

Isothetic Cover P. Bhowmic

### Isothetic Covers for Digital Objects:

#### Algorithms and Applications

#### Partha Bhowmick

CSE, IIT Kharagpur

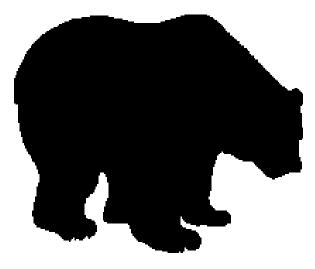
RESEARCH PROMOTION WORKSHOP INTRODUCTION TO GRAPH AND GEOMETRIC ALGORITHMS NOVEMBER 1–3, 2011 (PDPM IIITDM JABALPUR)



#### Isothetic Cover P. Bhowmicł

#### Introduction

Naive Combinato Application



image



Intro

## Object and Isothetic Cover

|             | 000000000000000000000000000000000000000   |
|-------------|-------------------------------------------|
|             | 000000000000000000000000000000000000000   |
| sothetic    | 000000000000000000000000000000000000000   |
| Cover       | 000000000000000000000000000000000000000   |
| Cover       | 0000000000001111111100000000011111110000  |
|             | 0000000000111111111111111111111111110000  |
| Bhowmick    | 0000000011111111111111111111111111111     |
| JIIOWIIIIGK | 0000000111111111111111111111111111111     |
|             | 0000001111111111111111111111111111111     |
|             | 0000011111111111111111111111111111111     |
| oduction    | 0000111111111111111111111111111111111     |
| Junction    | 0001111111111111111111111111111111111     |
|             | 0001111111111111111111111111111111111     |
| /e          | 0001111111111111111111111111111111111     |
|             | 0011111111111111111111111111111111111     |
|             | 001111111111111111111111111111111111111   |
| nbinatorial | 0011111111111111111111111111111111111     |
| Dinatonal   | 001111111111111111111111111111111111111   |
|             | 001111111111111111111111111111111111111   |
| lications   | 001111111111111111111111111111111111111   |
|             | 000111111111111111111111111111111111111   |
|             | 0001111111111111111111111111111111111     |
| -           |                                           |
| ie .        |                                           |
|             |                                           |
|             | 000111111111111111111111111111111111111   |
|             | 000011111111111111111111111111111111111   |
|             | 000011111111111111111111111111111111111   |
|             | 0000011111111111111111111111111111100000  |
|             | 0000001111111111111111111111111111000000  |
|             | 0000001111111111111111111111111111100000  |
|             | 0000001111111110111111111111111111100000  |
|             | 0000001111111111011111111111111111110000  |
|             | 0000001111111100011111111111111111100000  |
|             | 0000001111111110001111111111111111000000  |
|             | 0000001111111100011111111111111111100000  |
|             | 00000111111110000111111111111111111110000 |
|             | 0000011111111000011111111111111111110000  |
|             | 000001111111110000111111111111111111111   |
|             | 00000111111111100111111111111011111110000 |
|             | 00000011111111100000011111111100000000    |
|             | 000000001111111000000011111111110000000   |
|             | 000000000111100000000111111111111000000   |
|             | 000000000000000000000011111111110000000   |
|             | 000000000000000000000000111110100000000   |
|             | 000000000000000000000000000000000000000   |
|             | 000000000000000000000000000000000000000   |
|             |                                           |

object = set of 1s



Isothet Cove

P. Bhowr

Introductic

## Object and Isothetic Cover

|      | 000000000000000000000000000000000000000             |
|------|-----------------------------------------------------|
| С    | 000000000000000000000000000000000000000             |
|      | 000000000000000000000000000000000000000             |
|      | 0000000000011111111000000000111111100000            |
|      | 0000000001111111111111111111111111110000            |
| lick | 000000001111111111111111111111111111111             |
| IICK | 000000011111111111111111111111111111111             |
|      | 000000111111111111111111111111111111111             |
|      | 000001111111111111111111111111111111111             |
|      | 000011111111111111111111111111111111111             |
| n    | 000111111111111111111111111111111111111             |
|      | 000111111111111111111111111111111111111             |
|      | 000111111111111111111111111111111111111             |
|      | 001111111111111111111111111111111111111             |
|      | 001111111111111111111111111111111111111             |
|      | 0011111111111111111111111111111111111               |
|      | 0011111111111111111111111111111111111               |
|      | 00 <mark>11111111111111111111111111111111111</mark> |
|      | 00 <b>1</b> 1111111111111111111111111111111111      |
|      | 000111111111111111111111111111111111111             |
|      | 000111111111111111111111111111111111111             |
|      | 0000111111111111111111111111111111111               |
|      | 000 <mark>1111111111111111111111111111111111</mark> |
|      | 000 <mark>1111111111111111111111111111111111</mark> |
|      | 000 <mark>1111111111111111111111111111111111</mark> |
|      | 000111111111111111111111111111111111111             |
|      | 000011111111111111111111111111111111111             |
|      | 0000111111111111111111111111111111111               |
|      | 0000011111111111111111111111111111111               |
|      | 0000001111111111111111111111111111110000            |
|      | 0000001111111111111111111111111111110000            |
|      | 000000111111111101111111111111111111110000          |
|      | 00000041111111110411111111111111111111000000        |
|      | 000000 <mark>1111111110001111111111111111111</mark> |
|      | 000000 <b>1111111111000111111111111111111</b>       |
|      | 000000111111111000111111111111111111110000          |
|      | 0000011111111000011111111111111111110000            |
|      | 00000111111110000111111111111111111110000           |
|      | 000001111111100001111111111111111111111             |
|      | 00000111111111100111111111111011111110000           |
|      | 000000111111111000000111111111000000000             |
|      | 000000001111110000000111111111100000000             |
|      | 000000000111100000000111111111111000000             |

object = set of 1s



Isothetic Cover P. Bhowmick

#### Introduction

Naive

Combinatoria

Applications Hull Shape 3D

| 111111              |             | 1111111      |            |
|---------------------|-------------|--------------|------------|
|                     | 11111111111 |              |            |
|                     |             | 11111111111  |            |
|                     |             | 111111111111 |            |
| 111111111111        |             |              |            |
| 11111111111111      |             |              |            |
| 1111111111111111    |             |              |            |
| 11111111111111111   |             |              |            |
| 11111111111111111   |             |              |            |
| 11111111111111111   |             |              |            |
| 111111111111111111  |             |              |            |
| 111111111111111111  |             |              |            |
| 111111111111111111  |             |              |            |
| 111111111111111111  |             |              |            |
| 111111111111111111  |             |              |            |
| 1111111111111111111 |             |              |            |
| 1111111111111111    |             |              |            |
| 1111111111111111    |             |              |            |
| 1111111111111111    |             |              |            |
| 11111111111111111   |             |              |            |
| 11111111111111111   |             |              |            |
| 11111111111111111   |             |              |            |
| 11111111111111111   |             |              |            |
| 111111111111111     |             |              |            |
| 111111111111111     |             |              |            |
| 11111111111111      |             |              | 1111111111 |
| 1111111111111       |             |              | 11111111   |
| 1111111111111       |             |              | 111111     |
| 111111111111        |             |              | 11         |
| 11111111111         |             |              |            |
| 1111111111          | 111111111   |              |            |
| 1111111111          | 111111111   |              |            |
| 111111111           | 1111111111  |              |            |
| 111111111           | 1111111111  |              |            |
| 111111111           |             | 1111111111   |            |
| 111111111           |             | 111111111111 |            |
| 11111111111         |             | 111 11111111 | L          |
| 1111111111          | 111111      |              |            |
| 1111111             |             | 111111       |            |
| 1111                |             | 1111111      |            |
|                     |             | 1111111      |            |
|                     | 1           | 1111 1       |            |
|                     |             |              |            |

object = set of 1s

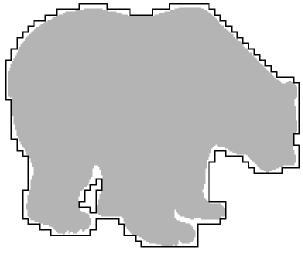




#### Introduction

Naive Combinate Application

Hull Shape 3D



g = 4: Isothetic Cover

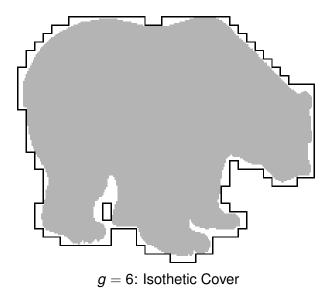




#### Introduction

Naive Combina Applicatio

Hull Shape 3D

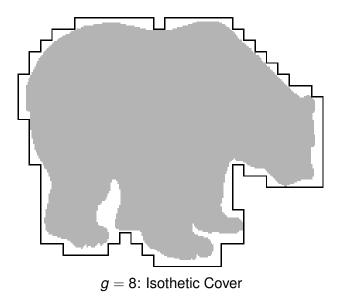






#### Introduction

Naive Combinate Application





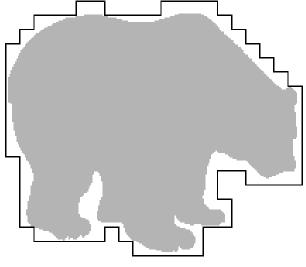


#### Introduction

Naive

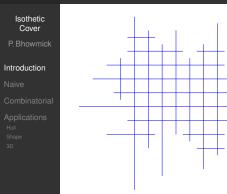
Combinatoria

Applications Hull Shape 3D



g = 10: Isothetic Cover



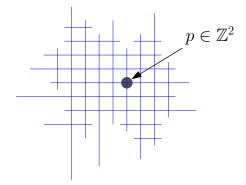


Digital plane,  $\mathbb{Z}^2$  = set of all points having integer coordinates.

 $\mathbb{Z}^2$ 



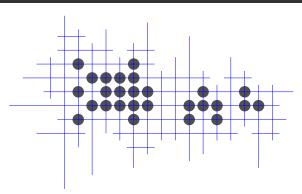




Digital point (pixel) = a point in  $\mathbb{Z}^2$ .



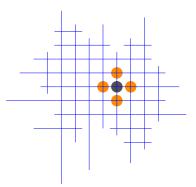




#### Digital object = a set S of digital points.



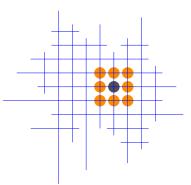




#### 4-neighborhood of p: $N_4(p) = \{(x', y') : (x', y') \in \mathbb{Z}^2 \land |x - x'| + |y - y'| = 1\}$



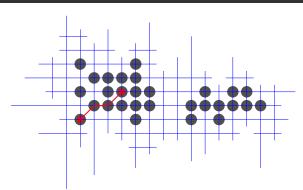




#### 8-neighborhood of p: $N_8(p) = \{(x', y') : (x', y') \in \mathbb{Z}^2 \land \max(|x - x'|, |y - y'|) = 1\}$

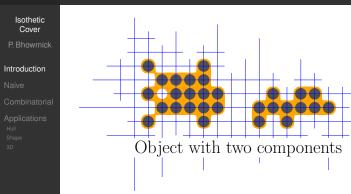






Two points p and q are k-connected in S if there exists a sequence  $\langle p := p_0, p_1, \dots, p_n := q \rangle \subseteq S$  such that  $p_i \in N_k(p_{i-1})$  for  $1 \leq i \leq n$ .

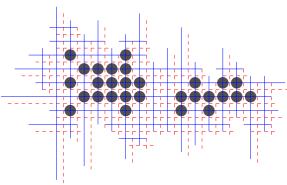




For any point  $p \in S$ , the maximum-cardinality set of points that are *k*-connected to *p* forms a *k*-connected component of *S*.



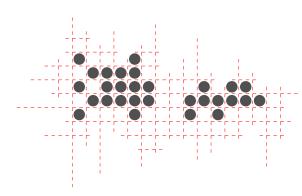




Grid  $\mathbb{G}$  with grid size g = 1 (red dashed lines)







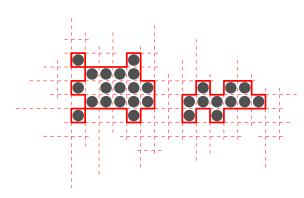
Grid  $\mathbb{G}$  with grid size g = 1 (red dashed lines)





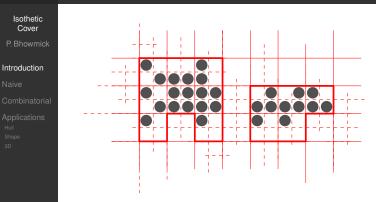
#### Introduction

Naive Combinatori Applications Hull Shape 3D



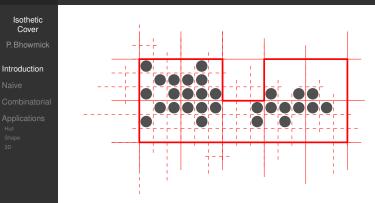
Isothetic cover for g = 1





#### Isothetic cover for g = 2





Isothetic cover for g = 3



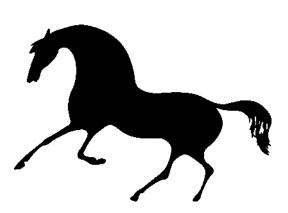


Introduction

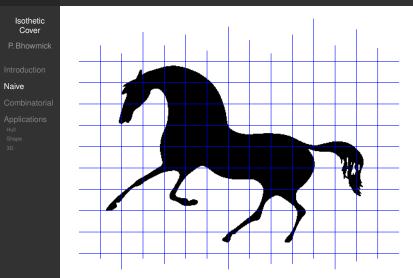
#### Naive

Combinatoria

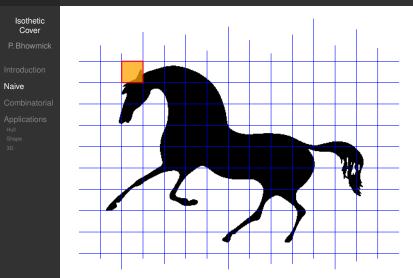
Applications Hull Shape 3D



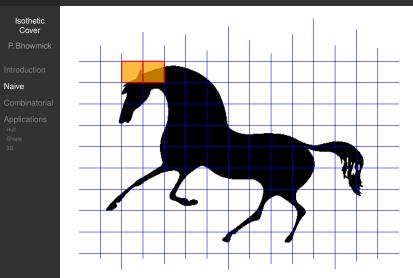




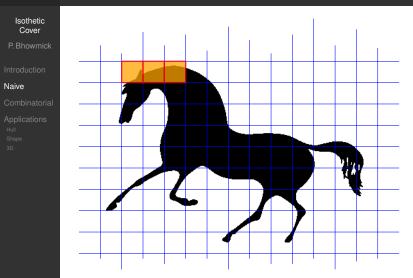




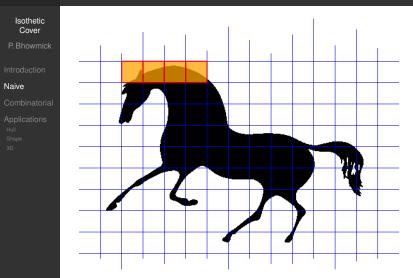




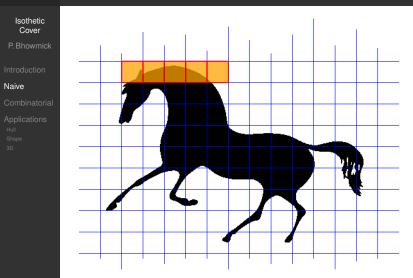




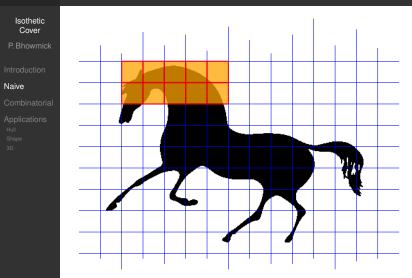




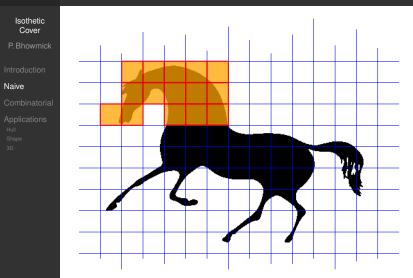




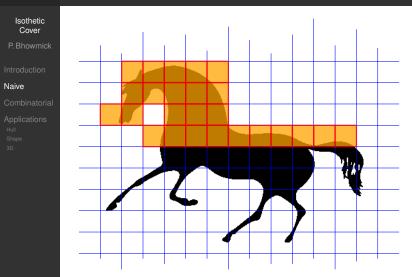




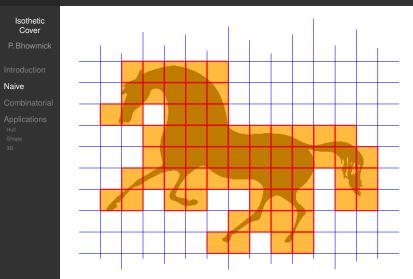




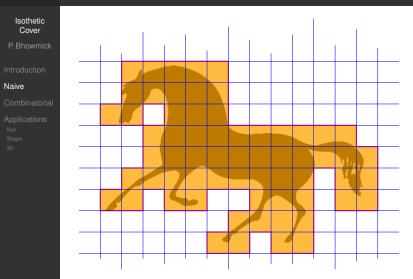




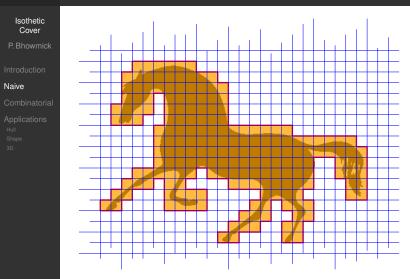














#### Isothetic Cover P. Bhowmicl

Naive

#### Disadvantages

- Scans the entire image
- Cell joining required to output the vertex sequence

Alternative solution: Combinatorial algorithm.



#### Isothetic Cover P. Bhowmick

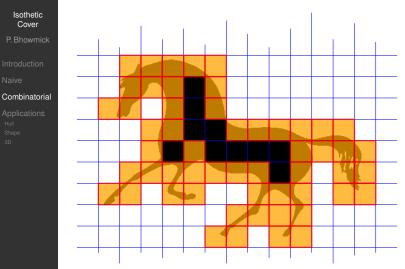
Naive

Disadvantages

- Scans the entire image
- Cell joining required to output the vertex sequence

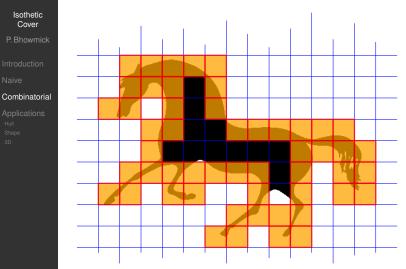
Alternative solution: Combinatorial algorithm.





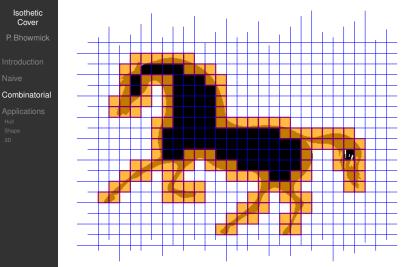
Fully black cells can be disregarded





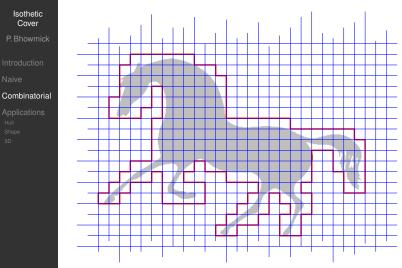
Avoid also some partly black cells. Just consider the border cells.





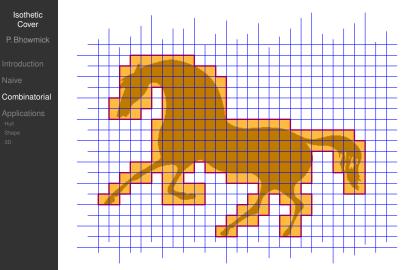
Avoid also some partly black cells. Just consider the border cells.





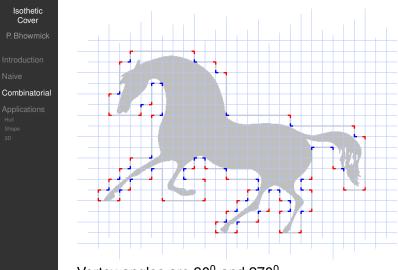
Avoid the concept of cell joining





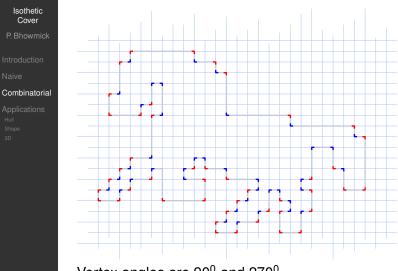
The isothetic polygon contains the object





Vertex angles are 90° and 270°

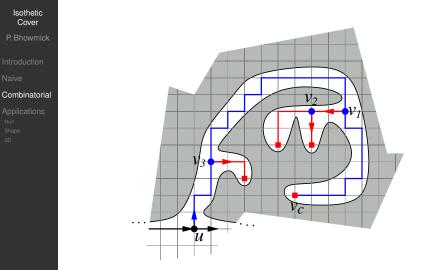




Vertex angles are 90° and 270°

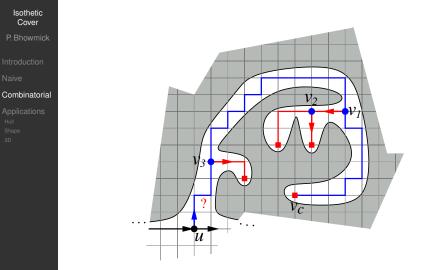


# Backtracking—A serious issue

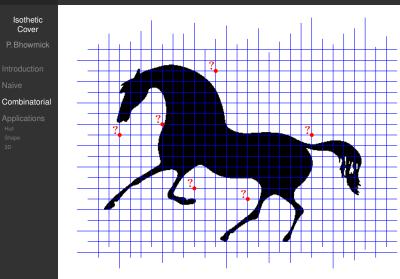




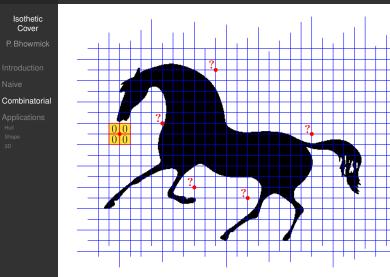
# Backtracking—A serious issue



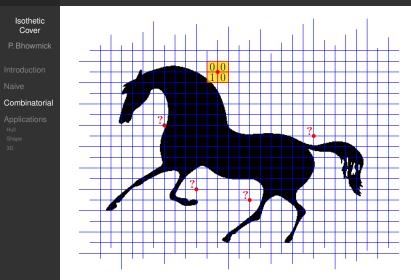




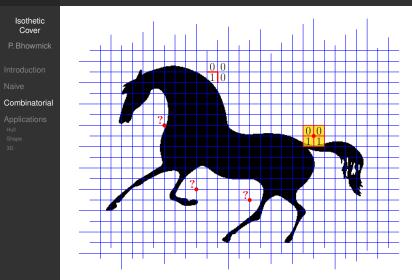




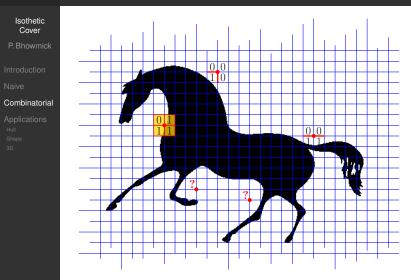




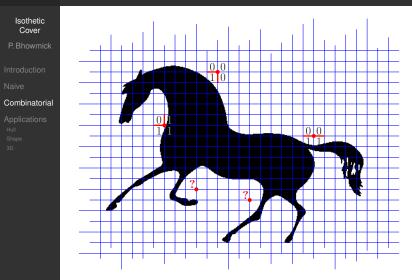




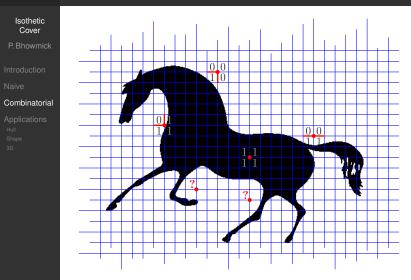




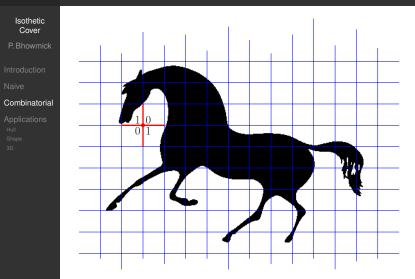




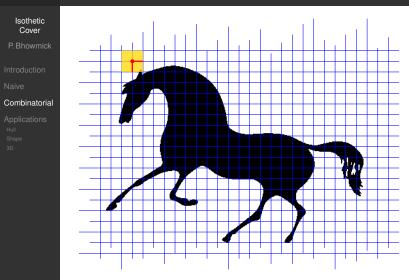




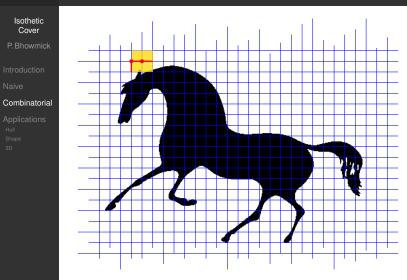




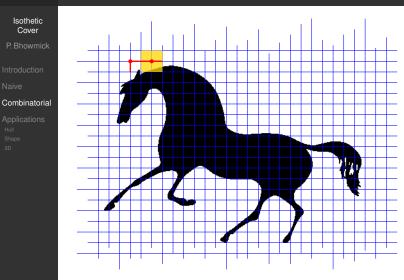




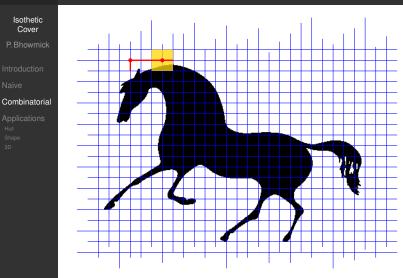




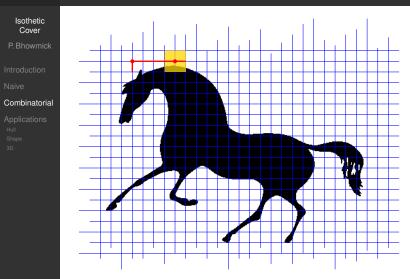




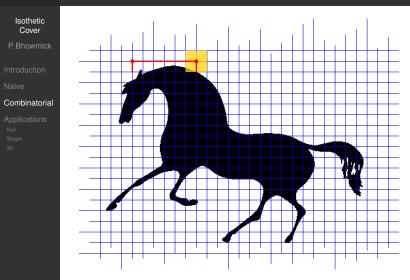




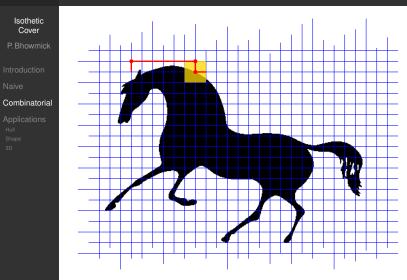




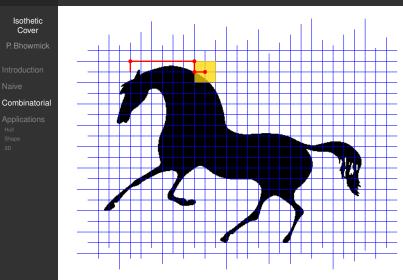




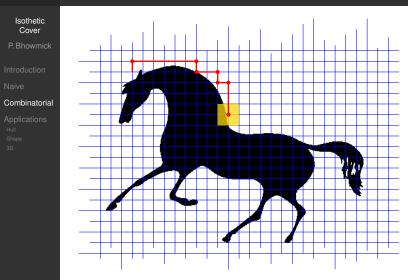




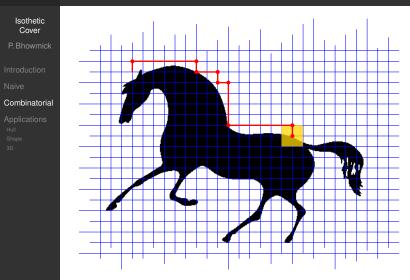




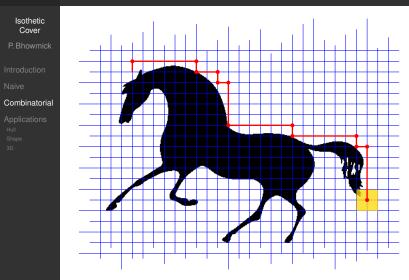




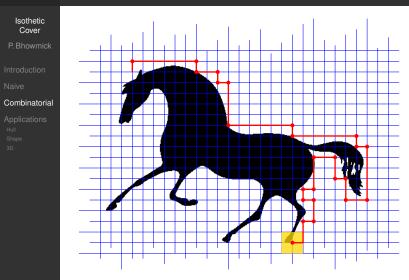




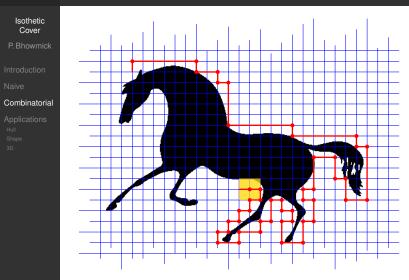




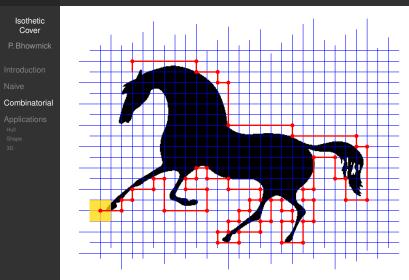




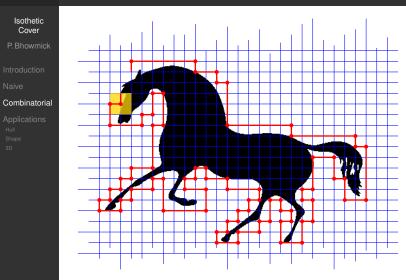




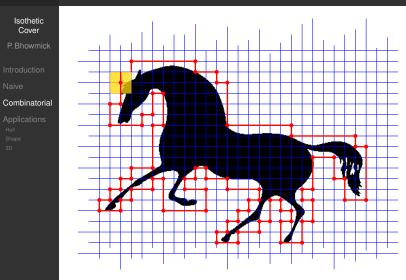




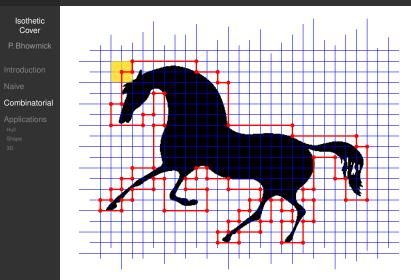




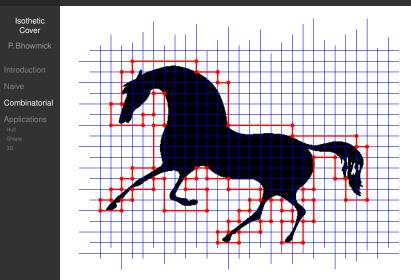








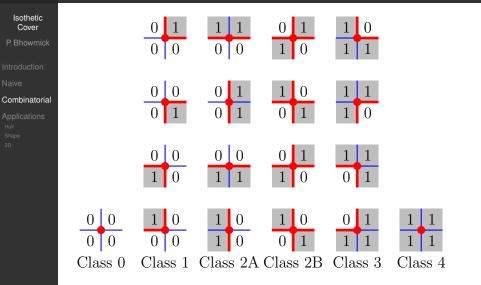






Isothetic

Cover





Isothetic Cover P. Bhowmick

Introductior

Naive

#### Combinatorial

Applications Hull Shape 3D

#### The line of proof:

- The interior of a cell lies outside P<sub>G</sub>(S) if and only if the cell has no object occupancy.
  - All vertices are detected and correctly classified.
- If p is a point lying on  $P_{\mathbb{G}}(S)$ , then  $0 < d_{\mathbb{T}}(p, S) \leq g$ .
- The construction of P<sub>G</sub>(S) always concludes at the start vertex.

- Best case:  $O(|P|/g) \leftarrow$  found in practice
- Worst case: O(|P|)



Isothetic Cover P. Bhowmick

Introduction

Naive

#### Combinatorial

Applications Hull Shape 3D

#### The line of proof:

- The interior of a cell lies outside P<sub>G</sub>(S) if and only if the cell has no object occupancy.
- All vertices are detected and correctly classified.
  - If p is a point lying on  $P_{\mathbb{G}}(S)$ , then  $0 < d_{ op}(p,S) \leqslant g.$
- The construction of  $P_{\mathbb{G}}(S)$  always concludes at the start vertex.

- Best case:  $O(|P|/g) \leftarrow$  found in practice
- Worst case: O(|P|)



Isothetic Cover P. Bhowmick

Introductior

Naive

#### Combinatorial

Applications Hull Shape 3D

#### The line of proof:

- The interior of a cell lies outside P<sub>G</sub>(S) if and only if the cell has no object occupancy.
- All vertices are detected and correctly classified.
- If p is a point lying on  $P_{\mathbb{G}}(S)$ , then  $0 < d_{\top}(p, S) \leqslant g$ .
- The construction of *P*<sub>G</sub>(*S*) always concludes at the start vertex.

- Best case:  $O(|P|/g) \leftarrow$  found in practice
- Worst case: O(|P|)



Isothetic Cover P. Bhowmick

Introductior

Naive

#### Combinatorial

Applications Hull Shape 3D

#### The line of proof:

- The interior of a cell lies outside P<sub>G</sub>(S) if and only if the cell has no object occupancy.
- All vertices are detected and correctly classified.
- If p is a point lying on  $P_{\mathbb{G}}(S)$ , then  $0 < d_{\top}(p, S) \leq g$ .
- The construction of  $P_{\mathbb{G}}(S)$  always concludes at the start vertex.

- Best case:  $O(|P|/g) \leftarrow$  found in practice
- Worst case: O(|P|)



Isothetic Cover P. Bhowmick

Introductior

Naive

#### Combinatorial

Applications Hull Shape 3D

#### The line of proof:

- The interior of a cell lies outside P<sub>G</sub>(S) if and only if the cell has no object occupancy.
- All vertices are detected and correctly classified.
- If p is a point lying on  $P_{\mathbb{G}}(S)$ , then  $0 < d_{\top}(p, S) \leq g$ .
- The construction of  $P_{\mathbb{G}}(S)$  always concludes at the start vertex.

#### Runtime:1

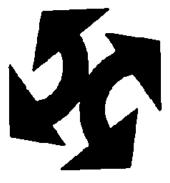
- Best case:  $O(|P|/g) \leftarrow$  found in practice
- Worst case: O(|P|)



Isothetic Cover P. Bhowmick ntroduction Vaive Combinatorial Applications Hull Shape  $H_{\mathbb{G}}(S)$  = smallest-area orthogonal polygon such that

- S lies inside  $H_{\mathbb{G}}(S)$  $\Rightarrow P_{\mathbb{G}}(S)$  lies inside  $H_{\mathbb{G}}(S)$
- intersection of H<sub>G</sub>(S) with any horizontal or vertical line is either empty or exactly one line segment.

Algorithm—Uses combinatorial rules over vertex subsequences. Runtime—Linear on perimeter of  $P_{\rm G}(S)$ .

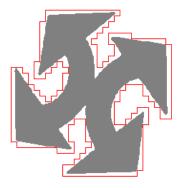




Isothetic Cover P. Bhowmick ntroduction Vaive Combinatorial Applications Hull Shape  $H_{\mathbb{G}}(S)$  = smallest-area orthogonal polygon such that

- S lies inside  $H_{\mathbb{G}}(S)$  $\Rightarrow P_{\mathbb{G}}(S)$  lies inside  $H_{\mathbb{G}}(S)$
- intersection of H<sub>G</sub>(S) with any horizontal or vertical line is either empty or exactly one line segment.

Algorithm—Uses combinatorial rules over vertex subsequences. Runtime—Linear on perimeter of  $P_{\mathbb{G}}(S)$ .

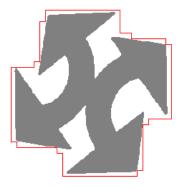




Isothetic Cover P. Bhowmick ntroduction Vaive Combinatorial Applications Hull Shape  $H_{\mathbb{G}}(S)$  = smallest-area orthogonal polygon such that

- S lies inside  $H_{\mathbb{G}}(S)$  $\Rightarrow P_{\mathbb{G}}(S)$  lies inside  $H_{\mathbb{G}}(S)$
- intersection of H<sub>G</sub>(S) with any horizontal or vertical line is either empty or exactly one line segment.

Algorithm—Uses combinatorial rules over vertex subsequences. Runtime—Linear on perimeter of  $P_{\mathbb{G}}(S)$ .

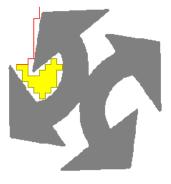




Isothetic Cover P. Bhowmick ntroduction Naive Combinatorial Applications Hut Shape  $H_{\mathbb{G}}(S) =$  smallest-area orthogonal polygon such that

- S lies inside  $H_{\mathbb{G}}(S)$  $\Rightarrow P_{\mathbb{G}}(S)$  lies inside  $H_{\mathbb{G}}(S)$
- intersection of H<sub>G</sub>(S) with any horizontal or vertical line is either empty or exactly one line segment.

Algorithm—Uses combinatorial rules over vertex subsequences.

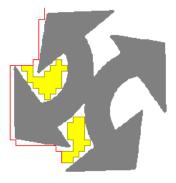




Isothetic Cover P. Bhowmick ntroduction Vaive Combinatorial Applications Hull Shape  $H_{\mathbb{G}}(S) =$  smallest-area orthogonal polygon such that

- S lies inside  $H_{\mathbb{G}}(S)$  $\Rightarrow P_{\mathbb{G}}(S)$  lies inside  $H_{\mathbb{G}}(S)$
- intersection of H<sub>G</sub>(S) with any horizontal or vertical line is either empty or exactly one line segment.

Algorithm—Uses combinatorial rules over vertex subsequences.

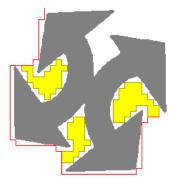




Isothetic Cover P. Bhowmick ntroduction Naive Combinatorial Applications Hull Shape  $H_{\mathbb{G}}(S) =$  smallest-area orthogonal polygon such that

- S lies inside  $H_{\mathbb{G}}(S)$  $\Rightarrow P_{\mathbb{G}}(S)$  lies inside  $H_{\mathbb{G}}(S)$
- intersection of H<sub>G</sub>(S) with any horizontal or vertical line is either empty or exactly one line segment.

Algorithm—Uses combinatorial rules over vertex subsequences.

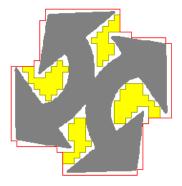




Isothetic Cover P. Bhowmick ntroduction Vaive Combinatorial Applications Hull Shape  $H_{\mathbb{G}}(S)$  = smallest-area orthogonal polygon such that

- S lies inside  $H_{\mathbb{G}}(S)$  $\Rightarrow P_{\mathbb{G}}(S)$  lies inside  $H_{\mathbb{G}}(S)$
- intersection of H<sub>G</sub>(S) with any horizontal or vertical line is either empty or exactly one line segment.

Algorithm—Uses combinatorial rules over vertex subsequences.

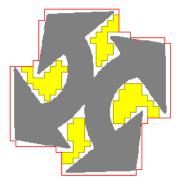




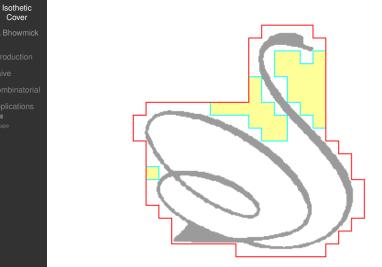
Isothetic Cover P. Bhowmick ntroduction Vaive Combinatorial Applications Hut Shape  $H_{\mathbb{G}}(S) =$  smallest-area orthogonal polygon such that

- S lies inside  $H_{\mathbb{G}}(S)$  $\Rightarrow P_{\mathbb{G}}(S)$  lies inside  $H_{\mathbb{G}}(S)$
- intersection of H<sub>G</sub>(S) with any horizontal or vertical line is either empty or exactly one line segment.

Algorithm—Uses combinatorial rules over vertex subsequences.



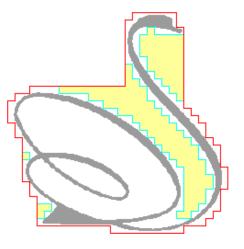




*g* = 14

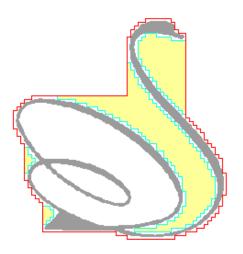










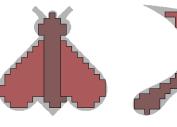


*g* = 4

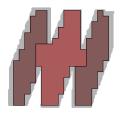


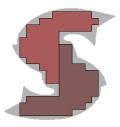
# Convex partitioning







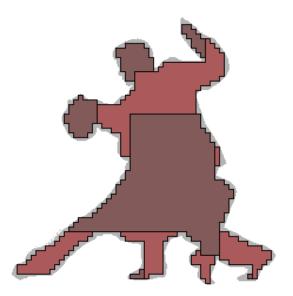






## Convex partitioning







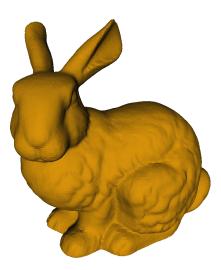
#### Shortest isothetic path

Isothetic Cover P. Bhowmick Introduction Naive Combinatoria Applications Hull Shape 3D



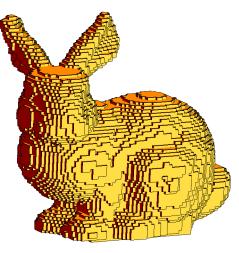








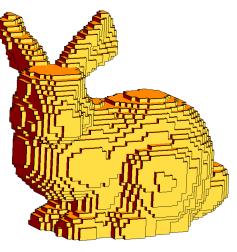




*g* = 2



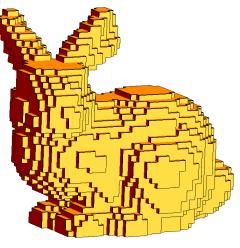




*g* = 3



Isothetic Cover P. Bhowmick Introduction Naive Combinatoria Applications Hull Shape

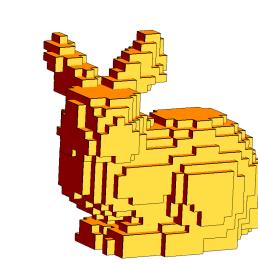


*g* = 4



Isothetic

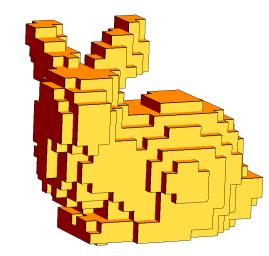
## 3D cover (outer)



g = 6

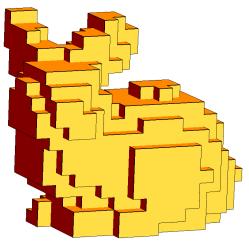
Cover P. Bhowmic Introduction Naive Combinatori Applications Hull Shape





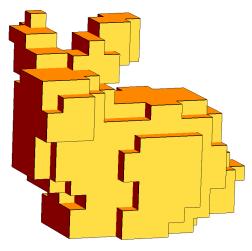


Isothetic Cover P. Bhowmick Introduction Naive Combinatoria Applications Hull Shape





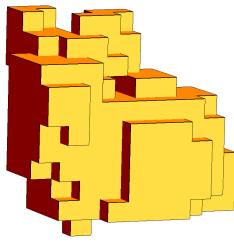




*g* = 12

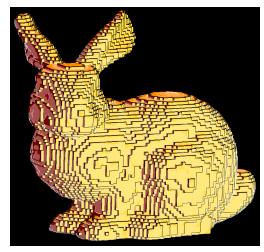








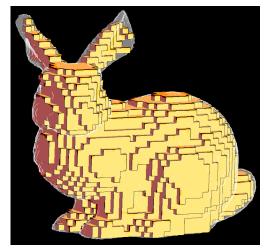




*g* = 2



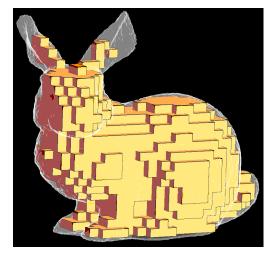




*g* = 4



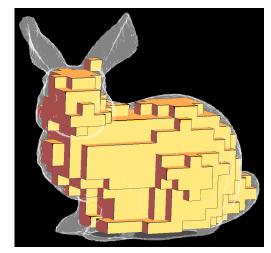




g = 6



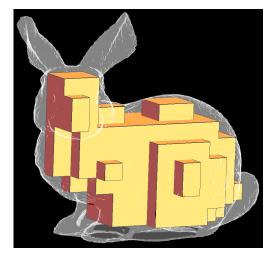




*g* = 8



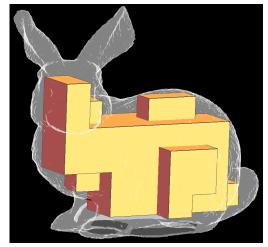




*g* = 12



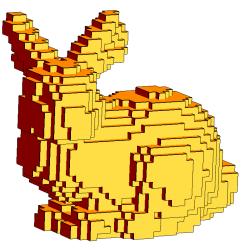




*g* = 16



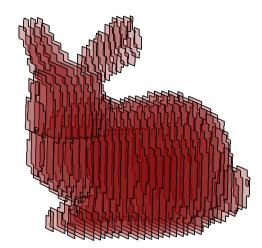
Isothetic Cover P. Bhowmick Introduction Naive Combinatorial Applications Hull Shape 20



high resolution



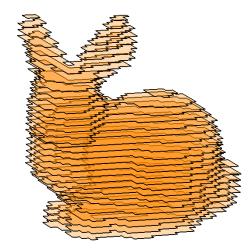
## 3D slicing



along x-axis



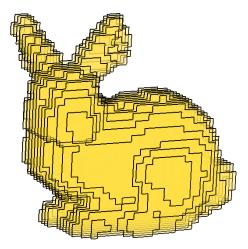
### 3D slicing



along y-axis



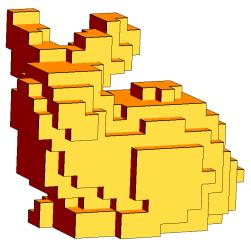
## 3D slicing



along z-axis



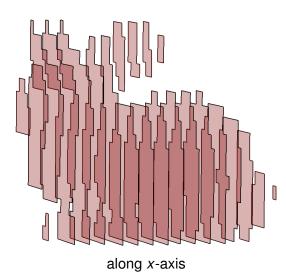




low resolution

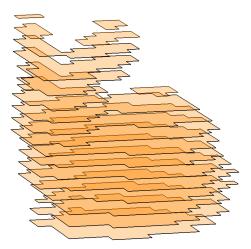








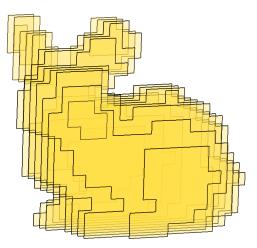




along y-axis











# Further reading I

lsothetic Cover P. Bhowmick

Naive Combinatoria Applications Hull Shape

- A. Biswas, P. Bhowmick, M. Sarkar, and B. B. Bhattacharya, A Linear-time Combinatorial Algorithm to Find the Orthogonal Hull of an Object on the Digital Plane, *Information Sciences*, **216**: 176–195, 2012.
- A. Biswas, P. Bhowmick, and B. B. Bhattacharya. Construction of Isothetic Covers of a Digital Object: A Combinatorial Approach, *Journal of Visual Communication and Image Representation*, 21(4):295–310, 2010.
- - M. Dutt, A. Biswas, and P. Bhowmick, ACCORD: With Approximate Covering of Convex Orthogonal Decomposition, *DGCI 2011: 16th IAPR International Conference on Discrete Geometry for Computer Imagery*, LNCS **6607**: 489–500, 2011.
- M. Dutt, A. Biswas, P. Bhowmick, and B. B. Bhattacharya, On Finding Shortest Isothetic Path inside a Digital Object, *15th International Workshop on Combinatorial Image Analysis: IWCIA'12*, 2012 [To appear in LNCS, Springer]



# Further reading II

#### Cover P. Bhowmick ntroduction Naive

Isothetic

Applications Hull Shape 3D

- N. Karmakar, A. Biswas, P. Bhowmick, and B.B. Bhattacharya, A Combinatorial Algorithm to Construct 3D Isothetic Covers, *International Journal of Computer Mathematics*, 2012 (in press).
- N. Karmakar, A. Biswas, and P. Bhowmick, Fast Slicing of Orthogonal Covers Using DCEL, *15th International Workshop on Combinatorial Image Analysis: IWCIA'12*, 2012 [To appear in LNCS, Springer]
- - N. Karmakar, A. Biswas, P. Bhowmick, and B.B. Bhattacharya, Construction of 3D Orthogonal Cover of a Digital Object, 14th International Workshop on Combinatorial Image Analysis: IWCIA'11, LNCS 6636:70–83, 2011.
- R. Klette and A. Rosenfeld, *Digital Geometry: Geometric Methods for Digital Picture Analysis*, Morgan Kaufmann, San Francisco, 2004.



Isothetic Cover P. Bhowmick Introduction Naive Combinatoria Applications

Hull Shape Thank You