Voronoi Diagram

Sasanka Roy
Indian Institute of Science Education and Research

Organization of the Talk

Organization of the Talk

1. Preliminaries
2. Generic Definition
3. Some Technical Details
4. Conclusion

Organization of the Talk

1. Preliminaries
2. Generic Definition
3. Some Technical Details
4. Conclusion

What are we going to talk about?

What are we going to talk about?

We have some data

What are we going to talk about?

We have some data
Geometric Data

What are we going to talk about?

We have some data
Geometric Data
Geometric Data ????

What are we going to talk about?

We have some data
Geometric Data ????
Geometric Data
What do I mean ????

What are we going to talk about?

We have some data
Geometric Data ????
Geometric Data

I mean: we have

What are we going to talk about?

We have some data
Geometric Data ????

Geometric Data
What do I mean ????

I mean: we have points,

What are we going to talk about?

We have some data
Geometric Data ????

Geometric Data
What do I mean ????

I mean: we have points, line segments,

What are we going to talk about?

We have some data
Geometric Data ????

Geometric Data

What do I mean ????

I mean: we have points, line segments, polygons etc.

What are we going to talk about?

We have some data
Geometric Data ????

Geometric Data
What do I mean ????

I mean: we have points, line segments, polygons etc.

What are we going to talk about?

We have some data
Geometric Data ????

Geometric Data
What do I mean ????

I mean: we have points, line segments, polygons etc.

We want to get answers to the specific questions

What are we going to talk about?

We have some data
Geometric Data ????

Geometric Data
What do I mean ????

I mean: we have points, line segments, polygons etc.

We want to get answers to the specific questions
Closest points to the line segments

What are we going to talk about?

We have some data
Geometric Data ????

Geometric Data
What do I mean ????

I mean: we have points, line segments, polygons etc.

Then what?????

We want to get answers to the specific questions
Closest points to the line segments

What are we going to talk about?

We have some data

Geometric Data ????

Geometric Data

What do I mean ????

I mean: we have points, line segments, polygons etc.

Then what?????

We want to get answers to the specific questions
Closest points to the line segments
Point inside the simple polygon

What are we going to talk about?

We have some data
Geometric Data ????

Geometric Data
What do I mean ????

I mean: we have points, line segments, polygons etc.

We want to get answers to the specific questions
Closest points to the line segments
Point inside the simple polygon

What are we going to talk about?

We have some data
Geometric Data ????

Geometric Data
What do I mean ????

I mean: we have points, line segments, polygons etc.

Then what?????

We want to get answers to the specific questions
Closest points to the line segments
Point inside the simple polygon

Can you be a bit Practical??

Planar Point Location

Planar Point Location

Which state has the site/point with
Latitude= $26^{\circ} 11^{\prime} 0^{\prime \prime} \mathrm{N}$
Longitude $=91^{\circ} 44^{\prime} 0 " E$

Planar Point Location

Which state has the site/point with
Latitude= $26^{\circ} 11^{\prime} 0^{\prime \prime} \mathrm{N}$
Longitude $=91^{\circ} 44^{\prime} 0 " E$

Planar Point Location

Which state has the site/point with
Latitude $=26^{\circ} 11^{\prime} 0^{\prime \prime} \mathrm{N}$
Longitude $=91^{\circ} 44^{\prime} 0 " E$

Can we view States as simple polygon?

Planar Point Location

Which state has the site/point with
Latitude $=26^{\circ} 11^{\prime} 0^{\prime \prime} \mathrm{N}$
Longitude $=91^{\circ} 44^{\prime} 0 " E$

Can we view States as simple polygon?

simple polygon: Closed region whose boundary is formed by non-intersecting line segments

Planar Point Location

Which state has the site/point with
Latitude $=26^{\circ} 11^{\prime} 0^{\prime \prime} \mathrm{N}$
Longitude $=91^{\circ} 44^{\prime} 0 " E$

Can we view States as simple polygon? Yes

simple polygon: Closed region whose boundary is formed by non-intersecting line segments

Formally Planar Point Location

Given a planar subdivision S of $\mathrm{O}(\mathrm{n})$ vertices/faces/edges

Formally Planar Point Location

Given a planar subdivision S of $\mathrm{O}(\mathrm{n})$ vertices/faces/edges

Formally Planar Point Location

Given a planar subdivision S of $\mathrm{O}(\mathrm{n})$ vertices/faces/edges

Formally Planar Point Location

Given a planar subdivision S of $\mathrm{O}(\mathrm{n})$ vertices/faces/edges

Formally Planar Point Location

Given a planar subdivision S of $\mathrm{O}(\mathrm{n})$ vertices/faces/edges

Formally Planar Point Location

Given a planar subdivision S

Preprocess S such that:

Formally Planar Point Location

Given a planar subdivision S

Preprocess S such that:
For any query point q,

Formally Planar Point Location

Given a planar subdivision S

Preprocess S such that:
For any query point q
The region/face R containing q can be reported efficiently.

Formally Planar Point Location

Given a planar subdivision S

Preprocess S such that:
For any query point q
The region/face R containing q can be reported efficiently.

Formally Planar Point Location

Formally Planar Point Location

Preprocessing Time:

Questions?

Preprocessing Time:
Preprocessing space requirement:

Questions?

Preprocessing Time:
Preprocessing space requirement:
Query Time:

Questions?

Preprocessing Time:
$\mathrm{O}(\mathrm{n})$
Preprocessing space requirement:
Query Time:

Questions?

Preprocessing Time:
Preprocessing space requirement:
$\mathrm{O}(\mathrm{n})$

Questions?

Preprocessing Time:
Preprocessing space requirement:
Query Time:
$\mathrm{O}(\mathrm{n})$
O(n)
O(log n)

Back to Voronoi Diagram

Organization of the Talk

1. Preliminaries
2. Generic Definition
3. Some Technical Details
4. Conclusion

Thank you Google

Thank you Google

Viewpoint 1: Locate the nearest dentistry.

Thank you Google

Viewpoint 1: Locate the nearest dentistry. Viewpoint 2: Find the 'service area' of potential customers for each dentist.

Formal Definition

Formal Definition

$P \rightarrow A$ set of n distinct points (Geometric Objects) in the plane.

Formal Definition

$P \rightarrow A$ set of n distinct points (Geometric Objects) in the plane.

Formal Definition

$P \rightarrow A$ set of n distinct points (Geometric Objects) in the plane. Preprocess P such that closest point $x \in P$ of any query point q can be found efficiently

O

Formal Definition

$P \rightarrow A$ set of n distinct points (Geometric Objects) in the plane. Preprocess P such that closest point $x \in P$ of any query point q can be found efficiently

0

Formal Definition

$P \rightarrow A$ set of n distinct points (Geometric Objects) in the plane. Preprocess P such that closest point $x \in P$ of any query point q can be found efficiently

How to solve this efficiently?

0

Formal Definition

$P \rightarrow A$ set of n distinct points (Geometric Objects) in the plane. Preprocess P such that closest point $x \in P$ of any query point q can be found efficiently

How to solve this efficiently?

Subdivision of the plane into n cells such that

0

Formal Definition

$P \rightarrow$ A set of n distinct points (Geometric Objects) in the plane. Preprocess P such that closest point $x \in P$ of any query point q can be found efficiently

How to solve this efficiently?

Subdivision of the plane into n cells such that

- each cell contains exactly one site,
- if a point q lies in a cell containing p_{i} then $d\left(q, p_{i}\right)<d\left(q, p_{j}\right)$ for all $p_{i} \in P, j \neq i$.

O

Formal Definition

$P \rightarrow A$ set of n distinct points (Geometric Objects) in the plane. Preprocess P such that closest point $x \in P$ of any query point q can be found efficiently

How to solve this efficiently?

Subdivision of the plane into n cells such that

- each cell contains exactly one site,
- if a point q lies in a cell containing p_{i} then $d\left(q, p_{i}\right)<d\left(q, p_{j}\right)$ for all $p_{i} \in P, j \neq i$.

Formal Definition

$P \rightarrow A$ set of n distinct points (Geometric Objects) in the plane. Preprocess P such that closest point $x \in P$ of any query point q can be found efficiently

How to solve this efficiently?

Voronoi diagram of P:

$V(P)$: Subdivision of the plane into n cells such that

- each cell contains exactly one site,
- if a point q lies in a cell containing p_{i} then $d\left(q, p_{i}\right)<d\left(q, p_{j}\right)$ for all $p_{i} \in P, j \neq i$.

Formal Definition

$P \rightarrow A$ set of n distinct points (Geometric Objects) in the plane. Preprocess P such that closest point $x \in P$ of any query point q can be found efficiently

How to solve this efficiently?

Voronoi diagram of P :

$V(P)$: Subdivision of the plane into n cells such that

- each cell contains exactly one site,
- if a point q lies in a cell containing p_{i} then $d\left(q, p_{i}\right)<d\left(q, p_{j}\right)$ for all $p_{i} \in P, j \neq i$.

This is Planar Subdivision so what can we do?

Formal Definition

$P \rightarrow A$ set of n distinct points (Geometric Objects) in the plane. Preprocess P such that closest point $x \in P$ of any query point q can be found efficiently

How to solve this efficiently?

Voronoi diagram of P :

$V(P)$: Subdivision of the plane into n cells such that

- each cell contains exactly one site,
- if a point q lies in a cell containing p_{i} then $d\left(q, p_{i}\right)<d\left(q, p_{j}\right)$ for all $p_{i} \in P, j \neq i$.

This is Planar Subdivision so what can we do?
Planar point location

Computing the Voronoi Diagram

Input: A set of points on a line (special case)

Computing the Voronoi Diagram

Input: A set of points on a line (special case)
Output: A partitioning of the plane into regions of nearest neighbors

Computing the Voronoi Diagram

Input: A set of points on a line (special case)
Output: A partitioning of the plane into regions of nearest neighbors

Computing the Voronoi Diagram

Input: A set of points on a line (special case)
Output: A partitioning of the plane into regions of nearest neighbors

Computing the Voronoi Diagram

Input: A set of points on a line (special case)
Output: A partitioning of the plane into regions of nearest neighbors

Computing the Voronoi Diagram

Input: A set of points on a line (special case)
Output: A partitioning of the plane into regions of nearest neighbors

Computing the Voronoi Diagram

Input: A set of points on a line (special case)
Output: A partitioning of the plane into regions of nearest neighbors

Computing the Voronoi Diagram

Input: A set of points on a line (special case)
Output: A partitioning of the plane into regions of nearest neighbors

Computing the Voronoi Diagram

Input: A set of points on a line (special case)
Output: A partitioning of the plane into regions of nearest neighbors

What are these lines?

Computing the Voronoi Diagram

Input: A set of points on a line (special case)
Output: A partitioning of the plane into regions of nearest neighbors

Computing the Voronoi Diagram

Computing the Voronoi Diagram

Input: A set of points $P=\left(p_{1}, P_{2}, \ldots, P_{n}\right)$ on a line (special case)

Computing the Voronoi Diagram

Input: A set of points $P=\left(P_{1}, P_{2}, \ldots, P_{n}\right)$ on a line (special case)
Output: A partitioning of the plane into regions of nearest neighbors

P_{3}

Computing the Voronoi Diagram

Input: A set of points $P=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ on a line (special case)
Output: A partitioning of the plane into regions of nearest neighbors

Find Perpendicular bisector I_{i} of line segment $\left[p_{i} p_{i+1}\right]$

Computing the Voronoi Diagram

Input: A set of points $\mathrm{P}=\left(\mathrm{p}_{1}, \mathrm{P}_{2}, \ldots, \mathrm{P}_{\mathrm{n}}\right)$ on a line (special case)
Output: A partitioning of the plane into regions of nearest neighbors

Find Perpendicular bisector l_{i} of line segment $\left[p_{i} p_{i+1}\right.$]

Computing the Voronoi Diagram

Input: A set of points $\mathrm{P}=\left(\mathrm{p}_{1}, \mathrm{P}_{2}, \ldots, \mathrm{P}_{\mathrm{n}}\right)$ on a line (special case) Output: A partitioning of the plane into regions of nearest neighbors

Find Perpendicular bisector l_{i} of line segment $\left[p_{i} p_{i+1}\right.$]
Let a_{i} be the intersection point of l_{i} and $\left[p_{i} p_{i+1}\right]$

Computing the Voronoi Diagram

Input: A set of points $\mathrm{P}=\left(\mathrm{p}_{1}, \mathrm{P}_{2}, \ldots, \mathrm{P}_{\mathrm{n}}\right)$ on a line (special case)
Output: A partitioning of the plane into regions of nearest neighbors

Find Perpendicular bisector l_{i} of line segment $\left[p_{i} p_{i+1}\right.$]
Let a_{i} be the intersection point of l_{i} and $\left[p_{i} p_{i+1}\right]$

Computing the Voronoi Diagram

Input: A set of points $\mathrm{P}=\left(\mathrm{p}_{1}, \mathrm{P}_{2}, \ldots, \mathrm{P}_{\mathrm{n}}\right)$ on a line (special case)
Output: A partitioning of the plane into regions of nearest neighbors

Find Perpendicular bisector l_{i} of line segment $\left[p_{i} p_{i+1}\right.$]
Let a_{i} be the intersection point of l_{i} and $\left[p_{i} p_{i+1}\right]$
Sort a_{i} in increasing x-coordinate

Computing the Voronoi Diagram

Input: A set of points $\mathrm{P}=\left(\mathrm{p}_{1}, \mathrm{P}_{2}, \ldots, \mathrm{P}_{\mathrm{n}}\right)$ on a line (special case)
Output: A partitioning of the plane into regions of nearest neighbors

Find Perpendicular bisector l_{i} of line segment $\left[p_{i} p_{i+1}\right.$]
Let a_{i} be the intersection point of l_{i} and $\left[p_{i} p_{i+1}\right]$
Sort a_{i} in increasing x -coordinate This gives us Voronoi Diagram $\mathrm{V}(\mathrm{P})$

Computing the Voronoi Diagram

Input: A set of points $\mathrm{P}=\left(\mathrm{p}_{1}, \mathrm{P}_{2}, \ldots, \mathrm{P}_{\mathrm{n}}\right)$ on a line (special case)
Output: A partitioning of the plane into regions of nearest neighbors

Find Perpendicular bisector l_{i} of line segment $\left[p_{i} p_{i+1}\right.$]
Let a_{i} be the intersection point of l_{i} and $\left[p_{i} p_{i+1}\right]$
Sort a_{i} in increasing x-coordinate This gives us Voronoi Diagram $V(P)$

Query Answering

Query Answering

We have a_{i} 's sorted in increasing x-coordinate

Query Answering

We have a_{i} 's sorted in increasing x-coordinate
Given a query point $p[x, y]$

Query Answering

We have a_{i} 's sorted in increasing x-coordinate
Given a query point $\mathrm{p}[\mathrm{x}, \mathrm{y}]$

Query Answering

We have a_{i} 's sorted in increasing x-coordinate
Given a query point $p[x, y]$

What we have to do?

Query Answering

We have a_{i} 's sorted in increasing x-coordinate
Given a query point $\mathrm{p}[\mathrm{x}, \mathrm{y}]$

What we have to do?
Locate x correctly between a_{i} and $\mathrm{a}_{\mathrm{i}+1}$

Query Answering

We have a_{i} 's sorted in increasing x-coordinate
Given a query point $\mathrm{p}[\mathrm{x}, \mathrm{y}]$

What we have to do?
Locate x correctly between a_{i} and $\mathrm{a}_{\mathrm{i}+1}$
We can forget about y coordinate

Time Complexity analysis

Time Complexity analysis

Preprocessing Time $=0(\mathrm{n} \log \mathrm{n})$

Time Complexity analysis

Preprocessing Time $=0(n \log n)$
Query Time $=0(\log n)$

Computing the Voronoi Diagram

Computing the Voronoi Diagram

Input: A set of points $P=\left(p_{1}, P_{2}, \ldots, P_{n}\right)$ on 2D

$$
\mathrm{p}_{3} \circ \quad \mathrm{p}_{1} \circ \quad \mathrm{p}_{2}
$$

$$
\mathrm{p}_{4}^{\bullet}
$$

Computing the Voronoi Diagram

Input: A set of points $P=\left(p_{1}, P_{2}, \ldots, P_{n}\right)$ on $2 D$
Output: A partitioning of the plane into regions of nearest neighbors

$$
\mathrm{p}_{1}{ }^{\mathrm{o}}
$$

p_{4}^{\bullet}

Computing the Voronoi Diagram

Input: A set of points $P=\left(p_{1}, P_{2}, \ldots, P_{n}\right)$ on 2D
Output: A partitioning of the plane into regions of nearest neighbors
Find cell for each point one by one?

$$
\mathrm{p}_{3} \circ \mathrm{p}_{1} \circ \quad \mathrm{p}_{2}
$$

Computing the Voronoi Diagram

Input: A set of points $P=\left(p_{1}, P_{2}, \ldots, P_{n}\right)$ on $2 D$
Output: A partitioning of the plane into regions of nearest neighbors
Find cell for each point one by one? use perpendicular bisector argument

$$
\mathrm{p}_{1}{ }^{0}
$$

p_{4}^{\bullet}

Computing the Voronoi Diagram

Input: A set of points $P=\left(p_{1}, P_{2}, \ldots, P_{n}\right)$ on $2 D$
Output: A partitioning of the plane into regions of nearest neighbors
Find cell for each point one by one? use perpendicular bisector argument
Find region for p_{1}

$$
\mathrm{p}_{1}{ }^{0}
$$

Computing the Voronoi Diagram

Input: A set of points $P=\left(p_{1}, P_{2}, \ldots, P_{n}\right)$ on $2 D$
Output: A partitioning of the plane into regions of nearest neighbors
Find cell for each point one by one? use perpendicular bisector argument

Computing the Voronoi Diagram

Input: A set of points $P=\left(p_{1}, P_{2}, \ldots, P_{n}\right)$ on $2 D$
Output: A partitioning of the plane into regions of nearest neighbors
Find cell for each point one by one? use perpendicular bisector argument

Computing the Voronoi Diagram

Input: A set of points $P=\left(P_{1}, P_{2}, \ldots, P_{n}\right)$ on $2 D$
Output: A partitioning of the plane into regions of nearest neighbors
Find cell for each point one by one? use perpendicular bisector argument

Computing the Voronoi Diagram

Input: A set of points $P=\left(p_{1}, P_{2}, \ldots, P_{n}\right)$ on $2 D$
Output: A partitioning of the plane into regions of nearest neighbors
Find cell for each point one by one? use perpendicular bisector argument

Computing the Voronoi Diagram

Input: A set of points $P=\left(p_{1}, P_{2}, \ldots, P_{n}\right)$ on $2 D$
Output: A partitioning of the plane into regions of nearest neighbors
Find cell for each point one by one? use perpendicular bisector argument

Computing the Voronoi Diagram

Input: A set of points $P=\left(p_{1}, P_{2}, \ldots, P_{n}\right)$ on $2 D$
Output: A partitioning of the plane into regions of nearest neighbors
Find cell for each point one by one? use perpendicular bisector argument

Computing the Voronoi Diagram

How do we find $V\left(P_{1}\right)$?

Computing the Voronoi Diagram

How do we find $V\left(P_{1}\right)$? Go back

Computing the Voronoi Diagram

How do we find $V\left(P_{1}\right)$? Go back
What is this region?

Computing the Voronoi Diagram

How do we find $V\left(p_{1}\right)$? Go back
What is this region? Half-plane, say H_{1}, containing p_{1}

Computing the Voronoi Diagram

How do we find $V\left(p_{1}\right)$? Go back
What is this region? Half-plane, say H_{1}, containing P_{1}

Computing the Voronoi Diagram

How do we find $V\left(P_{1}\right)$? Go back
What is this region?

Computing the Voronoi Diagram

How do we find $V\left(p_{1}\right)$? Go back
What is this region? Half-plane, say H_{2}, containing P_{1}

Computing the Voronoi Diagram

How do we find $V\left(p_{1}\right)$? Go back
What is this region? Half-plane, say H_{2}, containing P_{1}

Computing the Voronoi Diagram

How do we find $V\left(p_{1}\right)$? Go back
What is this region? Half-plane, say H_{2}, containing P_{1}

Computing the Voronoi Diagram

What is this region?

Computing the Voronoi Diagram

What is this region?
Half-plane, say H_{3}, containing P_{1}

Computing the Voronoi Diagram

What is this region?
Half-plane, say H_{3}, containing P_{1}

Computing the Voronoi Diagram

Computing the Voronoi Diagram

What is $\mathrm{V}\left(\mathrm{p}_{1}\right)$?

Computing the Voronoi Diagram

What is $\mathrm{V}\left(\mathrm{p}_{1}\right)$? $\quad \mathrm{H}_{1} \cap \mathrm{H}_{2} \cap \mathrm{H}_{3}$

Computing the Voronoi Diagram

What is $\mathrm{V}\left(\mathrm{p}_{1}\right)$?
$\mathrm{H}_{1} \cap \mathrm{H}_{2} \cap \mathrm{H}_{3}$
In general, what would be $\mathrm{V}\left(\mathrm{p}_{1}\right)$?

Computing the Voronoi Diagram

What is $V\left(\mathrm{p}_{1}\right)$?
$\mathrm{H}_{1} \cap \mathrm{H}_{2} \cap \mathrm{H}_{3}$
In general, what would be $\mathrm{V}\left(\mathrm{p}_{1}\right)$? Intersection of $(\mathrm{n}-1)$ hyperplanes

Computing the Voronoi Diagram

What is $V\left(\mathrm{p}_{1}\right)$?
$\mathrm{H}_{1} \cap \mathrm{H}_{2} \cap \mathrm{H}_{3}$
In general, what would be $\mathrm{V}\left(\mathrm{P}_{1}\right)$? Intersection of $(\mathrm{n}-1)$ hyperplanes $\mathrm{H}_{1} \cap \mathrm{H}_{2} \cap \ldots \cap \mathrm{H}_{\mathrm{n}-1}$

Time complexity of this Brute Force Algorithm

Time complexity of this Brute Force Algorithm

Intersection of $(n-1)$ hyperplanes can be found in $O(n \log n)$ time

Time complexity of this Brute Force Algorithm

Intersection of ($\mathrm{n}-1$) hyperplanes can be found in $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ time
Total time complexity :

Time complexity of this Brute Force Algorithm

Intersection of ($\mathrm{n}-1$) hyperplanes can be found in $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ time
Total time complexity : $\quad \mathrm{O}\left(\mathrm{n}^{2} \log \mathrm{n}\right)$

Time Complexity of Best Algorithms for Voronoi Diagram

Time Complexity of Best Algorithms for Voronoi Diagram

Voronoi Diagram can be constructed in $O(n \log n)$ time

Time Complexity of Best Algorithms for Voronoi Diagram

Voronoi Diagram can be constructed in $O(n \log n)$ time
There are well-known algorithms like:

1. Fortune's Line Sweep
2. Divide and Conquer
3. Lifting points in 3D

Size of the Voronoi Diagram

Size of the Voronoi Diagram

Size means: number of vertices, edges and faces

Size of the Voronoi Diagram

Size means: number of vertices, edges and faces

Lower bound (Smallest Size possible):

Size of the Voronoi Diagram

Size means: number of vertices, edges and faces

Lower bound (Smallest Size possible): n, where n is number of sites

Size of the Voronoi Diagram

Size means: number of vertices, edges and faces

Lower bound (Smallest Size possible): n, where n is number of sites

Trivial Upper bound (Biggest Size possible):

Size of the Voronoi Diagram

Size means: number of vertices, edges and faces

Lower bound (Smallest Size possible): n , where n is number of sites
Trivial Upper bound (Biggest Size possible): $\quad \mathrm{O}(\mathrm{n} \log \mathrm{n})$

Size of the Voronoi Diagram

Size means: number of vertices, edges and faces

Lower bound (Smallest Size possible): n , where n is number of sites
Trivial Upper bound (Biggest Size possible): $\quad \mathrm{O}(\mathrm{n} \log \mathrm{n})$
Ultimate Upper Bound (Biggest Size possible):

Size of the Voronoi Diagram

Size means: number of vertices, edges and faces

Lower bound (Smallest Size possible): n , where n is number of sites
Trivial Upper bound (Biggest Size possible): $\quad \mathrm{O}(\mathrm{n} \log \mathrm{n})$
Ultimate Upper Bound (Biggest Size possible): O(n)

Why to bother about Size?

Why to bother about Size?

Voronoi Diagram is

Why to bother about Size?

Voronoi Diagram is Planar Subdivision

Why to bother about Size?

Voronoi Diagram is Planar Subdivision

Want to do Planar point Location to get closest point Efficiently

Why to bother about Size?

Voronoi Diagram is Planar Subdivision
Want to do Planar point Location to get closest point Efficiently

For Planar point Location:

Preprocessing Time:

Preprocessing space requirement:
Query Time:
$\mathrm{O}(\mathrm{n})$
$\mathrm{O}(\mathrm{n})$
O(logn)

Why to bother about Size?

Voronoi Diagram is Planar Subdivision
Want to do Planar point Location to get closest point Efficiently

For Planar point Location:

Preprocessing Time:

Preprocessing space requirement:
Query Time:
$\mathrm{O}(\mathrm{n})$
O(n)
O(logn)

But there is a big if, What is that if?

Why to bother about Size?

Voronoi Diagram is Planar Subdivision

Want to do Planar point Location to get closest point Efficiently

For Planar point Location:

Preprocessing Time:
Preprocessing space requirement:
Query Time:
$\mathrm{O}(\mathrm{n})$
$\mathrm{O}(\mathrm{n})$
O(logn)

But there is a big if, What is that if? The size of planar subdivision=

Why to bother about Size?

Voronoi Diagram is Planar Subdivision
Want to do Planar point Location to get closest point Efficiently

For Planar point Location:

Preprocessing Time:
Preprocessing space requirement:
Query Time:
$\mathrm{O}(\mathrm{n})$
$\mathrm{O}(\mathrm{n})$
O(logn)

But there is a big if, What is that if? The size of planar subdivision= $O(n)$

Summary

$P \rightarrow A$ set of n distinct points (Geometric Objects) in the plane.

Summary

$\mathrm{P} \rightarrow \mathrm{A}$ set of n distinct points (Geometric Objects) in the plane.
We can Preprocess P such that closest point $x \in P$ of any query point q can be found in O(logn) time Using Planar point location

Summary

$P \rightarrow A$ set of n distinct points (Geometric Objects) in the plane.
We can Preprocess P such that closest point $x \in P$ of any query point q can be found in O(logn) time Using Planar point location

Preprocess structure is called Voronoi Diagram V(P)

Summary

$P \rightarrow A$ set of n distinct points (Geometric Objects) in the plane.
We can Preprocess P such that closest point $x \in P$ of any query point q can be found in O(logn) time Using Planar point location

Preprocess structure is called Voronoi Diagram V(P)
$\mathrm{V}(\mathrm{P})$ can be constructed in $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ time and can be stored in $\mathrm{O}(\mathrm{n})$ space

Other Kind of Voronoi Diagrams

Furthest Point Voronoi Diagram

Furthest Point Voronoi Diagram

$\mathrm{FV}(\mathrm{P})$: the partition of the plane formed by the farthest point Voronoi regions, their edges, and vertices

Furthest Point Voronoi Diagram

$\mathrm{FV}(\mathrm{P})$: the partition of the plane formed by the farthest point Voronoi regions, their edges, and vertices
$V_{-1}\left(p_{i}\right)$: the set of point of the plane farther from
p_{i} than from any other site

Voronoi diagram for line segments

Voronoi diagram for line segments

Moving a disk from s to t in the presence of barriers

Organization of the Talk

1. Preliminaries
2. Generic Definition
3. Some Technical Details
4. Conclusion

Organization of the Talk

1. Preliminaries
2. Generic Definition
3. Some Technical Details
4. Conclusion

Conclusion

Conclusion

Voronoi Diagram is a very Fundamental Interesting Geometric Structure

Conclusion

Voronoi Diagram is a very Fundamental Interesting Geometric Structure

This has wide range of application to solve different problem in Geometry, Facility Location, Engineering Sciences, Biological Sciences, Nano Sciences to name a few

Conclusion

Voronoi Diagram is a very Fundamental Interesting Geometric Structure

This has wide range of application to solve different problem in Geometry, Facility Location, Engineering Sciences, Biological Sciences, Nano Sciences to name a few

The Applications of this structure are so wide that

Conclusion

Voronoi Diagram is a very Fundamental Interesting Geometric Structure

This has wide range of application to solve different problem in Geometry, Facility Location, Engineering Sciences, Biological Sciences, Nano Sciences to name a few

The Applications of this structure are so wide that

There is dedicated Symposiums on Voronoi Diagram:

Thank You

