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1 Problem Description
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Polygonal domain

¢ A simple polygonP containing disjoint simple polygonal holes (a.k.a.
obstacles) ifR? is termed as thpolygonal domain D.

e PolygonP sans interior of the holes is termed as thee space F.

n: number of vertices
h: number of holes
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Shortest pathsin polygonal domains

¢ GivenD with two pointss; t € F, find a Euclidean shortest path (SP),
saySPy, from stot such thalSPy lies inF.

Applications in robot motion planning, route planning using GPS, VLSI wit
routing etc.,
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Shortest paths are ssmple paths

SPy is a simple path.

Proof by contradiction
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Optimal Substructure: SPsarelocally shortest

SPg contains subpath from pto g = L must beSPyq

p a t

Proof by contradiction
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SP ispolygonal

Every shortest path is a polygonal path.

Proof by contradiction

(Shorest Paths: Graph and Geometric Domain 7141



Every internal vertex of SP isavertex of D

No internal vertex of a SP can lie either:
¢ in the free space, or

e interior to an edge.

Proof by contradiction.
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2 Approach 1: Reduce to findgP in graphs
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High Level Description

1 Compute a weighted graghfrom D so that an edge € SPy in D then
ecG.

2 ComputeSPy in G.
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2 Approach 1: Reduce to findgP in graphs
Characterizations
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Visbility Graph of D

The weighted undirected grapMGp (V, E') is defined oveD such that:
¢ Visthe set of vertices iD,
e an edgee(u,Vv) € E' whenevewu andyv are visible to each other i, and

o for every edge(u, v), the weight ofe is the Euclidean distance along the
line segmentv in D.
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Geometric Shortest Paths and Visibility Graphs

Considerings andt as degenerate holesih e € SP¢ in D < e € Py
in VGp.

e SPy4 is polygonal with the internal vertices chosen frémand
e Every edgee(u, V) in SPy belongs td-.
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Time complexity is dominated byGp computation andE’|.

(Shorest Paths: Graph and Geometric Domain 13/41



Tangent Visibility Graph

Thetangent visibility graph TVGp(V, E) for D is defined whenever
each hole irD is convex. It is same a8¢Gp(V, E’) except that:

an edgee(u, v) € Eiff uvis either an edge of a hole [ or a tangent
between two convex holes.

f

IE| is Q(h2).

Computing tangents between two convex h@l¥’ andCH” takes
O(Ig |CH'| + Ig |CH"]|) (from [Edelsbrunner, 1985]).
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Geometric Shortest Paths and Tangent Visibility
Graphs

Considerings andt as degenerate holesihe € SP4 in D < e € SPy
in TVGp.



(Yet Another) High Level Description

Suppose that all holes are convex and the boundary of outer polygon is
convex.

1 Compute the weighted tangent visibility grap¥G corresonding t®.
2 Find a shortest path frosito t in TVG.

Approach is due to [Rohnert, 1986].
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2 Approach 1: Reduce to findgP in graphs

Compute Tangents that lie hbetween Convex Holes
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Computing Tangents between every two Convex Holes

¢ Divide each convex chain into upper and lower convex chains.

e Compute all the four possible tangents between every two convex ho

upper tangents of H' for H”

lower chaii
of H w.r.t.

lower tangents of H' for H”

Time complexity:O(h?Ig (n))
from > ; O(lg [H'[ +1g [H"])
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Onelower tangent vsother lower tangents

The lower tangenit of Hq for Hs intesects a holél, iff t intersects the

lower diagonal oH for Hj.

t intersectH, iff t intersectgle.



Computing lower tangentsthat liein F

Traverse the boundary &f in counterclockwise order starting from any
vertexa, and at each vertexof H, add the lower tangents &f incident
atv to the ordered list. according to their counterclockwise anglevat
with the clockwise edge dfi at vertexv.

e
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Computing lower tangentsthat liein F (cont)

e Construct a BBST to reflect the order in which the diagonals intersec
the rayr.

e While exploring each such ray removet; from L if d corresponding to
t; is not the leftmost leaf of .

L= {tl,tg, A ,t12}
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Computing lower tangentsthat liein F (cont)
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Computing lower tangentsthat liein F (cont)
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Computing lower tangentsthat liein F (cont)
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Computing lower tangentsthat liein F (cont)

Pl
tg - dy

d6
d
D

de to
Cfdp °
L= {ts,t5,..., 12}
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Computing lower tangentsthat liein F (cont)
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L= {t4,t5, ts, ... ,tlz}



Computing lower tangentsthat liein F (cont)

OUtpUt: L= {t47 t57 t67 t77 t97 th}

¢ Time to process one hol®(|Vy| + hligh)
e Time to process all hole®(n + h?Ig h)
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Computing upper tangentsthat liein F (cont)

Applying similar procedure as in identifying lower tangents that li€in

¢ Time to process one hol®(|Vy| + hligh)

e Time to process all hole®(n + h?Ig h)
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2 Approach 1: Reduce to findgP in graphs

Apply Graph Algorithm to find SP
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Computing SP in TVGp(V, E) using Dijkstra’s
Algorithm

@\6
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e |V]isn
o |[E|isO(h? +n)

e Applying Dijkstra’s Algorithm to compute SP tak€Xh? + n + nign).
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Time complexity of the suggested algorithm

e Computing all possible tangents between every two hak? Ig n)
e Computing all tangents that lie . O(n + h?Ig h)

e Computing SP over tangent visibility grapd{h? + nign)

Total time:O(n + (n+ h?) Ig n).

Assumingh? > n, itis O(n + h?Ign).
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3 Approach 2: Computing directly in geometric domain
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3 Approach 2: Computing directly in geometric domain
Dijkstra’s Algorithm for Graphs
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High-level Description
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o Like in BFS, progress a shortest-path waveffdhtrom sin the graph.

Greedy approach.
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Dijkstra’s Algorithm in Execution
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Dijkstra’s Algorithm in Execution
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Dijkstra’s Algorithm in Execution

(iii)
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Dijkstra’s Algorithm in Execution
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Dijkstra’s Algorithm in Execution (cont)
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Dijkstra’s Algorithm in Execution (cont)
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3 Approach 2: Computing directly in geometric domain

Continuous Dijkstra Method
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Wavefront progression over geometric environment

o Wavefront, initiated as$, is expanded until it strikets
¢ Edges of a triangulation guide the wavefront.

¢ Initially wavefront comprises of single arc; with time, more arcs are
added.

Based on this approach, [Herishberger, Suri, 1999] and Qéuég n) time
andO(nlg n) space algorithm.
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Recent imporvement that usesthis approach:
[Inkulu, Sanjiv Kapoor, S. N. Maheshwari, 2010]

¢ Triangulation is coarsened to reduce the event points in guiding the
wavefront.

e Exploits coherence both in the wavefront and in the polygonal domair

¢ A solution withO(T + h(lg h)(Ig n)) time andO(n) space.
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4 Conclusions
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Summary

¢ Building tangent visibility graph and running SP algorithm for graphs:
O(n+ (n+ h?)Ign) andO(n) space.

¢ Running continous Dijkstra’s algorithm in geometric domain:
O(T + h(lgh)(lgn)) andO(n) space.

¢ Problem 21 of The Open Problems Project (TOPP) of Computational
Geometry which intends for a solution wi@®(n + hlg h) time andO(n)
space.
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