# Introduction to Combinatorial Geometry 

## Sathish Govindarajan

Department of Computer Science and Automation Indian Institute of Science, Bangalore

Research promotion workshop on Graphs and Geometry Indian Institute of Technology, Roorkee

## Helly's Theorem

## Theorem

Let $C$ be a collection of convex objects in $R^{d}$. If every $d+1$ objects in $C$ have a common intersection, then all the objects in $C$ have a common intersection.

## Helly's Theorem

## Theorem

Let $C$ be a collection of convex objects in $R^{d}$. If every $d+1$ objects in $C$ have a common intersection, then all the objects in $C$ have a common intersection.

- Generalized in different directions [survey by Eckhoff '93]


## Helly's Theorem

## Theorem

Let $C$ be a collection of convex objects in $R^{d}$. If every $d+1$ objects in $C$ have a common intersection, then all the objects in $C$ have a common intersection.

- Generalized in different directions [survey by Eckhoff '93]
- Different proofs


## Helly's Theorem

## Theorem

Let $C$ be a collection of convex objects in $R^{d}$. If every $d+1$ objects in $C$ have a common intersection, then all the objects in $C$ have a common intersection.

- Generalized in different directions [survey by Eckhoff '93]
- Different proofs
- Radon's theorem [1921]


## Helly's Theorem

## Theorem

Let $C$ be a collection of convex objects in $R^{d}$. If every $d+1$ objects in $C$ have a common intersection, then all the objects in $C$ have a common intersection.

- Generalized in different directions [survey by Eckhoff '93]
- Different proofs
- Radon's theorem [1921]
- Induction


## Helly's Theorem

## Theorem

Let $C$ be a collection of convex objects in $R^{d}$. If every $d+1$ objects in $C$ have a common intersection, then all the objects in $C$ have a common intersection.

- Generalized in different directions [survey by Eckhoff '93]
- Different proofs
- Radon's theorem [1921]
- Induction
- Shrinking ball technique


## Helly's Theorem

## Theorem

Let $C$ be a collection of convex objects in $R^{d}$. If every $d+1$ objects in $C$ have a common intersection, then all the objects in $C$ have a common intersection.

- Generalized in different directions [survey by Eckhoff '93]
- Different proofs
- Radon's theorem [1921]
- Induction
- Shrinking ball technique
- Brouwer's theorem


## Helly's Theorem

## Theorem

Let $C$ be a collection of convex objects in $R^{d}$. If every $d+1$ objects in $C$ have a common intersection, then all the objects in $C$ have a common intersection.

- Generalized in different directions [survey by Eckhoff '93]
- Different proofs
- Radon's theorem [1921]
- Induction
- Shrinking ball technique
- Brouwer's theorem
- Extremal proof [Mustafa and Ray, 2007]


## Extremal proof for Helly's Theorem

## Theorem

Let $C$ be a collection of convex objects in $R^{d}$. If every $d+1$ objects in $C$ have a common intersection, then all the objects in $C$ have a common intersection.

## Extremal proof for Helly's Theorem

## Theorem

Let $C$ be a collection of convex objects in $R^{d}$. If every $d+1$ objects in $C$ have a common intersection, then all the objects in $C$ have a common intersection.

- Extremal proof [Mustafa and Ray '07]
- Construct a point $p$ that is contained in all the objects


## Extremal proof for Helly's Theorem

## Theorem

Let $C$ be a collection of convex objects in $R^{d}$. If every $d+1$ objects in $C$ have a common intersection, then all the objects in $C$ have a common intersection.

- Extremal proof [Mustafa and Ray '07]
- Construct a point $p$ that is contained in all the objects
- $d=1$ : Intervals in 1D


## Extremal proof for Helly's Theorem

## Theorem

Let $C$ be a collection of convex objects in $R^{d}$. If every $d+1$ objects in $C$ have a common intersection, then all the objects in $C$ have a common intersection.

- Extremal proof [Mustafa and Ray '07]
- Construct a point $p$ that is contained in all the objects
- $d=1$ : Intervals in 1D
- Extend to $d=2$


## Extremal proof for Helly's Theorem

## Theorem

Let $C$ be a collection of convex objects in $R^{d}$. If every $d+1$ objects in $C$ have a common intersection, then all the objects in $C$ have a common intersection.

- Extremal proof [Mustafa and Ray '07]
- Construct a point $p$ that is contained in all the objects
- $d=1$ : Intervals in 1D
- Extend to $d=2$
- Proof generalizes to $d$ dimensions.


## Intervals in 1D

## Intervals in 1D

- $S$ - set of intervals on the real line


## Intervals in 1D

- $S$ - set of intervals on the real line
- Every 2 intervals in S intersect


## Intervals in 1D

- $S$ - set of intervals on the real line
- Every 2 intervals in $S$ intersect
- Claim: All the intervals have a common intersection


## Intervals in 1D

- S - set of intervals on the real line
- Every 2 intervals in S intersect
- Claim: All the intervals have a common intersection


## Intervals in 1D

- S - set of intervals on the real line
- Every 2 intervals in S intersect
- Claim: All the intervals have a common intersection
- Extremal proof


## Intervals in 1D

- S - set of intervals on the real line
- Every 2 intervals in S intersect
- Claim: All the intervals have a common intersection
- Extremal proof
- Construct a point $p$ that is contained in all the intervals



## Intervals in 1D

- S-set of intervals on the real line
- Every 2 intervals intersect
- Extremal proof
- Construct a point $p$ that is contained in all the intervals


## Intervals in 1D

- S-set of intervals on the real line
- Every 2 intervals intersect
- Extremal proof
- Construct a point $p$ that is contained in all the intervals
- p : Leftmost right endpoint



## Intervals in 1D

- $S$ - set of intervals on the real line
- Every 2 intervals intersect
- Extremal proof
- Construct a point $p$ that is contained in all the intervals
- p : Leftmost right endpoint

- Claim: All the intervals contain $p$


## Intervals in 1D

- Construct a point $p$ that is contained in all the intervals
- $p$ : Leftmost right endpoint
- Claim: All the intervals contain $p$


## Intervals in 1D

- Construct a point $p$ that is contained in all the intervals
- p : Leftmost right endpoint
- Claim: All the intervals contain $p$
- Proof by contradiction



## Interval Graphs

- $S$ - set of intervals on the line



## Interval Graphs

- $S$ - set of intervals on the line

- $V$ - set of intervals $s_{i}$


## Interval Graphs

- $S$ - set of intervals on the line

- $V$ - set of intervals $s_{i}$
- $\left(s_{i}, s_{j}\right) \in E$ if intervals $s_{i}$ and $s_{j}$ intersect


## Applications of Interval Graphs

- Operations Research, Computational Biology, Mobile Networks


## Applications of Interval Graphs

- Operations Research, Computational Biology, Mobile Networks
- Consultant problem:


## Applications of Interval Graphs

- Operations Research, Computational Biology, Mobile Networks
- Consultant problem:
- Jobs: $(6,12),(8,10),(7,13),(9,17),(11,15),(12,16),(15,18)$


## Applications of Interval Graphs

- Operations Research, Computational Biology, Mobile Networks
- Consultant problem:
- Jobs: $(6,12),(8,10),(7,13),(9,17),(11,15),(12,16),(15,18)$
- Choose the maximum number of (non-conflicting) jobs


## Applications of Interval Graphs

- Operations Research, Computational Biology, Mobile Networks
- Consultant problem:
- Jobs: $(6,12),(8,10),(7,13),(9,17),(11,15),(12,16),(15,18)$
- Choose the maximum number of (non-conflicting) jobs
- Optimal choice: $(8,10),(11,15),(15,18)$


## Applications of Interval Graphs

- Operations Research, Computational Biology, Mobile Networks
- Consultant problem:
- Jobs: $(6,12),(8,10),(7,13),(9,17),(11,15),(12,16),(15,18)$
- Choose the maximum number of (non-conflicting) jobs
- Optimal choice: $(8,10),(11,15),(15,18)$
- Connection between this problem and interval graphs?


## Applications of Interval Graphs

- Operations Research, Computational Biology, Mobile Networks
- Consultant problem:
- Jobs: $(6,12),(8,10),(7,13),(9,17),(11,15),(12,16),(15,18)$
- Choose the maximum number of (non-conflicting) jobs
- Optimal choice: $(8,10),(11,15),(15,18)$
- Connection between this problem and interval graphs?
- Maximum independent set in Interval graph


## Applications of Interval Graphs

- Operations Research, Computational Biology, Mobile Networks
- Consultant problem:
- Jobs: $(6,12),(8,10),(7,13),(9,17),(11,15),(12,16),(15,18)$
- Choose the maximum number of (non-conflicting) jobs
- Optimal choice: $(8,10),(11,15),(15,18)$
- Connection between this problem and interval graphs?
- Maximum independent set in Interval graph
- Greedy Algorithm to solve the problem (Exercise) with Proof of correctness


## Applications of Interval Graphs

- Operations Research, Computational Biology, Mobile Networks
- Consultant problem:
- Jobs: $(6,12),(8,10),(7,13),(9,17),(11,15),(12,16),(15,18)$
- Choose the maximum number of (non-conflicting) jobs
- Optimal choice: $(8,10),(11,15),(15,18)$
- Connection between this problem and interval graphs?
- Maximum independent set in Interval graph
- Greedy Algorithm to solve the problem (Exercise) with Proof of correctness
- Extension: What if jobs have different profits? (Use dynamic programming)


## Axis Parallel Rectangles in 2D

## Axis Parallel Rectangles in 2D

- $S$ - set of axis parallel rectangles


## Axis Parallel Rectangles in 2D

- $S$ - set of axis parallel rectangles
- Every 2 rectangles intersect


## Axis Parallel Rectangles in 2D

- $S$ - set of axis parallel rectangles
- Every 2 rectangles intersect
- Claim: There exists a point $p$ contained in all the rectangles


## Axis Parallel Rectangles in 2D

- $S$ - set of axis parallel rectangles
- Every 2 rectangles intersect
- Claim: There exists a point $p$ contained in all the rectangles
- Is it true?


## Circles in 2D

## Circles in 2D

- S - set of circles


## Circles in 2D

- $S$ - set of circles
- Every 2 circles intersect


## Circles in 2D

- $S$ - set of circles
- Every 2 circles intersect
- Claim: There exists a point $p$ contained in all the circles


## Circles in 2D

- S - set of circles
- Every 2 circles intersect
- Claim: There exists a point $p$ contained in all the circles


## Circles in 2D

- S - set of circles
- Every 2 circles intersect
- Claim: There exists a point $p$ contained in all the circles
- Not true


## Circles in 2D

- $S$ - set of circles
- Every 2 circles intersect
- Claim: There exists a point $p$ contained in all the circles
- Not true



## Helly's Theorem in $R^{2}$

## Theorem (Helly's Theorem in $R^{2}$ )

Let $C$ be a collection of convex objects in $R^{2}$. If every 3 objects in $C$ have a common intersection, then all the objects in $C$ have a common intersection

## Helly's Theorem in $R^{2}$

## Theorem (Helly's Theorem in $R^{2}$ )

Let $C$ be a collection of convex objects in $R^{2}$. If every 3 objects in $C$ have a common intersection, then all the objects in $C$ have a common intersection

- Extremal proof [Mustafa and Ray '07]
- Construct a point $p$ that is contained in all the objects


## Helly's Theorem in $R^{2}$

## Theorem (Helly's Theorem in $R^{2}$ )

Let $C$ be a collection of convex objects in $R^{2}$. If every 3 objects in $C$ have a common intersection, then all the objects in $C$ have a common intersection

## Helly's Theorem in $R^{2}$

## Theorem (Helly's Theorem in $R^{2}$ )

Let $C$ be a collection of convex objects in $R^{2}$. If every 3 objects in $C$ have a common intersection, then all the objects in $C$ have a common intersection


## Helly's Theorem in $R^{2}$

## Theorem (Helly's Theorem in $R^{2}$ )

Let $C$ be a collection of convex objects in $R^{2}$. If every 3 objects in $C$ have a common intersection, then all the objects in $C$ have a common intersection


- $p_{a b}$ : Lowest point in $C_{a b}=C_{a} \cap C_{b}$


## Helly's Theorem in $R^{2}$

## Theorem (Helly's Theorem in $R^{2}$ )

Let $C$ be a collection of convex objects in $R^{2}$. If every 3 objects in $C$ have a common intersection, then all the objects in $C$ have a common intersection


- $p_{a b}$ : Lowest point in $C_{a b}=C_{a} \cap C_{b}$
- Choose the pair of objects $\left(C_{i}, C_{j}\right)$ such that $p_{i j}$ is highest among all pairs


## Helly's Theorem in $R^{2}$

## Theorem (Helly's Theorem in $R^{2}$ )

Let $C$ be a collection of convex objects in $R^{2}$. If every 3 objects in $C$ have a common intersection, then all the objects in $C$ have a common intersection


- $p_{a b}$ : Lowest point in $C_{a b}=C_{a} \cap C_{b}$
- Choose the pair of objects $\left(C_{i}, C_{j}\right)$ such that $p_{i j}$ is highest among all pairs
- Claim: $p_{i j}$ is contained in all objects in $C$


## Helly's Theorem in $R^{2}$

- Claim: $p_{i j}$ is contained in $C_{k}$ for all $k$


## Helly's Theorem in $R^{2}$

- Claim: $p_{i j}$ is contained in $C_{k}$ for all $k$ - $C_{i j} \cap C_{k} \neq \emptyset$ (Every 3 objects intersect)


## Helly's Theorem in $R^{2}$

- Claim: $p_{i j}$ is contained in $C_{k}$ for all $k$
- $C_{i j} \cap C_{k} \neq \emptyset$ (Every 3 objects intersect)



## Helly's Theorem in $R^{2}$

- Claim: $p_{i j}$ is contained in $C_{k}$ for all $k$
- $C_{i j} \cap C_{k} \neq \emptyset$ (Every 3 objects intersect)

- If $p_{i j}$ is not contained in $C_{k}$


## Helly's Theorem in $R^{2}$

- Claim: $p_{i j}$ is contained in $C_{k}$ for all $k$
- $C_{i j} \cap C_{k} \neq \emptyset$ (Every 3 objects intersect)

- If $p_{i j}$ is not contained in $C_{k}$
- $p_{j k}$ higher than $p_{i j}$ - Contradiction


## Helly's Theorem in $R^{2}$

- Claim: $p_{i j}$ is contained in $C_{k}$ for all $k$



## Helly's Theorem in $R^{2}$

- Claim: $p_{i j}$ is contained in $C_{k}$ for all $k$

- $C_{i j} \cap C_{k} \neq \emptyset$ (Every 3 objects intersect)


## Helly's Theorem in $R^{2}$

- Claim: $p_{i j}$ is contained in $C_{k}$ for all $k$

- $C_{i j} \cap C_{k} \neq \emptyset$ (Every 3 objects intersect)
- $C_{k}$ intersect both $C_{i}$ and $C_{j}$ below $p_{i j}$
- $p_{i k}$ and $p_{j k}$ must be lower than $p_{i j}$


## Helly's Theorem in $R^{2}$

- Claim: $p_{i j}$ is contained in $C_{k}$ for all $k$

- $C_{i j} \cap C_{k} \neq \emptyset$ (Every 3 objects intersect)
- $C_{k}$ intersect both $C_{i}$ and $C_{j}$ below $p_{i j}$
- $p_{i k}$ and $p_{j k}$ must be lower than $p_{i j}$
- By convexity, $p_{i j}$ is contained in $C_{k}$


## Hadwiger-Debrunner $(p, q)$ problem

## Definition

For any positive integers, $p, q$, let $C$ be a family of convex objects $C$ in $\mathbb{R}^{d}$ with $[p, q]$-property. How many points are needed to pierce $C$ ?

## Hadwiger-Debrunner $(p, q)$ problem

## Definition

For any positive integers, $p, q$, let $C$ be a family of convex objects $C$ in $\mathbb{R}^{d}$ with $[p, q]$-property. How many points are needed to pierce $C$ ?

- Helly's theorem: For $p=3, q=3,1$ point is sufficient


## Hadwiger-Debrunner $(p, q)$ problem

## Definition

For any positive integers, $p, q$, let $C$ be a family of convex objects $C$ in $\mathbb{R}^{d}$ with $[p, q]$-property. How many points are needed to pierce $C$ ?

- Helly's theorem: For $p=3, q=3,1$ point is sufficient

Theorem (Alon and Kleitman '92)
$C$ is pierced by constant $(f(p, q, d))$ number of points

## Hadwiger-Debrunner $(p, q)$ problem

## Definition

For any positive integers, $p, q$, let $C$ be a family of convex objects $C$ in $\mathbb{R}^{d}$ with $[p, q]$-property. How many points are needed to pierce $C$ ?

- Helly's theorem: For $p=3, q=3,1$ point is sufficient


## Theorem (Alon and Kleitman '92)

$C$ is pierced by constant $(f(p, q, d))$ number of points

- $\alpha$ fraction of $d+1$-tuples intersect (counting argument)


## Hadwiger-Debrunner $(p, q)$ problem

## Definition

For any positive integers, $p, q$, let $C$ be a family of convex objects $C$ in $\mathbb{R}^{d}$ with $[p, q]$-property. How many points are needed to pierce $C$ ?

- Helly's theorem: For $p=3, q=3,1$ point is sufficient


## Theorem (Alon and Kleitman '92)

$C$ is pierced by constant $(f(p, q, d))$ number of points

- $\alpha$ fraction of $d+1$-tuples intersect (counting argument)
- $\exists$ a point contained in $\beta$-fraction of all convex objects (by Fractional Helly)


## Hadwiger-Debrunner $(p, q)$ problem

## Definition

For any positive integers, $p, q$, let $C$ be a family of convex objects $C$ in $\mathbb{R}^{d}$ with $[p, q]$-property. How many points are needed to pierce $C$ ?

- Helly's theorem: For $p=3, q=3$, 1 point is sufficient


## Theorem (Alon and Kleitman '92)

$C$ is pierced by constant $(f(p, q, d))$ number of points

- $\alpha$ fraction of $d+1$-tuples intersect (counting argument)
- $\exists$ a point contained in $\beta$-fraction of all convex objects (by Fractional Helly)
- Add points iteratively such that all convex objects have a large fraction of points contained in them (by Iterative re-weighting)


## Hadwiger-Debrunner $(p, q)$ problem

## Definition

For any positive integers, $p, q$, let $C$ be a family of convex objects $C$ in $\mathbb{R}^{d}$ with $[p, q]$-property. How many points are needed to pierce $C$ ?

- Helly's theorem: For $p=3, q=3$, 1 point is sufficient


## Theorem (Alon and Kleitman '92)

$C$ is pierced by constant $(f(p, q, d))$ number of points

- $\alpha$ fraction of $d+1$-tuples intersect (counting argument)
- $\exists$ a point contained in $\beta$-fraction of all convex objects (by Fractional Helly)
- Add points iteratively such that all convex objects have a large fraction of points contained in them (by Iterative re-weighting)
- Constant number of points pierce all objects (Weak $\epsilon$-nets)


## Centerpoint Theorem

## Theorem (Centerpoint Theorem)

Let $P$ be a set of $n$ points in the plane. There exists a point $p$ in the plane that is contained in every convex object containing $>\frac{2}{3} n$ points of $P$.

## Centerpoint Theorem

## Theorem (Centerpoint Theorem)

Let $P$ be a set of $n$ points in the plane. There exists a point $p$ in the plane that is contained in every convex object containing $>\frac{2}{3} n$ points of $P$.

- Take any 3 convex objects $C_{i}, C_{j}, C_{k}$ containing $>\frac{2}{3} n$ points


## Centerpoint Theorem

## Theorem (Centerpoint Theorem)

Let $P$ be a set of $n$ points in the plane. There exists a point $p$ in the plane that is contained in every convex object containing $>\frac{2}{3} n$ points of $P$.

- Take any 3 convex objects $C_{i}, C_{j}, C_{k}$ containing $>\frac{2}{3} n$ points
- $C_{i} \cap C_{j} \cap C_{k} \neq \emptyset$ (Counting argument)


## Centerpoint Theorem

## Theorem (Centerpoint Theorem)

Let $P$ be a set of $n$ points in the plane. There exists a point $p$ in the plane that is contained in every convex object containing $>\frac{2}{3} n$ points of $P$.

- Take any 3 convex objects $C_{i}, C_{j}, C_{k}$ containing $>\frac{2}{3} n$ points
- $C_{i} \cap C_{j} \cap C_{k} \neq \emptyset$ (Counting argument)
- Applying Helly theorem, there exists a point $p$ contained in all such convex objects


## Centerpoint Theorem

## Theorem (Centerpoint Theorem)

Let $P$ be a set of $n$ points in the plane. There exists a point $p$ in the plane that is contained in every convex object containing $>\frac{2}{3} n$ points of $P$.

- Take any 3 convex objects $C_{i}, C_{j}, C_{k}$ containing $>\frac{2}{3} n$ points
- $C_{i} \cap C_{j} \cap C_{k} \neq \emptyset$ (Counting argument)
- Applying Helly theorem, there exists a point $p$ contained in all such convex objects
- The constant $\frac{2}{3}$ is the best possible


## Strong Centerpoint

- Can we restrict the centerpoint to belong to $P$ ?


## Strong Centerpoint

- Can we restrict the centerpoint to belong to $P$ ?
- NO
- No, even for halfspaces


## Strong Centerpoint for axis parallel rectangles

## Theorem (Strong Centerpoint Theorem (Ashok, Azmi, G. '14))

Let $P$ be a set of $n$ points in the plane. There exists a point $p \in P$ that is contained in every rectangle containing $>\frac{3}{4} n$ points of $P$.

## Strong Centerpoint for axis parallel rectangles

## Theorem (Strong Centerpoint Theorem (Ashok, Azmi, G. '14))

Let $P$ be a set of $n$ points in the plane. There exists a point $p \in P$ that is contained in every rectangle containing $>\frac{3}{4} n$ points of $P$.

- The constant $\frac{3}{4}$ is the best possible


## Axis-Parallel Rectangles



## Axis-Parallel Rectangles



## The second column contains $\frac{n}{2}+2$ points.

## Axis-Parallel Rectangles



The second column contains $\frac{n}{2}+2$ points.

Since regions $(1,2)$ and $(3,2)$ contain at most $\frac{n}{4}-1$ points each, the region $(2,2)$ is not empty

## Axis-Parallel Rectangles



# Select any point from region $(2,2)$ as the $\epsilon$-net. 

## Axis-Parallel Rectangles



Select any point from region $(2,2)$ as the $\epsilon$-net.

Any axis-parallel rectangle that does not contain the chosen point will have $\leq \frac{3 n}{4}$ points.

## Small Weak Epsilon Nets

## Small Weak Epsilon Nets

- Select many points instead of just one

Theorem (Generalized Centerpoints)
Let $P$ be a set of $n$ points in the plane. There exists a set of $i$ points $Q$ in the plane such that $c \cap Q \neq \emptyset$ for any convex object c containing $>\epsilon_{i} n$ points of $P$.

## Small Weak Epsilon Nets

- Select many points instead of just one


## Theorem (Generalized Centerpoints)

Let $P$ be a set of $n$ points in the plane. There exists a set of $i$ points $Q$ in the plane such that $c \cap Q \neq \emptyset$ for any convex object c containing $>\epsilon_{i} n$ points of $P$.

- Bounds for $\epsilon_{i}$ ?


## Small Weak Epsilon Nets

- Select many points instead of just one


## Theorem (Generalized Centerpoints)

Let $P$ be a set of $n$ points in the plane. There exists a set of $i$ points $Q$ in the plane such that $c \cap Q \neq \emptyset$ for any convex object c containing $>\epsilon_{i} n$ points of $P$.

- Bounds for $\epsilon_{i}$ ?
- Centerpoint Theorem: $\epsilon_{1}=2 / 3$


## Small Weak Epsilon Nets

- Select many points instead of just one


## Theorem (Generalized Centerpoints)

Let $P$ be a set of $n$ points in the plane. There exists a set of $i$ points $Q$ in the plane such that $c \cap Q \neq \emptyset$ for any convex object c containing $>\epsilon_{i} n$ points of $P$.

- Bounds for $\epsilon_{i}$ ?
- Centerpoint Theorem: $\epsilon_{1}=2 / 3$
- Extension: $\epsilon_{2}=4 / 7$


## Small Weak Epsilon Nets

## Small Weak Epsilon Nets

- Select many points instead of just one


## Small Weak Epsilon Nets

- Select many points instead of just one
- Special convex objects - rectangles, circles, halfspaces, ...


## Small Weak Epsilon Nets

- Select many points instead of just one
- Special convex objects - rectangles, circles, halfspaces, ...

|  | Rectangles |  | Halfspaces |  | Disks |  | Convex sets |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | LB | UB | LB | UB | LB | UB | LB | UB |
| $\epsilon_{1}$ | $1 / 2$ |  | $2 / 3$ |  | $2 / 3$ |  | $2 / 3$ |  |
| $\epsilon_{2}$ | $2 / 5$ |  | $1 / 2$ | $4 / 7$ | $4 / 7$ |  |  |  |
| $\epsilon_{3}$ | $1 / 3$ |  | 0 | $1 / 4$ | $8 / 15$ | $5 / 11$ | $8 / 15$ |  |

Table: Summary of bounds [Aronov et al '09, MR '07]

## Small Weak Epsilon Nets

- Select many points instead of just one
- Special convex objects - rectangles, circles, halfspaces, ...

|  | Rectangles |  | Halfspaces |  | Disks |  | Convex sets |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | LB | UB | LB | UB | LB | UB | LB | UB |
| $\epsilon_{1}$ | $1 / 2$ |  | $2 / 3$ |  | $2 / 3$ |  | $2 / 3$ |  |
| $\epsilon_{2}$ | $2 / 5$ |  | $1 / 2$ | $4 / 7$ | $4 / 7$ |  |  |  |
| $\epsilon_{3}$ | $1 / 3$ |  | 0 |  | $1 / 4$ | $8 / 15$ | $5 / 11$ | $8 / 15$ |

Table: Summary of bounds [Aronov et al '09, MR '07]

- Open problem: Find exact value of $\epsilon_{i}$ for small $i$ ?


## Small Strong epsilon nets

- Restrict $Q \subseteq P$


## Small Strong epsilon nets

- Restrict $Q \subseteq P$


## Theorem (Generalized Strong Centerpoints)

Let $P$ be a set of $n$ points in the plane. There exists a set of $i$ points $Q \subseteq P$ such that $c \cap Q \neq \emptyset$ for any object $c$ containing $>\epsilon_{i} n$ points of $P$.

## Small Strong epsilon nets

- Restrict $Q \subseteq P$


## Theorem (Generalized Strong Centerpoints)

Let $P$ be a set of $n$ points in the plane. There exists a set of $i$ points $Q \subseteq P$ such that $c \cap Q \neq \emptyset$ for any object $c$ containing $>\epsilon_{i} n$ points of $P$.

|  | Rectangles |  | Halfspaces |  | Disks |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | LB |  | UB | LB | UB | LB |
| UB |  |  |  |  |  |  |
| $\epsilon_{1}$ | $3 / 4$ |  | 1 |  | 1 |  |
| $\epsilon_{2}$ | $5 / 9$ | $5 / 8$ | $3 / 5$ | $2 / 3$ | $3 / 5$ | $2 / 3$ |
| $\epsilon_{3}$ | $9 / 20$ | $5 / 9$ | $1 / 2$ |  | $1 / 2$ | $2 / 3$ |

Table: Summary of bounds [AAG '10]

## Small Strong epsilon nets

- Restrict $Q \subseteq P$


## Theorem (Generalized Strong Centerpoints)

Let $P$ be a set of $n$ points in the plane. There exists a set of $i$ points $Q \subseteq P$ such that $c \cap Q \neq \emptyset$ for any object $c$ containing $>\epsilon_{i} n$ points of $P$.

|  | Rectangles |  | Halfspaces |  | Disks |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | LB |  | UB | LB | UB | LB |
| UB |  |  |  |  |  |  |
| $\epsilon_{1}$ | $3 / 4$ |  | 1 |  | 1 |  |
| $\epsilon_{2}$ | $5 / 9$ | $5 / 8$ | $3 / 5$ | $2 / 3$ | $3 / 5$ | $2 / 3$ |
| $\epsilon_{3}$ | $9 / 20$ | $5 / 9$ | $1 / 2$ |  | $1 / 2$ | $2 / 3$ |

Table: Summary of bounds [AAG '10]

- Open problem: Find exact value (for $k=2$ )


## First Selection Lemma (FSL)

- For induced triangles in $R^{2}$, Boros and Füredi (1984), showed that the centerpoint is present in $\frac{n^{3}}{27}$ (constant fraction) triangles induced by $P$. This constant is tight.


## FSL for Axis-Parallel Rectangles in $R^{2}$

## Theorem (Ashok, G., Mishra, Rajgopal '13)

There exists a point $p$ in $R^{2}$, which is present in at least $\frac{n^{2}}{8}$ axis-parallel rectangles induced by $P$. This bound is tight.

## FSL for Axis-Parallel Rectangles in $R^{2}$

## Theorem (Ashok, G., Mishra, Rajgopal '13)

There exists a point $p$ in $R^{2}$, which is present in at least $\frac{n^{2}}{8}$ axis-parallel rectangles induced by $P$. This bound is tight.

The tightness of the bound - $P$ distributed around the boundary of a circle.

## FSL for Axis-Parallel Rectangles in $R^{2}$

## Theorem (Ashok, G., Mishra, Rajgopal '13)

There exists a point $p$ in $R^{2}$, which is present in at least $\frac{n^{2}}{8}$ axis-parallel rectangles induced by $P$. This bound is tight.

The tightness of the bound - $P$ distributed around the boundary of a circle.

## Theorem (Ashok, G., Mishra, Rajgopal '13)

There exists a point $p \in P$ such that $p$ is contained in at least $\frac{n^{2}}{16}$ induced rectangles. This bound is tight.

## FSL for Axis-Parallel Rectangles in $R^{2}$

## Theorem (Ashok, G., Mishra, Rajgopal '13)

There exists a point $p$ in $R^{2}$, which is present in at least $\frac{n^{2}}{8}$ axis-parallel rectangles induced by $P$. This bound is tight.

The tightness of the bound - $P$ distributed around the boundary of a circle.

## Theorem (Ashok, G., Mishra, Rajgopal '13)

There exists a point $p \in P$ such that $p$ is contained in at least $\frac{n^{2}}{16}$ induced rectangles. This bound is tight.

Proved using weak and strong centerpoint w.r.t axis parallel rectangles

## FSL for Axis-Parallel Rectangles in $R^{2}$

## Theorem (Ashok, G., Mishra, Rajgopal '13)

There exists a point $p$ in $R^{2}$, which is present in at least $\frac{n^{2}}{8}$ axis-parallel rectangles induced by $P$. This bound is tight.

The tightness of the bound - $P$ distributed around the boundary of a circle.

## Theorem (Ashok, G., Mishra, Rajgopal '13)

There exists a point $p \in P$ such that $p$ is contained in at least $\frac{n^{2}}{16}$ induced rectangles. This bound is tight.

Proved using weak and strong centerpoint w.r.t axis parallel rectangles
Open problem: FSL for boxes in higher dimension

## FSL for Disks in $R^{2}$

## Theorem (Ashok, G., Mishra, Rajgopal '13)

There exists a point $p$ in $R^{2}$, which is present in at least $\frac{n^{2}}{6}$ disks induced by $P$.

## FSL for Disks in $R^{2}$

## Theorem (Ashok, G., Mishra, Rajgopal '13)

There exists a point $p$ in $R^{2}$, which is present in at least $\frac{n^{2}}{6}$ disks induced by $P$.

Proof uses centerpoint

## FSL for Disks in $R^{2}$

## Theorem (Ashok, G., Mishra, Rajgopal '13)

There exists a point $p$ in $R^{2}$, which is present in at least $\frac{n^{2}}{6}$ disks induced by $P$.

Proof uses centerpoint
Open problem: Obtain tight bounds for disks

## Questions?

