Small Weak Epsilon Nets

Select many points instead of just one

Special convex objects - rectangles, circles, halfspaces, . . .
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Small Weak Epsilon Nets

Select many points instead of just one

Special convex objects - rectangles, circles, halfspaces, . . .

Rectangles Halfspaces Disks Convex sets
LB UB LB UB LB UB LB UB

ǫ1 1/2 2/3 2/3 2/3
ǫ2 2/5 1/2 1/2 4/7 4/7
ǫ3 1/3 0 1/4 8/15 5/11 8/15

Table: Summary of bounds [Aronov et al ’09, MR ’07]
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Small Weak Epsilon Nets

Select many points instead of just one

Special convex objects - rectangles, circles, halfspaces, . . .

Rectangles Halfspaces Disks Convex sets
LB UB LB UB LB UB LB UB

ǫ1 1/2 2/3 2/3 2/3
ǫ2 2/5 1/2 1/2 4/7 4/7
ǫ3 1/3 0 1/4 8/15 5/11 8/15

Table: Summary of bounds [Aronov et al ’09, MR ’07]

Open problem: Find exact value of ǫi for small i?
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Small Strong epsilon nets

Restrict Q ⊆ P
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Small Strong epsilon nets

Restrict Q ⊆ P

Theorem (Generalized Strong Centerpoints)

Let P be a set of n points in the plane. There exists a set of i points
Q ⊆ P such that c∩Q 6= ∅ for any object c containing > ǫin points of P.
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Small Strong epsilon nets

Restrict Q ⊆ P

Theorem (Generalized Strong Centerpoints)

Let P be a set of n points in the plane. There exists a set of i points
Q ⊆ P such that c∩Q 6= ∅ for any object c containing > ǫin points of P.

Rectangles Halfspaces Disks
LB UB LB UB LB UB

ǫ1 3/4 1 1
ǫ2 5/9 5/8 3/5 2/3 3/5 2/3
ǫ3 9/20 5/9 1/2 1/2 2/3

Table: Summary of bounds [AAG ’10]
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Small Strong epsilon nets

Restrict Q ⊆ P

Theorem (Generalized Strong Centerpoints)

Let P be a set of n points in the plane. There exists a set of i points
Q ⊆ P such that c∩Q 6= ∅ for any object c containing > ǫin points of P.

Rectangles Halfspaces Disks
LB UB LB UB LB UB

ǫ1 3/4 1 1
ǫ2 5/9 5/8 3/5 2/3 3/5 2/3
ǫ3 9/20 5/9 1/2 1/2 2/3

Table: Summary of bounds [AAG ’10]

Open problem: Find exact value (for k = 2)
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First Selection Lemma (FSL)

For induced triangles in R2, Boros and Füredi (1984), showed that
the centerpoint is present in n3

27 (constant fraction) triangles
induced by P. This constant is tight.
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FSL for Axis-Parallel Rectangles in R2

Theorem (Ashok, G., Mishra, Rajgopal ’13)

There exists a point p in R2, which is present in at least n2

8 axis-parallel
rectangles induced by P. This bound is tight.
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FSL for Axis-Parallel Rectangles in R2

Theorem (Ashok, G., Mishra, Rajgopal ’13)

There exists a point p in R2, which is present in at least n2

8 axis-parallel
rectangles induced by P. This bound is tight.

The tightness of the bound - P distributed around the boundary of a
circle.
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FSL for Axis-Parallel Rectangles in R2

Theorem (Ashok, G., Mishra, Rajgopal ’13)

There exists a point p in R2, which is present in at least n2

8 axis-parallel
rectangles induced by P. This bound is tight.

The tightness of the bound - P distributed around the boundary of a
circle.

Theorem (Ashok, G., Mishra, Rajgopal ’13)

There exists a point p ∈ P such that p is contained in at least n2

16
induced rectangles. This bound is tight.
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FSL for Axis-Parallel Rectangles in R2

Theorem (Ashok, G., Mishra, Rajgopal ’13)

There exists a point p in R2, which is present in at least n2

8 axis-parallel
rectangles induced by P. This bound is tight.

The tightness of the bound - P distributed around the boundary of a
circle.

Theorem (Ashok, G., Mishra, Rajgopal ’13)

There exists a point p ∈ P such that p is contained in at least n2

16
induced rectangles. This bound is tight.

Proved using weak and strong centerpoint w.r.t axis parallel rectangles
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FSL for Axis-Parallel Rectangles in R2

Theorem (Ashok, G., Mishra, Rajgopal ’13)

There exists a point p in R2, which is present in at least n2

8 axis-parallel
rectangles induced by P. This bound is tight.

The tightness of the bound - P distributed around the boundary of a
circle.

Theorem (Ashok, G., Mishra, Rajgopal ’13)

There exists a point p ∈ P such that p is contained in at least n2

16
induced rectangles. This bound is tight.

Proved using weak and strong centerpoint w.r.t axis parallel rectangles

Open problem: FSL for boxes in higher dimension
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FSL for Disks in R2

Theorem (Ashok, G., Mishra, Rajgopal ’13)

There exists a point p in R2, which is present in at least n2

6 disks
induced by P.

Sathish Govindarajan (Indian Institute of Science)Introduction to Combinatorial Geometry
Research promotion workshop on Graphs and

/ 29



FSL for Disks in R2

Theorem (Ashok, G., Mishra, Rajgopal ’13)

There exists a point p in R2, which is present in at least n2

6 disks
induced by P.

Proof uses centerpoint
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FSL for Disks in R2

Theorem (Ashok, G., Mishra, Rajgopal ’13)

There exists a point p in R2, which is present in at least n2

6 disks
induced by P.

Proof uses centerpoint

Open problem: Obtain tight bounds for disks
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Questions?
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