
Geometric data structures

Sudebkumar Prasant Pal

Department of Computer Science and Engineering

IIT Kharagpur, 721302.

email: spp@cse.iitkgp.ernet.in

March 6-8, 2014 - IIT Roorkee
Introduction to Graph and Geometric Algorithms

Scope of the lecture

◮ Binary search trees and 2-d range trees
We consider 1-d and 2-d range queries for point sets.

Scope of the lecture

◮ Binary search trees and 2-d range trees
We consider 1-d and 2-d range queries for point sets.

◮ Interval trees
Interval trees for reporting all (horizontal) intervals containing a
given (vertical) query line or segment.

Scope of the lecture

◮ Binary search trees and 2-d range trees
We consider 1-d and 2-d range queries for point sets.

◮ Interval trees
Interval trees for reporting all (horizontal) intervals containing a
given (vertical) query line or segment.

◮ Planar point location
Using triangulation refinement and monotone subdivisions.

Scope of the lecture

◮ Binary search trees and 2-d range trees
We consider 1-d and 2-d range queries for point sets.

◮ Interval trees
Interval trees for reporting all (horizontal) intervals containing a
given (vertical) query line or segment.

◮ Planar point location
Using triangulation refinement and monotone subdivisions.

◮ Hierarchical representation of a convex
polygon
Detecting the intersection of a convex polygon with a query line..

1-dimensional Range searching

a b

◮ Problem: Given a set P of n points {p1, p2, · · · , pn} on the
real line, report points of P that lie in the range [a, b], a ≤ b.

1-dimensional Range searching

a b

◮ Problem: Given a set P of n points {p1, p2, · · · , pn} on the
real line, report points of P that lie in the range [a, b], a ≤ b.

◮ Using binary search on an array we can answer such a query in
O(log n + k) time where k is the number of points of P in
[a, b].

1-dimensional Range searching

a b

◮ Problem: Given a set P of n points {p1, p2, · · · , pn} on the
real line, report points of P that lie in the range [a, b], a ≤ b.

◮ Using binary search on an array we can answer such a query in
O(log n + k) time where k is the number of points of P in
[a, b].

◮ However, when we permit insertion or deletion of points, we
cannot use an array answering queries so efficiently.

1-dimensional Range searching

2 4 7 13 20 22 26 35

2

20

35
4

2 7

4

26

13

22

Search range [6,25]

7 13 20 22

Report 7,13,20,22

26

◮ We use a binary leaf search tree where leaf nodes store the
points on the line, sorted by x-coordinates.

1-dimensional Range searching

2 4 7 13 20 22 26 35

2

20

35
4

2 7

4

26

13

22

Search range [6,25]

7 13 20 22

Report 7,13,20,22

26

◮ We use a binary leaf search tree where leaf nodes store the
points on the line, sorted by x-coordinates.

◮ Each internal node stores the x-coordinate of the rightmost
point in its left subtree for guiding search.

2-dimensional Range Searching

1

3 4

5

6
7

8

9
11

12

1315
16

17

14

10

2

Q

◮ Problem: Given a set P of n points in the plane, report points
inside a query rectangle Q whose sides are parallel to the axes.

2-dimensional Range Searching

1

3 4

5

6
7

8

9
11

12

1315
16

17

14

10

2

Q

◮ Problem: Given a set P of n points in the plane, report points
inside a query rectangle Q whose sides are parallel to the axes.

◮ Here, the points inside R are 14, 12 and 17.

2-dimensional Range Searching

1

3 4

5

6
7

8

9
11

12

1315
16

17

14

10

2

Q

◮ Using two 1-d range queries, one along each axis, solves the
2-d range query.

2-dimensional Range Searching

1

3 4

5

6
7

8

9
11

12

1315
16

17

14

10

2

Q

◮ Using two 1-d range queries, one along each axis, solves the
2-d range query.

◮ The cost incurred may exceed the actual output size of the
2-d range query.

Range searching with range trees and

Kd-trees

◮ Given a set S of n points in the plane, we can construct a
2d-range tree in O(n log n) time and space, so that rectangle
queries can be executed in O(log2 n + k) time.

Range searching with range trees and

Kd-trees

◮ Given a set S of n points in the plane, we can construct a
2d-range tree in O(n log n) time and space, so that rectangle
queries can be executed in O(log2 n + k) time.

◮ The query time can be improved to O(log n+ k) using the
technique of fractional cascading.

Range searching with range trees and

Kd-trees

◮ Given a set S of n points in the plane, we can construct a
2d-range tree in O(n log n) time and space, so that rectangle
queries can be executed in O(log2 n + k) time.

◮ The query time can be improved to O(log n+ k) using the
technique of fractional cascading.

◮ Given a set S of n points in the plane, we can construct a
Kd-tree in O(n log n) time and O(n) space, so that rectangle
queries can be executed in O(

√
n + k) time. Here, the

number of points in the query rectangle is k .

Range searching in the plane using range

trees

a b

Given a 2-d rectangle query [a, b]X [c , d], we can identify subtrees
whose leaf nodes are in the range [a, b] along the X-direction.

Only a subset of these leaf nodes lie in the range [c , d] along the
Y-direction.

Range searching in the plane using range

trees

Range searching in the plane using range

trees

assoc(v)

v

T
T

p

p

p

p

T

Tassoc(v) is a binary search tree on y-coordinates for points in the
leaf nodes of the subtree tooted at v in the tree T .

The point p is duplicated in Tassoc(v) for each v on the search path
for p in tree T .

The total space requirement is therefore O(n log n).

Range searching in the plane using range

trees

a b

We perform 1-d range queries with the y-range [c , d] in each of the
subtrees adjacent to the left and right search paths within the
x-range [a, b] in the tree T .

Since the search path is O(log n) in size, and each y-range query
requires O(log n) time, the total cost of searching is O(log2 n).
The reporting cost is O(k) where k points lie in the query
rectangle.

Finding intervals containing a vertical query

line/segment

A

B

C

D

E

F

G

H

xquery

queryx’

y’

y

Simpler queries ask for reporting all intervals intersecting the
vertical line X = xquery .

More difficult queries ask for reporting all intervals intersecting a
vertical segment joining (x ′query , y) and (x ′query , y

′).

Constructing the interval tree

1. F

2. F
1. H

2. H

1. G

2. G1. C−D

2. D−C

1. A−E−B

2. B−E−A

A

B

C

D

E

F

G

H

xmid

M

L R

M

L R

I

The set M has intervals intersecting the vertical line X = xmid ,
where xmid is the median of the x-coordinates of the 2n endpoints.

The root node has intervals M sorted in two independent orders (i)
by right end points (B-E-A), and (ii) left end points (A-E-B).

Answering queries using an interval tree

1. F

2. F
1. H

2. H

1. G

2. G1. C−D

2. D−C

1. A−E−B

2. B−E−A

A

B

C

D

E

F

G

H

xmid

M

L R

M

L R

I

The set L and R have at most n endpoints each.

So they have at most n
2 intervals each.

Clearly, the cost of (recursively) building the interval tree is
O(n log n).

The space required is linear.

Answering queries using an interval tree

xmidxquery queryx’

A

B

C

D

E

F

G

H

List 2List 1

(Only A & E) (Only B)

M

A,E,B B,E,A

R
L

For xquery < xmid , we do not traverse subtree for subset R .

For x ′query > xmid , we do not traverse subtree for subset L.

Clearly, the cost of reporting the k intervals is O(log n+ k).

Reporting (portions of) all rectilinear

segments inside a query rectangle

For detecting segments with one (or both) ends inside the
rectangle, it is sufficient to maintain rectangular range query
apparatus for output-sensitive query processing.

Reporting segments with no endpoints inside

the query rectangle

Report all (horizontal) segments that cut across the query
rectangle or include an entire (top/bottom) bounding edge.
Use either the right (or left) edge, and the top (or bottom) edge of
the query rectangle.

Right edges X and X’ of two query

rectangles

X X’

Xmid

A

B

C
D

Use an interval tree of all the horizontal segments and the right
bounding edge of the query rectangle like X or X’.
This helps reporting all segments cutting the right edge of the
query rectangle.
Use the rectangle query for vertical segment X and find points A,
B and C in the rectangle with left edge at minus infinity. For X’,
report B, C and D, similarly.

S1

S2
S3

S5

S4

S7S6

S1

S2
S3

S5

S4

S7S6

S1

S2
S3

S5

S4

S7S6

S1

S2
S3

S5

S4

S7S6

S1

S1

S2 S2

S1, S4

S3, S4 S4

S4

S5

S5

S6

S6

S7

S7

S1

S2
S3

S5

S4

S7S6

S1

S1

S2 S2

S1, S4

S4

S4

S5

S5

S6 S7

S7

S3, S4

q

S6

S1

S2

S3

S4

S5

S6

S1

S2

S3

S4

S5

S6

Computing the visible region in a polygon

with opaque obstacles

B

C
D

E

F

GH

I J

K

L

M

O

P

Q
R

S

Z
12

3
4

6

7

N

5

SQ,SR,DC,1−−>SQ,SR,DE,2−−>DE,3−−>

FG,FE,DE,4−−>NP,NO,FG,FE,DE,5−−>

NP,NO,FG,FE,DE,6−−>LM,MK,NP,NO,FG,7

Z1 ,SQ−−>Z2,SQ−−>Z3,DE−−>

Computing the visible region in a polygon

with opaque obstacles

B

C
D

E

F

GH

I J

K

L
M

O

P

Q
R

S

Z
12

3
4

6

7

N

5

SQ,SR,DC,1−−>SQ,SR,DE,2−−>DE,3−−>

FG,FE,DE,4−−>NP,NO,FG,FE,DE,5−−>

NP,NO,FG,FE,DE,6−−>LM,MK,NP,NO,FG,7

Z4,FG and DE−−>Z5,NP and FG−−>

Z1 ,SQ−−>Z2,SQ−−>Z3,DE−−>

Computing the visible region in a polygon

with opaque obstacles

B

C
D

E

F

GH

I J

K

L
M

O

P

Q
R

S

Z
12

3
4

6

7

N

5

SQ,SR,DC,1−−>SQ,SR,DE,2−−>DE,3−−>

FG,FE,DE,4−−>NP,NO,FG,FE,DE,5−−>

NP,NO,FG,FE,DE,6−−>LM,MK,NP,NO,FG,7

Z4,FG and DE−−>Z5,NP and FG−−>

Z1 ,SQ−−>Z2,SQ−−>Z3,DE−−>

Computing the visible region in a polygon

with opaque obstacles

B

C
D

E

F

GH

I J

K

L
M

O

P

Q
R

S

Z
12

3
4

6

7

N

5

SQ,SR,DC,1−−>SQ,SR,DE,2−−>DE,3−−>

FG,FE,DE,4−−>NP,NO,FG,FE,DE,5−−>

NP,NO,FG,FE,DE,6−−>LM,MK,NP,NO,FG,7

Z4,FG and DE−−>Z5,NP and FG−−>

Z1 ,SQ−−>Z2,SQ−−>Z3,DE−−>

Computing the visible region in a polygon

with opaque obstacles

B

C
D

E

F

GH

I J

K

L
M

O

P

Q
R

S

Z
12

3
4

6

7

N

5

SQ,SR,DC,1−−>SQ,SR,DE,2−−>DE,3−−>

FG,FE,DE,4−−>NP,NO,FG,FE,DE,5−−>

NP,NO,FG,FE,DE,6−−>LM,MK,NP,NO,FG,7

Z4,FG and DE−−>Z5,NP and FG−−>

Z1 ,SQ−−>Z2,SQ−−>Z3,DE−−>

Computing the visible region in a polygon

with opaque obstacles

B

C
D

E

F

GH

I J

K

L

M

O

P

Q
R

S

Z
12

3
4

6

7

N

5

SQ,SR,DC,1−−>SQ,SR,DE,2−−>DE,3−−>

FG,FE,DE,4−−>NP,NO,FG,FE,DE,5−−>

NP,NO,FG,FE,DE,6−−>LM,MK,NP,NO,FG,7

Z1 ,SQ−−>Z2,SQ−−>Z3,DE−−>

Planar point location by triangulation

refinement

8

16

18

17
11

19

20

22

13

21

23
14

Planar point location by triangulation

refinement
8

16

18

17
11

19

20

22

13

21

23
14

8 11
13

14
16

17
18

19 20 21
22 23 24

Planar point location by triangulation

refinement

8

16

18

17
11

19

20

22

13

21

23
14

8

11

13

14

9

7

10

12

15

Planar point location by triangulation

refinement
8

16

18

17
11

19

20

22

13

21

23
14

8 11
13

14
16

17
18

19 20 21
22 23 24

8

11

13

14

9

7

10

12

15

7
9

10
12 15

8

16

18

17
11

19

20

22

13

21

23
14

8

11

13

14

9

7

10

12

15

7
9

10
12 15

7

4

5

6

2

4 2 5
6

Planar point location by triangulation

refinement
8

16

18

17
11

19

20

22

13

21

23
14

8 11
13

14
16

17
18

19 20 21
22 23 24

8

11

13

14

9

7

10

12

15

7
9

10
12 15

7

4

5

6

2

4 2 5
6

Planar point location by triangulation

refinement
8

16

18

17
11

19

20

22

13

21

23
14

8

11

13

14

9

7

10

12

15

7
9

10
12 15

7

4

5

6

2

4 2 5
6

21

3

1 3

Planar point location by triangulation

refinement
8

16

18

17
11

19

20

22

13

21

23
14

8 11
13

14
16

17
18

19 20 21
22 23 24

8

11

13

14

9

7

10

12

15

7
9

10
12 15

7

4

5

6

2

4 2 5
6

21

3

1 3

Planar point location by triangulation

refinement
8

16

18

17
11

19

20

22

13

21

23
14

8

11

13

14

9

7

10

12

15

7
9

10
12 15

7

4

5

6

2

4 2 5
6

21

3

1 3

0

Planar point location by triangulation

refinement
8

16

18

17
11

19

20

22

13

21

23
14

8 11
13

14
16

17
18

19 20 21
22 23 24

8

11

13

14

9

7

10

12

15

7
9

10
12 15

7

4

5

6

2

4 2 5
6

21

3

1 3

0

Planar point location using monotone chains

Planar point location using monotone chains

Planar point location using monotone chains

Planar point location using monotone chains

Planar point location using monotone chains

Planar point location using monotone chains

Planar point location using monotone chains

Planar point location using monotone chains

Planar point location using monotone chains

Planar point location using monotone chains

Representing a convex object layer by layer

1

2

3

4

5 6
8

9

10

11

12

13

14

15161718
19

21

22

1, 2 2, 3 3, 4 4, 5 5, 6 6, 7 7, 8 8, 9 9, 10 10, 11 11, 12 12,13 13,14 14,15
15,16 16,17 17,18 18,19 19,20 20,21 21,22 22,1

20

Second layer

1

2

3

4

5
8

9

10

11

12

13

14

15161718
19

21

22

1, 2 2, 3 3, 4 4, 5 5, 6 6, 7 7, 8 8, 9 9, 10 10, 11 11, 12 12,13 13,14 14,15
15,16 16,17 17,18 18,19 19,20 20,21 21,22 22,1

1,2,3,4 4,5,6 6,7,8 8,9,10 10,11,12,13 13,14,15 15,16,17,18 18,19,20,21,22,1

20

Third layer

1

2

3

4

5 6 7
8

9

10

11

12

13

14

15161718
19

21

22

1, 2 2, 3 3, 4 4, 5 5, 6 6, 7 7, 8 8, 9 9, 10 10, 11 11, 12 12,13 13,14 14,15
15,16 16,17 17,18 18,19 19,20 20,21 21,22 22,1

1,2,3,4 4,5,6 6,7,8 8,9,10 10,11,12,13 13,14,15 15,16,17,18 18,19,20,21,22,1

1,4,6 6,8,10 10,13,15 15,18,1

20

1

2

3

4

5 6 7
8

9

10

11

12

13

14

15161718
19

21

22

1, 2 2, 3 3, 4 4, 5 5, 6 6, 7 7, 8 8, 9 9, 10 10, 11 11, 12 12,13 13,14 14,15
15,16 16,17 17,18 18,19 19,20 20,21 21,22 22,1

1,2,3,4 4,5,6 6,7,8 8,9,10 10,11,12,13 13,14,15 15,16,17,18 18,19,20,21,22,1

1,4,6 6,8,10 10,13,15 15,18,1

1,6,10 10,15,1

20

Point inclusion and Line intersection queries

1

2

3

4

5 6 7
8

9

10

11

12

13

14

15161718
19

21

22

1, 2 2, 3 3, 4 4, 5 5, 6 6, 7 7, 8 8, 9 9, 10 10, 11 11, 12 12,13 13,14 14,15
15,16 16,17 17,18 18,19 19,20 20,21 21,22 22,1

1,2,3,4 4,5,6 6,7,8 8,9,10 10,11,12,13 13,14,15 15,16,17,18 18,19,20,21,22,1

1,4,6 6,8,10 10,13,15 15,18,1

1,6,10 10,15,1

20

1,10,1

Mark de Berg, Otfried Schwarzkopf, Marc van Kreveld and Mark
Overmars, Computational Geometry: Algorithms and Applications,
Springer.

S. K. Ghosh, Visibility Algorithms in the Plane, Cambridge
University Press, Cambridge, UK, 2007.

Kurt Mehlhorn, Data Structures and Algorithms, Vol. 3, Springer.

F. P. Preparata and M. I. Shamos, Computational Geometry: An
Introduction, New York, NY, Springer-Verlag, 1985.

	Scope
	Range searching

