Isothetic

 CoverP. Bhowmick

Isothetic Covers for Digital Objects:

Algorithms and Applications

Partha Bhowmick

CSE, IIT Kharagpur

Research Promotion Workshop
Introduction to Graph and Geometric Algorithms
November 1-3, 2011 (PDPM IIItDM Jabalpur)

Object and Isothetic Cover

Object and Isothetic Cover

Isothetic Cover

 ○ᄋᄋө日1111111111111111111111111111111111111100○○○○○○○○○○ ӨӨӨӨ11ӨӨӨӨӨӨӨӨӨӨӨ

 Өब119ӨӨӨӨӨӨ అӨ111 Ө囚అఆఅఆ ©®11109 అ®11169 ©®11106 ӨӨө111000 ＠๑๐11＠＠
 ＠日®119＠ Ө๑Ө1109 ӨबӨ1199
 అ๑అఅ11＠＠＠ өᄋणө1111111111111111111111111111111111011111111111111000

 －0000000000909009

object $=$ set of 1 s

Object and Isothetic Cover

 ＠ब119e ＠ब111117111囚® ©日11190 అ๑ө1116＠Ө ம๑๑1116＠ అ®日119® ＠बब119＠ ӨӨఠ1109 ＠ब＠119＠ ©ఠ〇11100® అ๑అब11＠＠＠ ○ᄋOө111111111111111111111111111111111161111111111111009

 －00000000009009

$$
\text { object }=\text { set of } 1 \mathrm{~s}
$$

Object and Isothetic Cover

Isothetic Cover

Introduction
Naive
Combinatorial
Applications
Hull
Shape
3D

111111111
1111111
1111111111111111111111111111
1111111111111111111111111111111

11111111111111111111111111111111111111 11

11

11

1111111111111111111111111111111
11111111

111111
111111111111111111111111111111

1111111111
1111111111
111111111
111111111
111111111
111111111
11111111111
1111111111
1111111
1111

111111111111111111
11111111111111111 111111111111111111
1111111111111111111
11111111111111111111
1111111111111111111111 1111111111111111111

1111111111
11111111111
111111111111
1111111111
111111

Object and Isothetic Cover

$$
g=4: \text { Isothetic Cover }
$$

Object and Isothetic Cover

Isothetic
Cover
P. Bhowmick

Introduction
Naive
Combinatorial
Applications
Hull
Shape
3D

$$
g=6 \text { : Isothetic Cover }
$$

Object and Isothetic Cover

Isothetic Cover
P. Bhowmick

Introduction
Naive
Combinatorial
Applications
Hull
Shape
3D

$g=8$: Isothetic Cover

Object and Isothetic Cover

Isothetic Cover
P. Bhowmick

Introduction
Naive
Combinatorial
Applications
Hull
Shape
3D

$g=10:$ Isothetic Cover

Definitions

Isothetic Cover
P. Bhowmick

Introduction
Naive
Combinatorial
Applications
Hull
Shape
3D

Digital plane, $\mathbb{Z}^{2}=$ set of all points having integer coordinates.

Definitions

Digital point $($ pixel $)=$ a point in \mathbb{Z}^{2}.

Definitions

Introduction
Naive
Combinatorial
Applications
Hull
Shape
3D

Digital object $=$ a set S of digital points.

Definitions

Isothetic Cover
P. Bhowmick

Introduction
Naive
Combinatorial
Applications
Hull
Shape
3D

4-neighborhood of p :

$$
N_{4}(p)=\left\{\left(x^{\prime}, y^{\prime}\right):\left(x^{\prime}, y^{\prime}\right) \in \mathbb{Z}^{2} \wedge\left|x-x^{\prime}\right|+\left|y-y^{\prime}\right|=1\right\}
$$

Definitions

Isothetic Cover
P. Bhowmick

Introduction
Naive
Combinatorial
Applications
Hull
Shape
3D

8-neighborhood of p :

$$
N_{8}(p)=\left\{\left(x^{\prime}, y^{\prime}\right):\left(x^{\prime}, y^{\prime}\right) \in \mathbb{Z}^{2} \wedge \max \left(\left|x-x^{\prime}\right|,\left|y-y^{\prime}\right|\right)=1\right\}
$$

Definitions

Isothetic Cover
P. Bhowmick

Introduction
Naive
Combinatorial
Applications
Hull
Shape
3D

Two points p and q are k-connected in S if there exists a sequence $\left\langle p:=p_{0}, p_{1}, \ldots, p_{n}:=q\right\rangle \subseteq S$ such that $p_{i} \in$ $N_{k}\left(p_{i-1}\right)$ for $1 \leqslant i \leqslant n$.

Definitions

Isothetic Cover
P. Bhowmick

Introduction
Naive
Combinatorial

Applications

Hull

Shape 3D

Object with two components

$$
1
$$

For any point $p \in S$, the maximum-cardinality set of points that are k-connected to p forms a k-connected component of S.

Definitions

Isothetic
Cover
P. Bhowmick

Introduction
Naive
Combinatorial
Applications
Hull
Shape
3D

Grid \mathbb{G} with grid size $g=1$ (red dashed lines)

Definitions

Isothetic
Cover
P. Bhowmick

Introduction
Naive
Combinatorial
Applications
Hull
Shape
3D

Definitions

Isothetic
Cover
P. Bhowmick

Introduction
Naive
Combinatorial
Applications
Hull
Shape
3D

Isothetic cover for $g=1$

Definitions

Isothetic
Cover
P. Bhowmick

Introduction
Naive
Combinatorial
Applications
Hull
Shape
3D

Isothetic cover for $g=2$

Definitions

Isothetic
Cover
P. Bhowmick

Introduction
Naive
Combinatorial
Applications
Hull
Shape
3D

Isothetic cover for $g=3$

Naive algorithm

Isothetic Cover
P. Bhowmick

Introduction
Naive
Combinatorial
Applications
Hull
Shiape
3D

Naive algorithm

Isothetic Cover
P. Bhowmick

Introduction
Naive
Combinatorial
Applications
Hull
Shape

3D

Naive algorithm

Isothetic Cover
P. Bhowmick

Introduction
Naive
Combinatorial
Applications
Hull
Shape

3D

Naive algorithm

Isothetic Cover
P. Bhowmick

Introduction
Naive
Combinatorial
Applications
Hull
Shape

3D

Naive algorithm

Isothetic Cover
P. Bhowmick

Introduction
Naive
Combinatorial
Applications
Hull
Shape

3D

Naive algorithm

Isothetic Cover
P. Bhowmick

Introduction
Naive
Combinatorial
Applications
Hull
Shape

3D

Naive algorithm

Isothetic Cover
P. Bhowmick

Introduction
Naive
Combinatorial
Applications
Hull
Shape

3D

Naive algorithm

Isothetic Cover
P. Bhowmick

Introduction
Naive
Combinatorial
Applications
Hull
Shape
3D

Naive algorithm

Isothetic Cover
P. Bhowmick

Introduction
Naive
Combinatorial
Applications
Hull
Shape
3D

Naive algorithm

Isothetic Cover
P. Bhowmick

Introduction
Naive
Combinatorial
Applications
Hull
Shape
3D

Naive algorithm

Isothetic Cover
P. Bhowmick

Introduction
Naive
Combinatorial
Applications
Hull
Shape
3D

Naive algorithm

Isothetic Cover
P. Bhowmick

Introduction
Naive
Combinatorial
Applications
Hull
Shape
3D

Naive algorithm

> Isothetic
> Cover
P. Bhowmick

Introduction
Naive
Combinatorial
Applications
Hull
Shape
3D

Naive algorithm

Isothetic Cover
P. Bhowmick

Introduction
Naive
Combinatorial
Applications

Hull

Shape 3D

Disadvantages

- Scans the entire image
- Cell joining required to output the vertex sequence

Naive algorithm

Disadvantages

- Scans the entire image
- Cell joining required to output the vertex sequence

Alternative solution: Combinatorial algorithm.

Vertex types

Isothetic Cover
P. Bhowmick

Introduction
Naive
Combinatorial
Applications
Hull
Shape
3D

Fully black cells can be disregarded

Vertex types

Isothetic Cover
P. Bhowmick

Introduction
Naive
Combinatorial
Applications
Hull
Shape

Avoid also some partly black cells. Just consider the border cells.

Vertex types

Isothetic Cover
P. Bhowmick

Introduction Naive

Combinatorial
Applications
Hull
Shape
3D

Avoid also some partly black cells. Just consider the border cells.

Vertex types

Isothetic
Cover
P. Bhowmick

Introduction Naive

Combinatorial
Applications
Hull
Shape
3D

Avoid the concept of cell joining

Vertex types

Isothetic
Cover
P. Bhowmick

Introduction Naive

Combinatorial
Applications
Hull
Shape
3D

The isothetic polygon contains the object

Vertex types

Isothetic Cover
P. Bhowmick

Introduction Naive

Combinatorial
Applications
Hull
Shape
3D

Vertex angles are 90° and 270°

Vertex types

Isothetic Cover
P. Bhowmick

Introduction Naive

Combinatorial
Applications
Hull
Shape
3D

Vertex angles are 90° and 270°

Backtracking-A serious issue

Isothetic Cover
P. Bhowmick

Introduction

Naive

Combinatorial
Applications
Hall
Shape 3D

Backtracking-A serious issue

Isothetic Cover
P. Bhowmick

Introduction

Naive

Combinatorial
Applications
Hall
Shape 3D

Grid point classification

Isothetic Cover
P. Bhowmick

Introduction Naive

Combinatorial Applications

Hull

Shape
3D

Grid point classification

Isothetic Cover
P. Bhowmick

Introduction Naive

Combinatorial Applications
Hull
Shape
3D

Grid point classification

Isothetic Cover
P. Bhowmick

Introduction Naive

Combinatorial Applications

Hull

Shape
3D

Grid point classification

Isothetic Cover
P. Bhowmick

Introduction Naive

Combinatorial Applications

Hull

Shape
3D

Grid point classification

Isothetic Cover
P. Bhowmick

Introduction Naive

Combinatorial Applications

Hull

Shape
3D

Grid point classification

Isothetic Cover
P. Bhowmick

Introduction Naive

Combinatorial Applications

Hull

Shape
3D

Grid point classification

Isothetic Cover
P. Bhowmick

Introduction Naive

Combinatorial Applications

Hull

Shape
3D

Grid point classification

Isothetic Cover
P. Bhowmick

Introduction Naive

Combinatorial Applications
Hull
Shape
3D

Grid point classification

Isothetic Cover
P. Bhowmick

Introduction Naive

Combinatorial Applications

Hull

Shape
3D

Grid point classification

Isothetic Cover
P. Bhowmick

Introduction Naive

Combinatorial Applications

Hull

Shape
3D

Grid point classification

Isothetic Cover
P. Bhowmick

Introduction Naive

Combinatorial Applications

Hull

Shape
3D

Grid point classification

Isothetic Cover
P. Bhowmick

Introduction Naive

Combinatorial Applications

Hull

Shape
3D

Grid point classification

Isothetic Cover
P. Bhowmick

Introduction Naive

Combinatorial Applications

Hull

Shape
3D

Grid point classification

Isothetic Cover
P. Bhowmick

Introduction Naive

Combinatorial Applications

Hull

Shape
3D

Grid point classification

Isothetic Cover
P. Bhowmick

Introduction Naive

Combinatorial Applications

Hull

Shape
3D

Grid point classification

Isothetic Cover
P. Bhowmick

Introduction Naive

Combinatorial Applications

Hull

Shape
3D

Grid point classification

Isothetic Cover
P. Bhowmick

Introduction Naive

Combinatorial Applications

Hull

Shape
3D

Grid point classification

Isothetic Cover
P. Bhowmick

Introduction Naive

Combinatorial Applications

Hull

Shape
3D

Grid point classification

Isothetic Cover
P. Bhowmick

Introduction Naive

Combinatorial Applications

Hull

Shape
3D

Grid point classification

Isothetic Cover
P. Bhowmick

Introduction Naive

Combinatorial Applications

Hull

Shape
3D

Grid point classification

Isothetic Cover
P. Bhowmick

Introduction Naive

Combinatorial Applications

Hull

Shape
3D

Grid point classification

Isothetic Cover
P. Bhowmick

Introduction Naive

Combinatorial Applications

Hull

Shape
3D

Grid point classification

Isothetic Cover
P. Bhowmick

Introduction Naive

Combinatorial
Applications
Hull
Shape
3D

Grid point classification

Isothetic Cover
P. Bhowmick

Introduction Naive

Combinatorial Applications

Hull

Shape
3D

Grid point classification

Isothetic Cover
P. Bhowmick

Introduction Naive

Combinatorial Applications

Hull

Shape
3D

Grid point classification

Isothetic Cover
P. Bhowmick

Introduction Naive

Combinatorial Applications

Hull

Shape
3D

Grid point classification

Isothetic Cover
P. Bhowmick

Introduction
Naive
Combinatorial
Applications Hall
Shape Slap
3D

$$
\begin{array}{l|l|l|l|l|l|l}
0 & 1 & 1 & 1 & 0 & 1 & 1 \\
\hline 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
\hline & 1 & 1
\end{array}
$$

$$
\begin{array}{l|l|l|l|l|l|}
0 & 0 \\
\hline 0 & \frac{0}{1} & \frac{1}{0} & \frac{1}{1} & 0 & 1 \\
0 & 1 & 1 & 1 \\
\hline 1 & 0
\end{array}
$$

$$
\begin{array}{l|ll|ll|l|l|l}
0 & 0 \\
\hline 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
\hline 1 & 1 & 1 & 0 & \frac{1}{0} & \frac{1}{1}
\end{array}
$$

$$
\begin{array}{l|l|l|l|l|l|l|l|l|l|l}
0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 \\
\hline 0 & 0 & 0 & 0 & 1 \\
\hline 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1
\end{array}
$$

Class 0 Class 1 Class 2A Class 2B Class 3 Class 4

Correctness \& Runtime

Isothetic
Cover
P. Bhowmick

Introduction
Naive
Combinatorial

The line of proof:

- The interior of a cell lies outside $P_{\mathbb{G}}(S)$ if and only if the cell has no object occupancy.

Correctness \& Runtime

Correctness \& Runtime

The line of proof:

- The interior of a cell lies outside $P_{\mathbb{G}}(S)$ if and only if the cell has no object occupancy.
- All vertices are detected and correctly classified.
- If p is a point lying on $P_{\mathbb{G}}(S)$, then $0<d_{\top}(p, S) \leqslant g$.

Correctness \& Runtime

The line of proof:

- The interior of a cell lies outside $P_{\mathbb{G}}(S)$ if and only if the cell has no object occupancy.
- All vertices are detected and correctly classified.
- If p is a point lying on $P_{\mathbb{G}}(S)$, then $0<d_{\top}(p, S) \leqslant g$.
- The construction of $P_{\mathbb{G}}(S)$ always concludes at the start vertex.
Runtime: ${ }^{1}$
- Best case:

Correctness \& Runtime

The line of proof:

- The interior of a cell lies outside $P_{\mathbb{G}}(S)$ if and only if the cell has no object occupancy.
- All vertices are detected and correctly classified.
- If p is a point lying on $P_{\mathbb{G}}(S)$, then $0<d_{\top}(p, S) \leqslant g$.
- The construction of $P_{\mathbb{G}}(S)$ always concludes at the start vertex.

Runtime: ${ }^{1}$

- Best case: $O(|P| / g) \leftarrow$ found in practice
- Worst case: $O(|P|)$
${ }^{1}|P|=$ perimeter of $P_{\mathbb{G}}(S)$

Orthogonal convex hull

$H_{\mathbb{G}}(S)=$ smallest-area orthogonal polygon such that

- S lies inside $H_{\mathbb{G}}(S)$ $\Rightarrow P_{\mathbb{G}}(S)$ lies inside $H_{\mathbb{G}}(S)$
- intersection of $H_{\mathbb{G}}(S)$ with any horizontal or vertical line is either empty or exactly one line segment.

Orthogonal convex hull

$H_{\mathbb{G}}(S)=$ smallest-area orthogonal polygon such that

- S lies inside $H_{\mathbb{G}}(S)$ $\Rightarrow P_{\mathbb{G}}(S)$ lies inside $H_{\mathbb{G}}(S)$
- intersection of $H_{\mathbb{G}}(S)$ with any horizontal or vertical line is either empty or exactly one line segment.

Algorithm_Uses combinatorial

Orthogonal convex hull

$H_{\mathbb{G}}(S)=$ smallest-area orthogonal polygon such that

- S lies inside $H_{\mathbb{G}}(S)$ $\Rightarrow P_{\mathbb{G}}(S)$ lies inside $H_{\mathbb{G}}(S)$
- intersection of $H_{\mathbb{G}}(S)$ with any horizontal or vertical line is either empty or exactly one line segment.

Algorithm_Uses combinatorial

Orthogonal convex hull

$H_{\mathbb{G}}(S)=$ smallest-area orthogonal polygon such that

- S lies inside $H_{\mathbb{G}}(S)$ $\Rightarrow P_{\mathbb{G}}(S)$ lies inside $H_{\mathbb{G}}(S)$
- intersection of $H_{\mathbb{G}}(S)$ with any horizontal or vertical line is either empty or exactly one line segment.
Algorithm—Uses combinatorial rules over vertex subsequences.

Orthogonal convex hull

$H_{\mathbb{G}}(S)=$ smallest-area orthogonal polygon such that

- S lies inside $H_{\mathbb{G}}(S)$ $\Rightarrow P_{\mathbb{G}}(S)$ lies inside $H_{\mathbb{G}}(S)$
- intersection of $H_{\mathbb{G}}(S)$ with any horizontal or vertical line is either empty or exactly one line segment.
Algorithm—Uses combinatorial rules over vertex subsequences.

Orthogonal convex hull

$H_{\mathbb{G}}(S)=$ smallest-area orthogonal polygon such that

- S lies inside $H_{\mathbb{G}}(S)$ $\Rightarrow P_{\mathbb{G}}(S)$ lies inside $H_{\mathbb{G}}(S)$
- intersection of $H_{\mathbb{G}}(S)$ with any horizontal or vertical line is either empty or exactly one line segment.
Algorithm—Uses combinatorial rules over vertex subsequences.

Orthogonal convex hull

$H_{\mathbb{G}}(S)=$ smallest-area orthogonal polygon such that

- S lies inside $H_{\mathbb{G}}(S)$ $\Rightarrow P_{\mathbb{G}}(S)$ lies inside $H_{\mathbb{G}}(S)$
- intersection of $H_{\mathbb{G}}(S)$ with any horizontal or vertical line is either empty or exactly one line segment.
Algorithm—Uses combinatorial rules over vertex subsequences.

Orthogonal convex hull

$H_{\mathbb{G}}(S)=$ smallest-area orthogonal polygon such that

- S lies inside $H_{\mathbb{G}}(S)$ $\Rightarrow P_{\mathbb{G}}(S)$ lies inside $H_{\mathbb{G}}(S)$
- intersection of $H_{\mathbb{G}}(S)$ with any horizontal or vertical line is either empty or exactly one line segment.
Algorithm—Uses combinatorial rules over vertex subsequences.
Runtime-Linear on perimeter of $P_{\mathbb{G}}(S)$.

Orthogonal convex hull

Isothetic

 CoverP. Bhowmick

Introduction
Naive
Combinatorial
Applications
Hull
Shape
3D

$$
g=14
$$

Orthogonal convex hull

Isothetic

 CoverP. Bhowmick

Introduction
Naive
Combinatorial
Applications
Hull
Shape
3D

Orthogonal convex hull

Isothetic

 CoverP. Bhowmick

Introduction
Naive
Combinatorial
Applications
Hull
Shape
3D

Convex partitioning

Isothetic Cover
P. Bhowmick

Introduction
Naive
Combinatorial
Applications
Hull
Shape

Convex partitioning

Isothetic
Cover
P. Bhowmick

Introduction
Naive
Combinatorial
Applications
Hull
Shape

Shortest isothetic path

Isothetic Cover
P. Bhowmick

Introduction
Naive
Combinatorial
Applications Hull
Shape

3D cover (outer)

Isothetic
Cover
P. Bhowmick

Introduction
Naive
Combinatorial
Applications
Hull
Shape
3D

3D cover (outer)

Isothetic
Cover
P. Bhowmick

Introduction
Naive
Combinatorial
Applications
Hull
Siape
3D

$$
g=2
$$

3D cover (outer)

Isothetic Cover
P. Bhowmick

Introduction
Naive
Combinatorial
Applications
Hull
Shape
3D

$g=3$

3D cover (outer)

Isothetic Cover
P. Bhowmick

Introduction
Naive
Combinatorial
Applications
Hull
Shape
3D

3D cover (outer)

Isothetic Cover
P. Bhowmick

Introduction
Naive
Combinatorial
Applications
Hull
Shape
3D

$$
g=6
$$

3D cover (outer)

Isothetic Cover
P. Bhowmick

Introduction
Naive
Combinatorial
Applications
Hull
Shape
3D

3D cover (outer)

Isothetic Cover
P. Bhowmick

Introduction
Naive
Combinatorial
Applications
Hull
Shape
3D

3D cover (outer)

Isothetic Cover
P. Bhowmick

Introduction
Naive
Combinatorial
Applications
Hull
Shape
3D

3D cover (outer)

Isothetic Cover
P. Bhowmick

Introduction
Naive
Combinatorial
Applications
Hull
Shape
3D

$$
g=16
$$

3D cover (inner)

Isothetic

 CoverP. Bhowmick

Introduction
Naive
Combinatorial
Applications
Hull
Siape
3D

$$
g=2
$$

3D cover (inner)

Isothetic Cover
P. Bhowmick

Introduction
Naive
Combinatorial
Applications
Hull
Shape
3D

$$
g=4
$$

3D cover (inner)

Isothetic Cover
P. Bhowmick

Introduction
Naive
Combinatorial
Applications
Hull
Shape
3D

$$
g=6
$$

3D cover (inner)

Isothetic

 CoverP. Bhowmick

Introduction
Naive
Combinatorial
Applications
Hull
Shape
3D

$$
g=8
$$

3D cover (inner)

Isothetic

 CoverP. Bhowmick

Introduction
Naive
Combinatorial
Applications
Hull
Shape
3D

$$
g=12
$$

3D cover (inner)

Isothetic

 CoverP. Bhowmick

Introduction Naive

Combinatorial
Applications
Hull
Shape
3D

$$
g=16
$$

3D slicing

Isothetic Cover
P. Bhowmick

Introduction

Naive

Combinatorial
Applications
Hull
Shape
3D

high resolution

3D slicing

Isothetic Cover
P. Bhowmick

Introduction
Naive
Combinatorial
Applications
Hull
Shape
3D

along x-axis

3D slicing

Isothetic
Cover
P. Bhowmick

Introduction
Naive
Combinatorial
Applications
Hull
Shape
3D

3D slicing

Isothetic Cover

Introduction

Naive

Combinatorial
Applications
Hull
Strape
3D

along z-axis

3D slicing

Isothetic Cover
P. Bhowmick

Introduction
Naive
Combinatorial
Applications
Hull
Shape
3D

low resolution

3D slicing

Isothetic
Cover
P. Bhowmick

Introduction

Naive

Combinatorial

Applications

Hull
Shape
3D

3D slicing

Isothetic
Cover
P. Bhowmick

Introduction
Naive
Combinatorial
Applications
Hull
Shape
3D

along y-axis

3D slicing

Isothetic Cover
P. Bhowmick

Introduction

Naive

Combinatorial
Applications
Hull
Shape
3D

along z-axis

Further reading I

A. Biswas, P. Bhowmick, M. Sarkar, and B. B. Bhattacharya, A Linear-time Combinatorial Algorithm to Find the Orthogonal Hull of an Object on the Digital Plane, Information Sciences, 216: 176-195, 2012.

- A. Biswas, P. Bhowmick, and B. B. Bhattacharya. Construction of Isothetic Covers of a Digital Object: A Combinatorial Approach, Journal of Visual Communication and Image Representation, 21(4): 295-310, 2010.
R M. Dutt, A. Biswas, and P. Bhowmick, ACCORD: With Approximate Covering of Convex Orthogonal Decomposition, DGCI 2011: 16th IAPR International Conference on Discrete Geometry for Computer Imagery, LNCS 6607:489-500, 2011.
- M. Dutt, A. Biswas, P. Bhowmick, and B. B. Bhattacharya, On Finding Shortest Isothetic Path inside a Digital Object, 15th International Workshop on Combinatorial Image Analysis: IWCIA'12, 2012 [To appear in LNCS, Springer]

Further reading II

N. Karmakar, A. Biswas, P. Bhowmick, and B.B. Bhattacharya, A Combinatorial Algorithm to Construct 3D Isothetic Covers, International Journal of Computer Mathematics, 2012 (in press).
R N. Karmakar, A. Biswas, and P. Bhowmick, Fast Slicing of Orthogonal Covers Using DCEL, 15th International Workshop on Combinatorial Image Analysis: IWCIA'12, 2012 [To appear in LNCS, Springer]
睩 N. Karmakar, A. Biswas, P. Bhowmick, and B.B. Bhattacharya, Construction of 3D Orthogonal Cover of a Digital Object, 14th International Workshop on Combinatorial Image Analysis: IWCIA'11, LNCS 6636: 70-83, 2011.
R R. Klette and A. Rosenfeld, Digital Geometry: Geometric Methods for Digital Picture Analysis, Morgan Kaufmann, San Francisco, 2004.

Thank You

