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What are we going to talk about?
We have some data Geometric Data

Geometric Data  ???? What do I mean  ????

I mean: we have points, line segments, polygons etc.

Then what?????

We want to get answers to the specific questions 

Closest points to the line segments 

Point inside the simple polygon

what are all these?
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Planar Point Location

Can we view States as 

simple polygon? Yes

simple polygon: Closed region 
whose boundary is formed by 
non-intersecting line segments

Guwahati in Assam

Which state has the site/point with 

Latitude=    26° 11' 0'' N

Longitude= 91° 44'  0''E
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Formal Definition

P  →  A set of n distinct points (Geometric Objects) in the plane.

Preprocess P such that closest point x ∈ P of any query 
point q can be found efficiently

Subdivision of the plane into n cells such that

Voronoi diagram of P:

V(P):

q

This is Planar Subdivision so what can we do?

Planar point location

How to solve this 
efficiently?

• each cell contains exactly one site,
• if a point q lies in a cell containing pi then
        d(q, pi ) < d(q, pj ) for all pi ∈ P, j ≠ i.
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Query Answering

p1 p2 pn-1 pn 
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We have ai‘s sorted in increasing x-coordinate

a1 a2 
an-1 

V(p1) V(p2) V(p3) V(pn-1) V(pn)

Given a query point p[x,y]

What we have to do? 

p[x,y]

Locate x correctly between ai and ai+1 

We can forget about y coordinate
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Time Complexity of Best Algorithms for 
Voronoi Diagram 

Voronoi Diagram can be constructed in O(n log n) time 

There are well-known algorithms like: 

1. Fortune’s Line Sweep
2. Divide and Conquer
3. Lifting points in 3D
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Size of the Voronoi Diagram 

Size means: number of vertices, edges and faces

Lower bound (Smallest Size possible):

Trivial Upper bound (Biggest Size possible):

n, where n is number of sites

Ultimate Upper Bound (Biggest Size possible):

O(n log n )

O(n)
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Why to bother about Size? 

Voronoi Diagram is

The size of planar subdivision=

Want to do Planar point Location to get closest point Efficiently 

Preprocessing Time:

Preprocessing space requirement:

Query Time:

O(n) 

O(n) 

O(log n) 

But there is a big if, What is that if? O(n) 

Planar Subdivision

For Planar point Location:
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Summary 

P  →  A set of n distinct points (Geometric Objects) in the plane.

We can Preprocess P such that closest point x ∈ P of any query point 
q can be found in O(log n) time Using Planar point location

q
x

Preprocess structure is called Voronoi Diagram V(P)

V(P) can be constructed in O( n log n) time and can be stored in O(n) 
space
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Furthest Point Voronoi Diagram

FV(P): the partition of the 
plane formed by the 
farthest point Voronoi 
regions, their edges, and 
vertices

V-1(pi): the set of point of 

the plane farther from  

pi than from any other site
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Voronoi diagram for line segments

Moving a disk from s to t in the presence of barriers
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Conclusion
Voronoi Diagram is a very Fundamental Interesting Geometric Structure

This has wide range of application to solve different problem in Geometry, 
Facility Location, Engineering Sciences, Biological Sciences, Nano 
Sciences to name a few

The Applications of this structure are so wide that

There is dedicated Symposiums on Voronoi Diagram:

INTERNATIONAL SYMPOSIUM on VORONOI DIAGRAMS in science and engineering



Thank You
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