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Scope of the lecture

◮ Binary search trees and 2-d range trees
We consider 1-d and 2-d range queries for point sets.

◮ Interval trees
Interval trees for reporting all (horizontal) intervals containing a
given (vertical) query line or segment.

◮ Planar point location
Using triangulation refinement and monotone subdivisions.

◮ Hierarchical representation of a convex
polygon
Detecting the intersection of a convex polygon with a query line..
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1-dimensional Range searching

a b

◮ Problem: Given a set P of n points {p1, p2, · · · , pn} on the
real line, report points of P that lie in the range [a, b], a ≤ b.

◮ Using binary search on an array we can answer such a query in
O(log n + k) time where k is the number of points of P in
[a, b].

◮ However, when we permit insertion or deletion of points, we
cannot use an array answering queries so efficiently.
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◮ We use a binary leaf search tree where leaf nodes store the
points on the line, sorted by x-coordinates.
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◮ We use a binary leaf search tree where leaf nodes store the
points on the line, sorted by x-coordinates.

◮ Each internal node stores the x-coordinate of the rightmost
point in its left subtree for guiding search.



2-dimensional Range Searching
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◮ Problem: Given a set P of n points in the plane, report points
inside a query rectangle Q whose sides are parallel to the axes.
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◮ Problem: Given a set P of n points in the plane, report points
inside a query rectangle Q whose sides are parallel to the axes.

◮ Here, the points inside R are 14, 12 and 17.
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◮ Using two 1-d range queries, one along each axis, solves the
2-d range query.



2-dimensional Range Searching
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◮ Using two 1-d range queries, one along each axis, solves the
2-d range query.

◮ The cost incurred may exceed the actual output size of the
2-d range query.
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Range searching with range trees and

Kd-trees

◮ Given a set S of n points in the plane, we can construct a
2d-range tree in O(n log n) time and space, so that rectangle
queries can be executed in O(log2 n + k) time.

◮ The query time can be improved to O(log n+ k) using the
technique of fractional cascading.

◮ Given a set S of n points in the plane, we can construct a
Kd-tree in O(n log n) time and O(n) space, so that rectangle
queries can be executed in O(

√
n + k) time. Here, the

number of points in the query rectangle is k .



Range searching in the plane using range

trees

a b

Given a 2-d rectangle query [a, b]X [c , d ], we can identify subtrees
whose leaf nodes are in the range [a, b] along the X-direction.

Only a subset of these leaf nodes lie in the range [c , d ] along the
Y-direction.
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Range searching in the plane using range

trees
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Tassoc(v) is a binary search tree on y-coordinates for points in the
leaf nodes of the subtree tooted at v in the tree T .

The point p is duplicated in Tassoc(v) for each v on the search path
for p in tree T .

The total space requirement is therefore O(n log n).



Range searching in the plane using range

trees

a b

We perform 1-d range queries with the y-range [c , d ] in each of the
subtrees adjacent to the left and right search paths within the
x-range [a, b] in the tree T .

Since the search path is O(log n) in size, and each y-range query
requires O(log n) time, the total cost of searching is O(log2 n).
The reporting cost is O(k) where k points lie in the query
rectangle.



Finding intervals containing a vertical query

line/segment
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Simpler queries ask for reporting all intervals intersecting the
vertical line X = xquery .

More difficult queries ask for reporting all intervals intersecting a
vertical segment joining (x ′query , y) and (x ′query , y

′).



Constructing the interval tree
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The set M has intervals intersecting the vertical line X = xmid ,
where xmid is the median of the x-coordinates of the 2n endpoints.

The root node has intervals M sorted in two independent orders (i)
by right end points (B-E-A), and (ii) left end points (A-E-B).



Answering queries using an interval tree
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The set L and R have at most n endpoints each.

So they have at most n
2 intervals each.

Clearly, the cost of (recursively) building the interval tree is
O(n log n).

The space required is linear.



Answering queries using an interval tree

xmidxquery queryx’
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For xquery < xmid , we do not traverse subtree for subset R .

For x ′query > xmid , we do not traverse subtree for subset L.

Clearly, the cost of reporting the k intervals is O(log n+ k).



Reporting (portions of) all rectilinear

segments inside a query rectangle

For detecting segments with one (or both) ends inside the
rectangle, it is sufficient to maintain rectangular range query
apparatus for output-sensitive query processing.



Reporting segments with no endpoints inside

the query rectangle

Report all (horizontal) segments that cut across the query
rectangle or include an entire (top/bottom) bounding edge.
Use either the right (or left) edge, and the top (or bottom) edge of
the query rectangle.



Right edges X and X’ of two query

rectangles

X X’

Xmid
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Use an interval tree of all the horizontal segments and the right
bounding edge of the query rectangle like X or X’.
This helps reporting all segments cutting the right edge of the
query rectangle.
Use the rectangle query for vertical segment X and find points A,
B and C in the rectangle with left edge at minus infinity. For X’,
report B, C and D, similarly.
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Computing the visible region in a polygon

with opaque obstacles
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Planar point location by triangulation
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Planar point location using monotone chains



Planar point location using monotone chains
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Planar point location using monotone chains



Representing a convex object layer by layer
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Point inclusion and Line intersection queries
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