Finding Euclidean Shortest Path

R. Inkulu

Assistant Professor Department of Computer Science IIT Guwahati

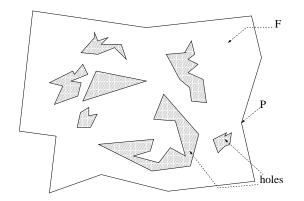
rinkulu@iitg.ac.in http://www.iitg.ac.in/rinkulu/

Outline

- 1 Problem Description
- 2 Approach 1: Reduce to find a SP in graphsCharacterizationsCompute Tangents that lie in F between Convex HolesApply Graph Algorithm to find SP
- 3 Approach 2: Computing directly in geometric domain Dijkstra's Algorithm for Graphs Continuous Dijkstra Method
- 4 Conclusions

Polygonal domain

- A simple polygon P containing disjoint simple polygonal holes (a.k.a. obstacles) in \mathbb{R}^2 is termed as the **polygonal domain** D.
- Polygon *P* sans interior of the holes is termed as the **free space** *F*.

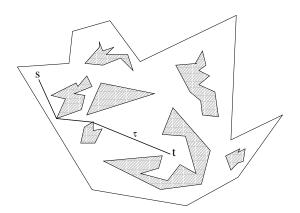


n: number of vertices

h: number of holes

Shortest paths in polygonal domains

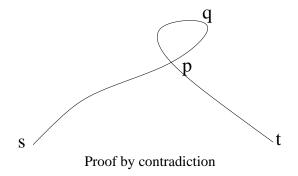
• Given *D* with two points $s, t \in F$, find *a* Euclidean shortest path (SP), say SP_{st} , from *s* to *t* such that SP_{st} lies in *F*.



Applications in robot motion planning, route planning using GPS, VLSI wire routing etc.,

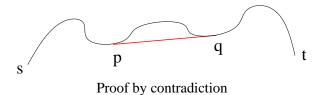
Shortest paths are simple paths

 SP_{st} is a simple path.



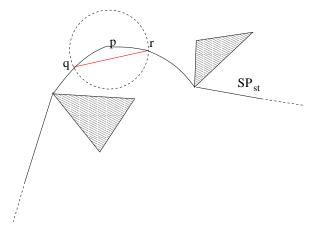
Optimal Substructure: SPs are locally shortest

 SP_{st} contains subpath L from p to $q \Rightarrow L$ must be SP_{pq}



SP is polygonal

Every shortest path is a polygonal path.

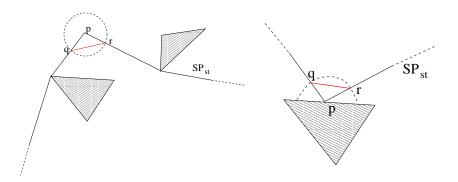


Proof by contradiction

Every internal vertex of SP is a vertex of D

No internal vertex of a SP can lie either:

- in the free space, or
- interior to an edge.



Proof by contradiction.

Outline

- 1 Problem Description
- 2 Approach 1: Reduce to find a SP in graphs

Characterizations
Compute Tangents that lie in *F* between Convex Holes
Apply Graph Algorithm to find SP

- 3 Approach 2: Computing directly in geometric domain Dijkstra's Algorithm for Graphs Continuous Dijkstra Method
- 4 Conclusions

High Level Description

- 1 Compute a weighted graph G from D so that an edge $e \in SP_{st}$ in D then $e \in G$.
- 2 Compute SP_{st} in G.

Outline

- 1 Problem Description
- 2 Approach 1: Reduce to find a *SP* in graphs Characterizations

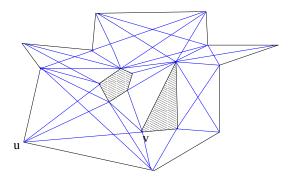
Compute Tangents that lie in *F* between Convex Ho Apply Graph Algorithm to find SP

- 3 Approach 2: Computing directly in geometric domain Dijkstra's Algorithm for Graphs Continuous Dijkstra Method
- 4 Conclusions

Visibility Graph of *D*

The weighted undirected graph $VG_D(V, E')$ is defined over D such that:

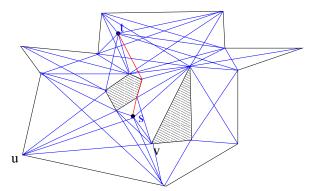
- V is the set of vertices in D,
- an edge $e(u, v) \in E'$ whenever u and v are visible to each other in D, and
- for every edge e(u, v), the weight of e is the Euclidean distance along the line segment uv in D.



Geometric Shortest Paths and Visibility Graphs

Considering s and t as degenerate holes in D, $e \in SP_{st}$ in $D \Leftrightarrow e \in SP_{st}$ in VG_D .

- SP_{st} is polygonal with the internal vertices chosen from D, and
- Every edge e(u, v) in SP_{st} belongs to F.

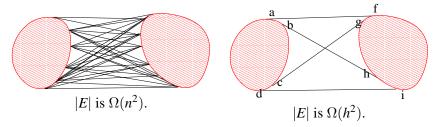


Time complexity is dominated by VG_D computation and |E'|.

Tangent Visibility Graph

The **tangent visibility graph** $TVG_D(V, E)$ for D is defined whenever each hole in D is convex. It is same as $VG_D(V, E')$ except that:

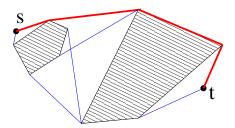
an edge $e(u, v) \in E$ iff uv is either an edge of a hole in D or a tangent between two convex holes.



Computing tangents between two convex hulls CH' and CH'' takes $O(\lg |CH'| + \lg |CH''|)$ (from [Edelsbrunner, 1985]).

Geometric Shortest Paths and Tangent Visibility Graphs

Considering *s* and *t* as degenerate holes in D, $e \in SP_{st}$ in $D \Leftrightarrow e \in SP_{st}$ in TVG_D .



(Yet Another) High Level Description

Suppose that all holes are convex and the boundary of outer polygon is convex.

- lacksquare Compute the weighted tangent visibility graph TVG corresonding to D.
- 2 Find a shortest path from s to t in TVG.

Approach is due to [Rohnert, 1986].

Outline

- 1 Problem Description
- 2 Approach 1: Reduce to find a SP in graphs

Characterizations

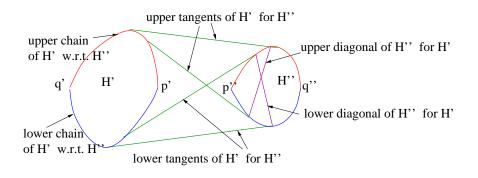
Compute Tangents that lie in F between Convex Holes

Apply Graph Algorithm to find SP

- 3 Approach 2: Computing directly in geometric domain Dijkstra's Algorithm for Graphs Continuous Dijkstra Method
- 4 Conclusions

Computing Tangents between every two Convex Holes

- Divide each convex chain into upper and lower convex chains.
- Compute all the four possible tangents between every two convex holes.

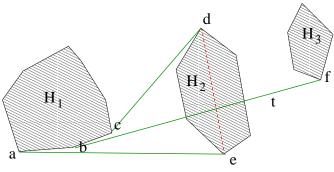


Time complexity:
$$O(h^2 \lg (n))$$

from $\sum_{i,j} O(\lg |H'| + \lg |H''|)$

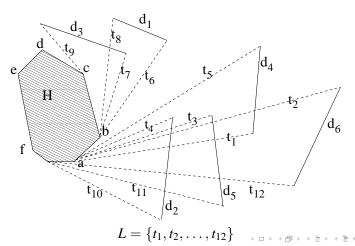
One lower tangent vs other lower tangents

The lower tangent t of H_1 for H_3 intesects a hole H_2 iff t intersects the lower diagonal of H_2 for H_1 .

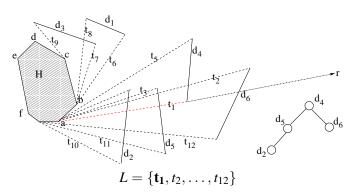


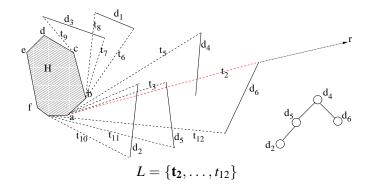
t intersects H_2 iff t intersects de.

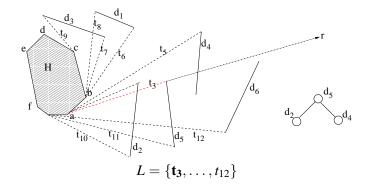
Traverse the boundary of H in counterclockwise order starting from any vertex a, and at each vertex v of H, add the lower tangents of H incident at v to the ordered list L according to their counterclockwise angle at v with the clockwise edge of H at vertex v.

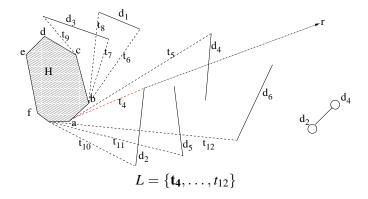


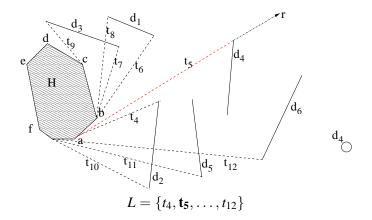
- Construct a BBST *T* to reflect the order in which the diagonals intersect the ray *r*.
- While exploring each such ray *r*, remove *t_i* from *L* if *d* corresponding to *t_i* is not the leftmost leaf of *T*.

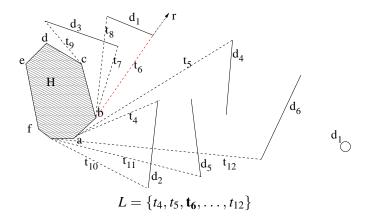


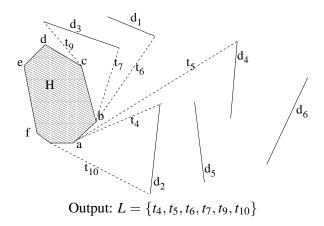












- Time to process one hole: $O(|V_H| + h \lg h)$
- Time to process all holes: $O(n + h^2 \lg h)$

Applying similar procedure as in identifying lower tangents that lie in F:

- Time to process one hole: $O(|V_H| + h \lg h)$
- Time to process all holes: $O(n + h^2 \lg h)$

Outline

- 1 Problem Description
- 2 Approach 1: Reduce to find a SP in graphs

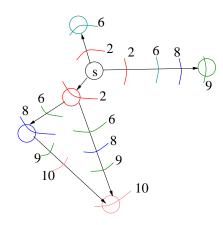
Characterizations

Compute Tangents that lie in F between Convex Holes

Apply Graph Algorithm to find SP

- 3 Approach 2: Computing directly in geometric domain Dijkstra's Algorithm for Graphs Continuous Dijkstra Method
- 4 Conclusions

Computing SP in $TVG_D(V,E)$ using Dijkstra's Algorithm



- |V| is n
- |E| is $O(h^2 + n)$
- Applying Dijkstra's Algorithm to compute SP takes $O(h^2 + n + n \lg n)$.

Time complexity of the suggested algorithm

- Computing all possible tangents between every two holes: $O(h^2 \lg n)$
- Computing all tangents that lie in $F: O(n + h^2 \lg h)$
- Computing SP over tangent visibility graph: $O(h^2 + n \lg n)$

Total time:
$$O(n + (n + h^2) \lg n)$$
.

Assuming $h^2 > n$, it is $O(n + h^2 \lg n)$.

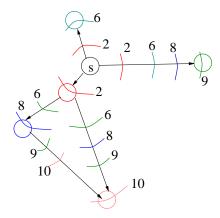
Outline

- 1 Problem Description
- 2 Approach 1: Reduce to find a SP in graphsCharacterizationsCompute Tangents that lie in F between Convex HolesApply Graph Algorithm to find SP
- 3 Approach 2: Computing directly in geometric domain Dijkstra's Algorithm for Graphs Continuous Dijkstra Method
- 4 Conclusions

Outline

- 1 Problem Description
- 2 Approach 1: Reduce to find a SP in graphs
 Characterizations
 Compute Tangents that lie in F between Convex Holes
 Apply Graph Algorithm to find SP
- 3 Approach 2: Computing directly in geometric domain Dijkstra's Algorithm for Graphs Continuous Dijkstra Method
- 4 Conclusions

High-level Description

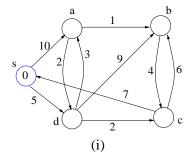


• Like in BFS, progress a shortest-path wavefront *W* from *s* in the graph.

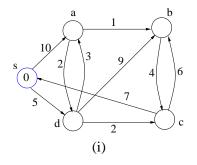
Greedy approach.

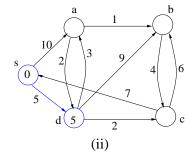
4 1 1 4 2 1 4 2 1 2 0 0 0

Dijkstra's Algorithm in Execution

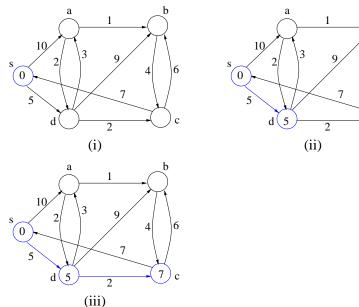


Dijkstra's Algorithm in Execution



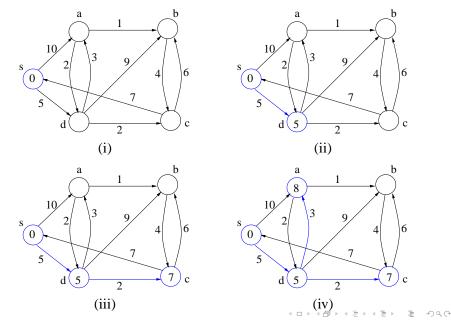


Dijkstra's Algorithm in Execution

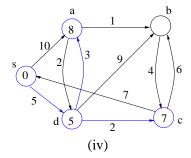


6

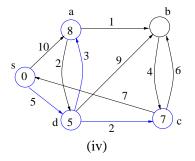
Dijkstra's Algorithm in Execution

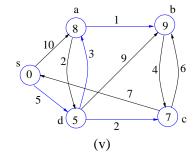


Dijkstra's Algorithm in Execution (cont)



Dijkstra's Algorithm in Execution (cont)

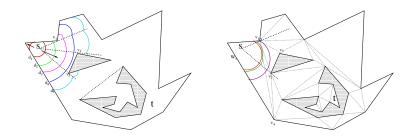




Outline

- 1 Problem Description
- 3 Approach 2: Computing directly in geometric domain Dijkstra's Algorithm for Graphs Continuous Dijkstra Method
- 4 Conclusions

Wavefront progression over geometric environment



- Wavefront, initiated at s, is expanded until it strikes t.
- Edges of a triangulation guide the wavefront.
- Initially wavefront comprises of single arc; with time, more arcs are added.

Based on this approach, [Herishberger, Suri, 1999] and gave $O(n \lg n)$ time and $O(n \lg n)$ space algorithm.

Recent imporvement that uses this approach: [Inkulu, Sanjiv Kapoor, S. N. Maheshwari, 2010]

- Triangulation is coarsened to reduce the event points in guiding the wavefront.
- Exploits coherence both in the wavefront and in the polygonal domain.
- A solution with $O(T + h(\lg h)(\lg n))$ time and O(n) space.

Outline

- 1 Problem Description
- 2 Approach 1: Reduce to find a SP in graphs Characterizations Compute Tangents that lie in F between Convex Holes Apply Graph Algorithm to find SP
- 3 Approach 2: Computing directly in geometric domain Dijkstra's Algorithm for Graphs Continuous Dijkstra Method
- 4 Conclusions

Summary

- Building tangent visibility graph and running SP algorithm for graphs: $O(n + (n + h^2) \lg n)$ and O(n) space.
- Running continous Dijkstra's algorithm in geometric domain: $O(T + h(\lg h)(\lg n))$ and O(n) space.
- Problem 21 of The Open Problems Project (TOPP) of Computational Geometry which intends for a solution with $O(n + h \lg h)$ time and O(n) space.

- Rohnert, H.
 Shortest paths in the plane with convex polygonal obstacles
 Information Processing Letters, 23:71-76, 1986
 - Bar-Yehuda, R. and Chazelle, B.
 Triangulating disjoint Jordan chains
 International Journal of Computational Geometry and Applications,
 4:475-481, 1994
- Lee, D. T. and Preparata, F. P. Euclidean shortest paths in the presence of rectilinear barriers Networks, 14:393-415, 1984
- A note on two problems in connection with graphs Numerische Mathematik, 1(1): 269-271, 1959
- Edelsbrunner, H.
 Finding extreme distance between convex polygons
 Journal of Algorithms, 6: 213-224, 1985

Dijkstra, E.

An efficient algorithm for Euclidean shortest paths among polygonal obstacles in the plane Discrete and Computational Geometry, 18:377-383, 1997 Hershberger, J. and Suri, S.

Kapoor, S. and Maheshwari, S. N. and Mitchell, J. S. B.

An optimal-time algorithm for Euclidean shortest paths in the plane SIAM Journal on Computing, 28(299), 2215-2256. Inkulu, R. and Kapoor, S. and Maheshwari, S. N.

A near optimal algorithm for finding Euclidean shortest path in polygonal domain CoRR abs/1011.6481, 2010 Franco P. Preparata and Michael Ian Shamos Computational Geometry: An Introduction

Springer-Verlag, New York, USA, 1st Edition, 1985 Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars

41 / 41

Computational Geometry: Algorithms and Applications Springer, New York, USA, 3rd Edition, 2010 4 D > 4 A > 4 E > 4 E > E (Shorest Paths: Graph and Geometric Domain

Visibility Algorithms in the Plane

Cambridge University Press, UK, 1st Edition, 2007.