Introduction to Combinatorial Geometry

Sathish Govindarajan

Department of Computer Science and Automation Indian Institute of Science, Bangalore

Research promotion workshop on Graphs and Geometry Indian Institute of Technology, Roorkee

Let C be a collection of convex objects in \mathbb{R}^d . If every d + 1 objects in C have a common intersection, then all the objects in C have a common intersection.

• Generalized in different directions [survey by Eckhoff '93]

- Generalized in different directions [survey by Eckhoff '93]
- Different proofs

- Generalized in different directions [survey by Eckhoff '93]
- Different proofs
 - Radon's theorem [1921]

- Generalized in different directions [survey by Eckhoff '93]
- Different proofs
 - Radon's theorem [1921]
 - Induction

- Generalized in different directions [survey by Eckhoff '93]
- Different proofs
 - Radon's theorem [1921]
 - Induction
 - Shrinking ball technique

- Generalized in different directions [survey by Eckhoff '93]
- Different proofs
 - Radon's theorem [1921]
 - Induction
 - Shrinking ball technique
 - Brouwer's theorem

- Generalized in different directions [survey by Eckhoff '93]
- Different proofs
 - Radon's theorem [1921]
 - Induction
 - Shrinking ball technique
 - Brouwer's theorem
 - Extremal proof [Mustafa and Ray, 2007]

Theorem

Theorem

- Extremal proof [Mustafa and Ray '07]
 - Construct a point *p* that is contained in all the objects

Theorem

- Extremal proof [Mustafa and Ray '07]
 - Construct a point p that is contained in all the objects
- d = 1: Intervals in 1D

Theorem

- Extremal proof [Mustafa and Ray '07]
 - Construct a point p that is contained in all the objects
- *d* = 1 : Intervals in 1D
- Extend to d = 2

Theorem

- Extremal proof [Mustafa and Ray '07]
 - Construct a point p that is contained in all the objects
- d = 1: Intervals in 1D
- Extend to d = 2
 - Proof generalizes to *d* dimensions.

æ

<ロ> <問> <問> < 回> < 回> 、

readaron promotion workanop

• S - set of intervals on the real line

- S set of intervals on the real line
- Every 2 intervals in S intersect

- E - N

- S set of intervals on the real line
- Every 2 intervals in S intersect

• Claim: All the intervals have a common intersection

- S set of intervals on the real line
- Every 2 intervals in S intersect
- Claim: All the intervals have a common intersection

- S set of intervals on the real line
- Every 2 intervals in S intersect
- Claim: All the intervals have a common intersection
- Extremal proof

- S set of intervals on the real line
- Every 2 intervals in S intersect
- Claim: All the intervals have a common intersection
- Extremal proof
 - Construct a point *p* that is contained in all the intervals

- S set of intervals on the real line
- Every 2 intervals intersect
- Extremal proof
 - Construct a point p that is contained in all the intervals

- S set of intervals on the real line
- Every 2 intervals intersect
- Extremal proof
 - Construct a point p that is contained in all the intervals
- p: Leftmost right endpoint

- S set of intervals on the real line
- Every 2 intervals intersect
- Extremal proof
 - Construct a point p that is contained in all the intervals
- p: Leftmost right endpoint

• Claim: All the intervals contain p

- Construct a point p that is contained in all the intervals
- *p* : Leftmost right endpoint
- Claim: All the intervals contain p

- Construct a point p that is contained in all the intervals
- p: Leftmost right endpoint
- Claim: All the intervals contain p
- Proof by contradiction

Interval Graphs

• S - set of intervals on the line

- E - N

Interval Graphs

• S - set of intervals on the line

• V - set of intervals s_i

Interval Graphs

• S - set of intervals on the line

- V set of intervals s_i
- $(s_i, s_j) \in E$ if intervals s_i and s_j intersect

Operations Research, Computational Biology, Mobile Networks

- Operations Research, Computational Biology, Mobile Networks
- Consultant problem:

Operations Research, Computational Biology, Mobile Networks

Consultant problem:

Jobs: (6, 12), (8, 10), (7, 13), (9, 17), (11, 15), (12, 16), (15, 18)

Operations Research, Computational Biology, Mobile Networks

- Jobs: (6, 12), (8, 10), (7, 13), (9, 17), (11, 15), (12, 16), (15, 18)
- Choose the maximum number of (non-conflicting) jobs

Operations Research, Computational Biology, Mobile Networks

- Jobs: (6, 12), (8, 10), (7, 13), (9, 17), (11, 15), (12, 16), (15, 18)
- Choose the maximum number of (non-conflicting) jobs
- Optimal choice: (8, 10), (11, 15), (15, 18)

Operations Research, Computational Biology, Mobile Networks

- Jobs: (6, 12), (8, 10), (7, 13), (9, 17), (11, 15), (12, 16), (15, 18)
- Choose the maximum number of (non-conflicting) jobs
- Optimal choice: (8, 10), (11, 15), (15, 18)
- Connection between this problem and interval graphs?

Operations Research, Computational Biology, Mobile Networks

- Jobs: (6, 12), (8, 10), (7, 13), (9, 17), (11, 15), (12, 16), (15, 18)
- Choose the maximum number of (non-conflicting) jobs
- Optimal choice: (8, 10), (11, 15), (15, 18)
- Connection between this problem and interval graphs?
- Maximum independent set in Interval graph
Applications of Interval Graphs

Operations Research, Computational Biology, Mobile Networks

Consultant problem:

- Jobs: (6, 12), (8, 10), (7, 13), (9, 17), (11, 15), (12, 16), (15, 18)
- Choose the maximum number of (non-conflicting) jobs
- Optimal choice: (8, 10), (11, 15), (15, 18)
- Connection between this problem and interval graphs?
- Maximum independent set in Interval graph
- Greedy Algorithm to solve the problem (Exercise) with **Proof of correctness**

Applications of Interval Graphs

Operations Research, Computational Biology, Mobile Networks

Consultant problem:

- Jobs: (6, 12), (8, 10), (7, 13), (9, 17), (11, 15), (12, 16), (15, 18)
- Choose the maximum number of (non-conflicting) jobs
- Optimal choice: (8, 10), (11, 15), (15, 18)
- Connection between this problem and interval graphs?
- Maximum independent set in Interval graph
- Greedy Algorithm to solve the problem (Exercise) with **Proof of correctness**
- Extension: What if jobs have different profits? (Use dynamic programming)

Sathish Govindarajan (Indian Institute of Scie Introduction to Combinatorial Geometry

< 同 > < 三 > < 三 >

• S - set of axis parallel rectangles

- S set of axis parallel rectangles
- Every 2 rectangles intersect

- S set of axis parallel rectangles
- Every 2 rectangles intersect
 - Claim: There exists a point *p* contained in all the rectangles

- S set of axis parallel rectangles
- Every 2 rectangles intersect
 - Claim: There exists a point *p* contained in all the rectangles
 - Is it true?

2

S - set of circles

- S set of circles
- Every 2 circles intersect

→ ∃ →

- S set of circles
- Every 2 circles intersect
 - Claim: There exists a point p contained in all the circles

- S set of circles
- Every 2 circles intersect
 - Claim: There exists a point p contained in all the circles

- S set of circles
- Every 2 circles intersect
 - Claim: There exists a point p contained in all the circles
 - Not true

- S set of circles
- Every 2 circles intersect
 - Claim: There exists a point p contained in all the circles
 - Not true

Theorem (Helly's Theorem in R^2)

Theorem (Helly's Theorem in R^2)

- Extremal proof [Mustafa and Ray '07]
 - Construct a point *p* that is contained in all the objects

Helly's Theorem in R^2

Theorem (Helly's Theorem in R^2)

Theorem (Helly's Theorem in R^2)

Theorem (Helly's Theorem in R^2)

Let C be a collection of convex objects in \mathbb{R}^2 . If every 3 objects in C have a common intersection, then all the objects in C have a common intersection

• p_{ab} : Lowest point in $C_{ab} = C_a \cap C_b$

Theorem (Helly's Theorem in R^2)

- p_{ab} : Lowest point in $C_{ab} = C_a \cap C_b$
- Choose the pair of objects (C_i, C_j) such that p_{ij} is highest among all pairs

Theorem (Helly's Theorem in R^2)

- p_{ab} : Lowest point in $C_{ab} = C_a \cap C_b$
- Choose the pair of objects (C_i, C_j) such that p_{ij} is highest among all pairs
- Claim: p_{ij} is contained in all objects in C

• Claim: p_{ij} is contained in C_k for all k

A >

.

Helly's Theorem in R^2

- Claim: p_{ij} is contained in C_k for all k
- $C_{ij} \cap C_k \neq \emptyset$ (Every 3 objects intersect)

4 E 6 4

Helly's Theorem in R^2

- Claim: p_{ij} is contained in C_k for all k
- $C_{ij} \cap C_k \neq \emptyset$ (Every 3 objects intersect)

- Claim: p_{ij} is contained in C_k for all k
- $C_{ij} \cap C_k \neq \emptyset$ (Every 3 objects intersect)

• If p_{ij} is not contained in C_k

Helly's Theorem in R^2

- Claim: p_{ij} is contained in C_k for all k
- $C_{ij} \cap C_k \neq \emptyset$ (Every 3 objects intersect)

- If p_{ij} is not contained in C_k
 - p_{jk} higher than p_{ij} Contradiction

• Claim: p_{ij} is contained in C_k for all k

• Claim: p_{ij} is contained in C_k for all k

• $C_{ij} \cap C_k \neq \emptyset$ (Every 3 objects intersect)

Helly's Theorem in R^2

• Claim: p_{ij} is contained in C_k for all k

- $C_{ij} \cap C_k \neq \emptyset$ (Every 3 objects intersect)
- C_k intersect both C_i and C_j below p_{ij}
 - *p_{ik}* and *p_{jk}* must be lower than *p_{ij}*

• Claim: p_{ij} is contained in C_k for all k

- $C_{ij} \cap C_k \neq \emptyset$ (Every 3 objects intersect)
- C_k intersect both C_i and C_j below p_{ij}
 - *p_{ik}* and *p_{jk}* must be lower than *p_{ij}*
- By convexity, p_{ij} is contained in C_k

Definition

For any positive integers, p, q, let C be a family of convex objects C in \mathbb{R}^d with [p, q]-property. How many points are needed to pierce C?

Definition

For any positive integers, p, q, let C be a family of convex objects C in \mathbb{R}^d with [p, q]-property. How many points are needed to pierce C?

• Helly's theorem: For p = 3, q = 3, 1 point is sufficient

Definition

For any positive integers, p, q, let C be a family of convex objects C in \mathbb{R}^d with [p, q]-property. How many points are needed to pierce C?

• Helly's theorem: For p = 3, q = 3, 1 point is sufficient

Theorem (Alon and Kleitman '92)

C is pierced by constant (f(p, q, d)) number of points

Definition

For any positive integers, p, q, let C be a family of convex objects C in \mathbb{R}^d with [p, q]-property. How many points are needed to pierce C?

• Helly's theorem: For p = 3, q = 3, 1 point is sufficient

Theorem (Alon and Kleitman '92)

C is pierced by constant (f(p, q, d)) number of points

• α fraction of d + 1-tuples intersect (counting argument)

Definition

For any positive integers, p, q, let C be a family of convex objects C in \mathbb{R}^d with [p, q]-property. How many points are needed to pierce C?

• Helly's theorem: For p = 3, q = 3, 1 point is sufficient

Theorem (Alon and Kleitman '92)

C is pierced by constant (f(p, q, d)) number of points

- α fraction of d + 1-tuples intersect (counting argument)
- ∃ a point contained in β-fraction of all convex objects (by Fractional Helly)

Definition

For any positive integers, p, q, let C be a family of convex objects C in \mathbb{R}^d with [p, q]-property. How many points are needed to pierce C?

• Helly's theorem: For p = 3, q = 3, 1 point is sufficient

Theorem (Alon and Kleitman '92)

C is pierced by constant (f(p, q, d)) number of points

- α fraction of d + 1-tuples intersect (counting argument)
- ∃ a point contained in β-fraction of all convex objects (by Fractional Helly)
- Add points iteratively such that all convex objects have a large fraction of points contained in them (by Iterative re-weighting)

A (10) × A (10) × A (10)
Hadwiger-Debrunner (p, q) problem

Definition

For any positive integers, p, q, let C be a family of convex objects C in \mathbb{R}^d with [p, q]-property. How many points are needed to pierce C?

• Helly's theorem: For p = 3, q = 3, 1 point is sufficient

Theorem (Alon and Kleitman '92)

C is pierced by constant (f(p, q, d)) number of points

- α fraction of d + 1-tuples intersect (counting argument)
- ∃ a point contained in β-fraction of all convex objects (by Fractional Helly)
- Add points iteratively such that all convex objects have a large fraction of points contained in them (by Iterative re-weighting)
- Constant number of points pierce all objects (Weak ε-nets)

Let P be a set of n points in the plane. There exists a point p in the plane that is contained in every convex object containing $> \frac{2}{3}n$ points of P.

• Take any 3 convex objects C_i , C_j , C_k containing $> \frac{2}{3}n$ points

- Take any 3 convex objects C_i , C_j , C_k containing $> \frac{2}{3}n$ points
- $C_i \cap C_j \cap C_k \neq \emptyset$ (Counting argument)

- Take any 3 convex objects C_i , C_j , C_k containing $> \frac{2}{3}n$ points
- $C_i \cap C_j \cap C_k \neq \emptyset$ (Counting argument)
- Applying Helly theorem, there exists a point p contained in all such convex objects

- Take any 3 convex objects C_i , C_j , C_k containing $> \frac{2}{3}n$ points
- $C_i \cap C_j \cap C_k \neq \emptyset$ (Counting argument)
- Applying Helly theorem, there exists a point p contained in all such convex objects

• The constant
$$\frac{2}{3}$$
 is the best possible

• Can we restrict the centerpoint to belong to P?

• Can we restrict the centerpoint to belong to P?

- NO
- No, even for halfspaces

Strong Centerpoint for axis parallel rectangles

Theorem (Strong Centerpoint Theorem (Ashok, Azmi, G. '14))

Let P be a set of n points in the plane. There exists a point $p \in P$ that is contained in every rectangle containing $> \frac{3}{4}n$ points of P.

Strong Centerpoint for axis parallel rectangles

Theorem (Strong Centerpoint Theorem (Ashok, Azmi, G. '14))

Let P be a set of n points in the plane. There exists a point $p \in P$ that is contained in every rectangle containing $> \frac{3}{4}n$ points of P.

• The constant $\frac{3}{4}$ is the best possible

Axis-Parallel Rectangles

/ 29

The second column contains $\frac{n}{2}$ + 2 points.

The second column contains $\frac{n}{2}$ + 2 points.

Since regions (1,2) and (3,2) contain at most $\frac{n}{4}$ – 1 points each, the region (2,2) is not empty

Select any point from region (2,2) as the ϵ -net.

- N

Sathish Govindarajan (Indian Institute of Scie Introduction to Combinatorial Geometry

Select any point from region (2,2) as the ϵ -net.

Any axis-parallel rectangle that does not contain the chosen point will have $\leq \frac{3n}{4}$ points.

Sathish Govindarajan (Indian Institute of Scie Introduction to Combinatorial Geometry

(日) (四) (三) (三)

Theorem (Generalized Centerpoints)

Let P be a set of n points in the plane. There exists a set of i points Q in the plane such that $c \cap Q \neq \emptyset$ for any convex object c containing $> \epsilon_i n$ points of P.

Theorem (Generalized Centerpoints)

Let P be a set of n points in the plane. There exists a set of i points Q in the plane such that $c \cap Q \neq \emptyset$ for any convex object c containing $> \epsilon_i n$ points of P.

• Bounds for ϵ_i ?

Theorem (Generalized Centerpoints)

Let P be a set of n points in the plane. There exists a set of i points Q in the plane such that $c \cap Q \neq \emptyset$ for any convex object c containing $> \epsilon_i n$ points of P.

- Bounds for ϵ_i ?
- Centerpoint Theorem: $\epsilon_1 = 2/3$

Theorem (Generalized Centerpoints)

Let P be a set of n points in the plane. There exists a set of i points Q in the plane such that $c \cap Q \neq \emptyset$ for any convex object c containing $> \epsilon_i n$ points of P.

- Bounds for ϵ_i ?
- Centerpoint Theorem: $\epsilon_1 = 2/3$
- Extension: $\epsilon_2 = 4/7$

Sathish Govindarajan (Indian Institute of Scie Introduction to Combinatorial Geometry

(日) (四) (三) (三)

Select many points instead of just one

- Select many points instead of just one
- Special convex objects rectangles, circles, halfspaces, ...

- Select many points instead of just one
- Special convex objects rectangles, circles, halfspaces, ...

	Rectangles		Halfspaces		Disks		Convex sets	
	LB	UB	LB	UB	LB	UB	LB	UB
ϵ_1	1/2		2/3		2/3		2/3	
ϵ_2	2/5 1/2		1/2	1/2	4/7	4/7		
ϵ_3		1/3		0	1/4	8/15	5/11	8/15

Table: Summary of bounds [Aronov et al '09, MR '07]

- Select many points instead of just one
- Special convex objects rectangles, circles, halfspaces, ...

	Rectangles		Halfspaces		Disks		Convex sets	
	LB	UB	LB	UB	LB	UB	LB	UB
ϵ_1	1/2		2/3		2/3		2/3	
ϵ_2	2/5 1/2		1/2	4/7	4/7			
ϵ_3		1/3	0		1/4	8/15	5/11	8/15

Table: Summary of bounds [Aronov et al '09, MR '07]

• Open problem: Find exact value of ϵ_i for small *i*?

• Restrict $Q \subseteq P$

< 回 > < 回 > < 回 >

• Restrict $Q \subseteq P$

Theorem (Generalized Strong Centerpoints)

Let P be a set of n points in the plane. There exists a set of i points $Q \subseteq P$ such that $c \cap Q \neq \emptyset$ for any object c containing $> \epsilon_i n$ points of P.

• Restrict $Q \subseteq P$

Theorem (Generalized Strong Centerpoints)

Let P be a set of n points in the plane. There exists a set of i points $Q \subseteq P$ such that $c \cap Q \neq \emptyset$ for any object c containing $> \epsilon_i n$ points of P.

	Recta	ingles	Half	spaces	Disks	
	LB	UB	LB	UB	LB	UB
ϵ_1	3,	/4		1	1	
ϵ_2	5/9	5/8	3/5	2/3	3/5	2/3
ϵ_3	9/20	5/9	1/2		1/2	2/3

Table: Summary of bounds [AAG '10]

• Restrict $Q \subseteq P$

Theorem (Generalized Strong Centerpoints)

Let P be a set of n points in the plane. There exists a set of i points $Q \subseteq P$ such that $c \cap Q \neq \emptyset$ for any object c containing $> \epsilon_i n$ points of P.

	Recta	ingles	Half	spaces	Disks	
	LB	UB	LB	UB	LB	UB
ϵ_1	3,	/4		1	1	
ϵ_2	5/9	5/8	3/5	2/3	3/5	2/3
ϵ_3	9/20	5/9	1/2		1/2	2/3

Table: Summary of bounds [AAG '10]

• Open problem: Find exact value (for k = 2)

First Selection Lemma (FSL)

 For induced triangles in R², Boros and Füredi (1984), showed that the centerpoint is present in ^{n³}/₂₇ (constant fraction) triangles induced by P. This constant is tight.

There exists a point p in \mathbb{R}^2 , which is present in at least $\frac{n^2}{8}$ axis-parallel rectangles induced by P. This bound is tight.

There exists a point p in \mathbb{R}^2 , which is present in at least $\frac{n^2}{8}$ axis-parallel rectangles induced by P. This bound is tight.

The tightness of the bound - *P* distributed around the boundary of a circle.

There exists a point p in \mathbb{R}^2 , which is present in at least $\frac{n^2}{8}$ axis-parallel rectangles induced by P. This bound is tight.

The tightness of the bound - *P* distributed around the boundary of a circle.

Theorem (Ashok, G., Mishra, Rajgopal '13)

There exists a point $p \in P$ such that p is contained in at least $\frac{n^2}{16}$ induced rectangles. This bound is tight.

There exists a point p in \mathbb{R}^2 , which is present in at least $\frac{n^2}{8}$ axis-parallel rectangles induced by P. This bound is tight.

The tightness of the bound - *P* distributed around the boundary of a circle.

Theorem (Ashok, G., Mishra, Rajgopal '13)

There exists a point $p \in P$ such that p is contained in at least $\frac{n^2}{16}$ induced rectangles. This bound is tight.

Proved using weak and strong centerpoint w.r.t axis parallel rectangles

There exists a point p in \mathbb{R}^2 , which is present in at least $\frac{n^2}{8}$ axis-parallel rectangles induced by P. This bound is tight.

The tightness of the bound - *P* distributed around the boundary of a circle.

Theorem (Ashok, G., Mishra, Rajgopal '13)

There exists a point $p \in P$ such that p is contained in at least $\frac{n^2}{16}$ induced rectangles. This bound is tight.

Proved using weak and strong centerpoint w.r.t axis parallel rectangles

Open problem: FSL for boxes in higher dimension

There exists a point p in \mathbb{R}^2 , which is present in at least $\frac{n^2}{6}$ disks induced by P.
Theorem (Ashok, G., Mishra, Rajgopal '13)

There exists a point p in \mathbb{R}^2 , which is present in at least $\frac{n^2}{6}$ disks induced by P.

Proof uses centerpoint

Theorem (Ashok, G., Mishra, Rajgopal '13)

There exists a point p in \mathbb{R}^2 , which is present in at least $\frac{n^2}{6}$ disks induced by P.

Proof uses centerpoint

Open problem: Obtain tight bounds for disks

Questions?

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○