Introduction	Area	Inclusion	Hull	Art Gallery

Introduction to Computational Geometry

Partha P. Goswami (ppg.rpe@caluniv.ac.in)

Institute of Radiophysics and Electronics University of Calcutta 92, APC Road, Kolkata - 700009, West Bengal, India.

Introduction	Area	Inclusion	Hull	Art Gallery
Outline				

- 2 Area of a Simple Polygon
- **③** Point Inclusion in a Simple Polygon
- Convex Hull: An application of incremental algorithm
- 5 Art Gallery Problem: A study of combinatorial geometry

Introduction	Area	Inclusion	Hull	Art Gallery
Introduction				

• Computational Geometry (CG) involves study of algorithms for solving geometric problems on a computer. The emphasis is more on discrete nature of geometric problems as opposed to continuous issues.

・ロト・日本・モート モー うへぐ

Introduction	Area	Inclusion	Hull	Art Gallery
Introduction				

- Computational Geometry (CG) involves study of algorithms for solving geometric problems on a computer. The emphasis is more on discrete nature of geometric problems as opposed to continuous issues.
- There are many areas in computer science like computer graphics, computer vision and image processing, robotics, computer-aided designing (CAD), geographic information systems (GIS), etc. that give rise to geometric problems.

Introduction	Area	Inclusion	Hull	Art Gallery
Introduction				

- Computational Geometry (CG) involves study of algorithms for solving geometric problems on a computer. The emphasis is more on discrete nature of geometric problems as opposed to continuous issues.
- There are many areas in computer science like computer graphics, computer vision and image processing, robotics, computer-aided designing (CAD), geographic information systems (GIS), etc. that give rise to geometric problems.
- If one assumes Michael Ian Shamos's thesis [Shamos M. I., 1978] as the starting point, then this branch of study is around thirty three years old.

Introduction	Area	Inclusion	Hull	Art Gallery
Introduction				

• Any problem that is to be solved using a digital computer has to be discrete in form. It is the same with CG.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Introduction	Area	Inclusion	Hull	Art Gallery
Introduction				

• Any problem that is to be solved using a digital computer has to be discrete in form. It is the same with CG.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• For CG techniques to be applied to areas that involves continuous issues, discrete approximations to continuous curves or surfaces are needed.

Introduction	Area	Inclusion	Hull	Art Gallery
Introduction				

- Any problem that is to be solved using a digital computer has to be discrete in form. It is the same with CG.
- For CG techniques to be applied to areas that involves continuous issues, discrete approximations to continuous curves or surfaces are needed.
- CG algorithms suffer from the curse of degeneracies. So, we would make certain simplifying assumptions at times like no three points are collinear, no four points are cocircular, etc.

Introduction	Area	Inclusion	Hull	Art Gallery
Introduction				

- Any problem that is to be solved using a digital computer has to be discrete in form. It is the same with CG.
- For CG techniques to be applied to areas that involves continuous issues, discrete approximations to continuous curves or surfaces are needed.
- CG algorithms suffer from the curse of degeneracies. So, we would make certain simplifying assumptions at times like no three points are collinear, no four points are cocircular, etc.
- Programming in CG is a little difficult. Fortunately, libraries like LEDA [LEDA, www.algorithmic-solutions.com] and CGAL [CGAL, www.cgal.com] are now available. These libraries implement various data structures and algorithms specific to CG.

Introduction	Area	Inclusion	Hull	Art Gallery
Introduction				

• In this lecture, we touch upon a few simple topics for having a glimpse of the area of computational geometry.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	Area	Inclusion	Hull	Art Gallery
Introduction				

- In this lecture, we touch upon a few simple topics for having a glimpse of the area of computational geometry.
- First we consider some geometric primitives, that is, problems that arise frequently in computational geometry.

Introduction	Area	Inclusion	Hull	Art Gallery
Introduction				

- In this lecture, we touch upon a few simple topics for having a glimpse of the area of computational geometry.
- First we consider some geometric primitives, that is, problems that arise frequently in computational geometry.

• Then we study a few classical CG problems.

Introduction	Area	Inclusion	Hull	Art Gallery
Outline				

- 2 Area of a Simple Polygon
- **3** Point Inclusion in a Simple Polygon
- 4 Convex Hull: An application of incremental algorithm
- 5 Art Gallery Problem: A study of combinatorial geometry

Introduction	Area	Inclusion	Hull	Art Gallery
Area Comp	outation			

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Problem

Given a simple polygon P of n vertices, compute its area.

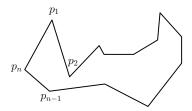
Introduction	Area	Inclusion	Hull	Art Gallery
Area Comp	utation			

Problem

Given a simple polygon P of n vertices, compute its area.

Definition

A sinple polygon is the region of a plane bounded by a finite collection of line segments forming a simple closed curve.



Introduction	Area	Inclusion	Hull	Art Gallery
Area Comp	utation			

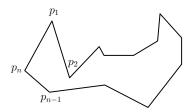
Problem

Given a simple polygon P of n vertices, compute its area.

Definition

A sinple polygon is the region of a plane bounded by a finite collection of line segments forming a simple closed curve.

 Let us first solve the problem for convex polygon.

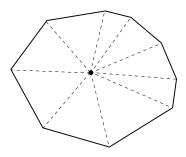


<ロ> (四) (四) (三) (三) (三) (三)

Introduction	Area	Inclusion	Hull	Art Gallery
Area Comp	utation			

Area of a convex polygon

Find a point inside *P*, draw *n* triangles and compute the area.



(日)、

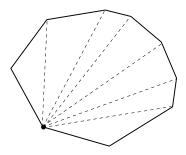
Introduction	Area	Inclusion	Hull	Art Gallery
Area Comp	utation			

Area of a convex polygon

Find a point inside *P*, draw *n* triangles and compute the area.

A better idea for convex polygon

We can triangulate P by non-crossing diagonals into n-2triangles and then find the area.



Introduction	Area	Inclusion	Hull	Art Gallery
Area Comp	utation			

Area of a convex polygon

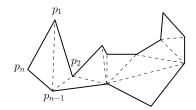
Find a point inside *P*, draw *n* triangles and compute the area.

A better idea for convex polygon

We can triangulate P by non-crossing diagonals into n-2triangles and then find the area.

Area of a simple polygon

We can do likewise.



・ロト ・四ト ・ヨト ・ヨ

Introduction	Area	Inclusion	Hull	Art Gallery
Area Comp	outation			

Result

If P be a simple polygon with n vertices with coordinates of the vertex p_i being (x_i, y_i) , $1 \le i \le n$, then twice the area of P is given by

$$2\mathcal{A}(P) = \sum_{i=1}^{n} (x_i y_{i+1} - y_i x_{i+1})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction	Area	Inclusion	Hull	Art Gallery
Polygon Tria	ngulation			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem

Any simple polygon can be triangulated.

Introduction	Area	Inclusion	Hull	Art Gallery
Polygon Tr	iangulation			

Theorem

Any simple polygon can be triangulated.

Theorem

A simple polygon can be triangulated into (n-2) triangles by (n-3) non-crossing diagonals.

Introduction	Area	Inclusion	Hull	Art Gallery
Polygon Tri	iangulation			

Theorem

Any simple polygon can be triangulated.

Theorem

A simple polygon can be triangulated into (n-2) triangles by (n-3) non-crossing diagonals.

(日)、(四)、(E)、(E)、(E)

Proof.

The proof is by induction on n.

Introduction	Area	Inclusion	Hull	Art Gallery
Polygon Tria	ingulation			

Theorem

Any simple polygon can be triangulated.

Theorem

A simple polygon can be triangulated into (n - 2) triangles by (n - 3) non-crossing diagonals.

Proof.

The proof is by induction on n.

Time complexity

We can triangulate P by a very complicated O(n) time algorithm [Chazelle B., 1991] OR by a more or less simple $O(n \log n)$ time algorithm [Berg M. d. et. al., 1997].

Introduction	Area	Inclusion	Hull	Art Gallery
Outline				

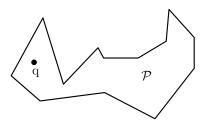
1 Introduction

- 2 Area of a Simple Polygon
- **③** Point Inclusion in a Simple Polygon
- Onvex Hull: An application of incremental algorithm
- 5 Art Gallery Problem: A study of combinatorial geometry

Introduction	Area	Inclusion	Hull	Art Gallery
Point Inclusio	on			

Problem

Given a simple polygon P of n points, and a query point q, is $q \in P$?



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	Area	Inclusion	Hull	Art Gallery
Point Inclusio	n			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Problem

Given a simple polygon P of n points, and a query point q, is $q \in P$?

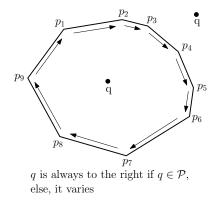
What if P is convex?

Introduction	Area	Inclusion	Hull	Art Gallery
Point Inclusio	n			

Given a simple polygon P of n points, and a query point q, is $q \in P$?

What if P is convex?

• Can be done in O(n).



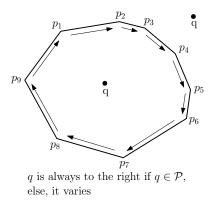
Introduction	Area	Inclusion	Hull	Art Gallery
Point Inclusion	I			

Problem

Given a simple polygon P of n points, and a query point q, is $q \in P$?

What if *P* is convex?

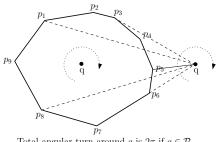
- Can be done in O(n).
- Takes a little effort to do it in O(log n). Left as an exercise.



Introduction	Area	Inclusion	Hull	Art Gallery
Point Inclusion				

Another idea for convex polygon

Stand at q and walk around the polygon.



Total angular turn around q is 2π if $q \in \mathcal{P}$, else, 0

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

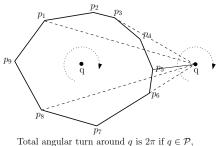
Introduction	Area	Inclusion	Hull	Art Gallery
Point Inclusion				

Another idea for convex polygon

Stand at q and walk around the polygon.

Point inclusion for polygon

We can show that the same result holds for a simple polygon also.

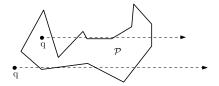


Total angular turn around q is 2π if $q \in \mathcal{P}$, else, 0

Introduction	Area	Inclusion	Hull	Art Gallery
Point Inclus	sion			

Still another technique: Ray Shooting

Shoot a ray and count the number of crossings with edges of *P*. If it is odd, then *q* ∈ *P*. If it is even, then *q* ∉ *P*.



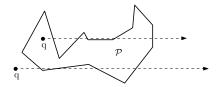
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction	Area	Inclusion	Hull	Art Gallery
Point Inclus	sion			

Still another technique: Ray Shooting

Shoot a ray and count the number of crossings with edges of *P*. If it is odd, then *q* ∈ *P*. If it is even, then *q* ∉ *P*.

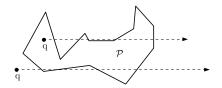
• Time complexity is O(n).



Introduction	Area	Inclusion	Hull	Art Gallery
Point Inclus	sion			

Still another technique: Ray Shooting

- Shoot a ray and count the number of crossings with edges of *P*. If it is odd, then *q* ∈ *P*. If it is even, then *q* ∉ *P*.
- Time complexity is O(n).
- Some degenerate cases need to be taken care of.



Introduction	Area	Inclusion	Hull	Art Gallery
Outline				

- 2 Area of a Simple Polygon
- **3** Point Inclusion in a Simple Polygon

Convex Hull: An application of incremental algorithm

5 Art Gallery Problem: A study of combinatorial geometry

Introduction	Area	Inclusion	Hull	Art Gallery
D (1 + 1				
Definitions				

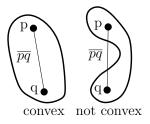
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition

A set $S \subset \mathcal{R}^2$ is convex if for any two points $p, q \in S$, $\overline{pq} \in S$.

Introduction	Area	Inclusion	Hull	Art Gallery
Definitions				

A set $S \subset \mathcal{R}^2$ is convex if for any two points $p, q \in S$, $\overline{pq} \in S$.



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	Area	Inclusion	Hull	Art Gallery
Definitions				

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition

A set $S \subset \mathcal{R}^2$ is convex if for any two points $p, q \in S$, $\overline{pq} \in S$.

Definition

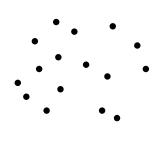
Let \mathcal{P} be a set of points in \mathcal{R}^2 . Convex hull of \mathcal{P} , denoted by $CH(\mathcal{P})$, is the smallest convex set containing \mathcal{P} .

Introduction	Area	Inclusion	Hull	Art Gallery
Definitions				

A set $S \subset \mathcal{R}^2$ is convex if for any two points $p, q \in S$, $\overline{pq} \in S$.

Definition

Let \mathcal{P} be a set of points in \mathcal{R}^2 . Convex hull of \mathcal{P} , denoted by $CH(\mathcal{P})$, is the smallest convex set containing \mathcal{P} .



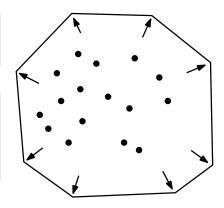
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction	Area	Inclusion	Hull	Art Gallery
Definitions				

A set $S \subset \mathcal{R}^2$ is convex if for any two points $p, q \in S$, $\overline{pq} \in S$.

Definition

Let \mathcal{P} be a set of points in \mathcal{R}^2 . Convex hull of \mathcal{P} , denoted by $CH(\mathcal{P})$, is the smallest convex set containing \mathcal{P} .



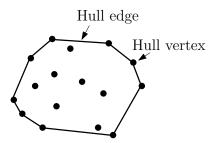
・ロト ・四ト ・ヨト ・ヨ

Introduction	Area	Inclusion	Hull	Art Gallery
Definitions				

A set $S \subset \mathcal{R}^2$ is convex if for any two points $p, q \in S$, $\overline{pq} \in S$.

Definition

Let \mathcal{P} be a set of points in \mathcal{R}^2 . Convex hull of \mathcal{P} , denoted by $CH(\mathcal{P})$, is the smallest convex set containing \mathcal{P} .



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction	Area	Inclusion	Hull	Art Gallery
Convex Hull	Problem			

Problem

Given a set of points \mathcal{P} in the plane, compute the convex hull $CH(\mathcal{P})$ of the set \mathcal{P} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	Area	Inclusion	Hull	Art Gallery
A Naive Al	gorithm			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

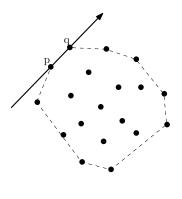
Outline

• Consider all line segments determined by $\binom{n}{2} = O(n^2)$ pairs of points.

Introduction	Area	Inclusion	Hull	Art Gallery
A Naive Al	gorithm			

Outline

- Consider all line segments determined by $\binom{n}{2} = O(n^2)$ pairs of points.
- If a line segment has all the other n - 2 points on one side of it, then it is a hull edge.

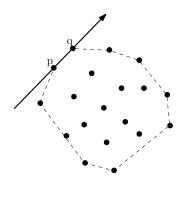


▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction	Area	Inclusion	Hull	Art Gallery
A Naive Al	aarithm			
A Malve A	gonunn			

Outline

- Consider all line segments determined by $\binom{n}{2} = O(n^2)$ pairs of points.
- If a line segment has all the other n - 2 points on one side of it, then it is a hull edge.
- We need $\binom{n}{2}(n-2) = O(n^3)$ time.



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction	Area	Inclusion	Hull	Art Gallery
Towards a	Better Algor	ithm		

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

How much betterment is possible?

• Better characterizations lead to better algorithms.

Introduction	Area	Inclusion	Hull	Art Gallery
Towards a	Better Algor	rithm		

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

How much betterment is possible?

- Better characterizations lead to better algorithms.
- How much better can we make?

Introduction	Area	Inclusion	Hull	Art Gallery
Towards a	Better Algor	rithm		

How much betterment is possible?

- Better characterizations lead to better algorithms.
- How much better can we make?
- Leads to the notion of lower bound of a problem.

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Introduction	Area	Inclusion	Hull	Art Gallery
Towards a	Better Algor	rithm		

How much betterment is possible?

- Better characterizations lead to better algorithms.
- How much better can we make?
- Leads to the notion of lower bound of a problem.
- The problem of Convex Hull has a lower bound of Ω(n log n). This can be shown by a reduction from the problem of sorting which also has a lower bound of Ω(n log n).

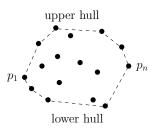
Introduction	Area	Inclusion	Hull	Art Gallery
Optimal A	lgorithms			

- Grahams scan, time complexity *O*(*nlogn*) (Graham, R.L., 1972).
- Divide and conquer algorithm, time complexity O(nlogn) (Preparata, F. P. and Hong, S. J., 1977).
- Jarvis's march or gift wrapping algorithm, time complexity O(nh) where *h* is the number of vertices of the convex hull. (Jarvis, R. A., 1973)

 Most efficient algorithm to date is based on the idea of Jarvis's march, time complexity O(nlogh) (T. M. Chan, 1996).

Introduction	Area	Inclusion	Hull	Art Gallery
Definitions				

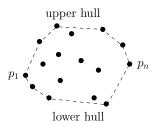
• Consider a walk in clockwise direction on the vertices of a closed polygon.



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	Area	Inclusion	Hull	Art Gallery
Definitions				

- Consider a walk in clockwise direction on the vertices of a closed polygon.
- Only for a convex polygon, we will make a right turn always.

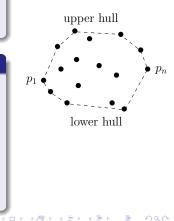


▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Introduction	Area	Inclusion	Hull	Art Gallery
Definitions				

- Consider a walk in clockwise direction on the vertices of a closed polygon.
- Only for a convex polygon, we will make a right turn always.

The incremental approach

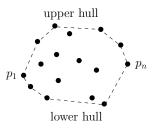


Introduction	Area	Inclusion	Hull	Art Gallery
Definitions				

- Consider a walk in clockwise direction on the vertices of a closed polygon.
- Only for a convex polygon, we will make a right turn always.

The incremental approach

• Insert points in P one by one and update the solution at each step.

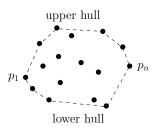


Introduction	Area	Inclusion	Hull	Art Gallery
Definitions				

- Consider a walk in clockwise direction on the vertices of a closed polygon.
- Only for a convex polygon, we will make a right turn always.

The incremental approach

- Insert points in P one by one and update the solution at each step.
- We compute the upper hull first. The upper hull contains the convex hull edges that bound the convex hull from above.

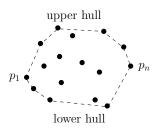


Introduction	Area	Inclusion	Hull	Art Gallery
Definitions				

- Consider a walk in clockwise direction on the vertices of a closed polygon.
- Only for a convex polygon, we will make a right turn always.

The incremental approach

- Insert points in P one by one and update the solution at each step.
- We compute the upper hull first. The upper hull contains the convex hull edges that bound the convex hull from above.
- The lower hull can be computed in a similar fashion.



Introduction	Area	Inclusion	Hull	Art Gallery
The pseud	ocode			

Input: A set P of n points in the plane

Introduction	Area	Inclusion	Hull	Art Gallery
The pseudo	ocode			

Input: A set P of n points in the plane
Output: Vertices of CH(P) in clockwise order

Introduction	Area	Inclusion	Hull	Art Gallery
The pseude	ocode			

Input: A set P of n points in the plane
Output: Vertices of CH(P) in clockwise order
Sort P according to x-coordinate to generate
 a sequence of points p[1], p[2], ..., p[n];

Introduction	Area	Inclusion	Hull	Art Gallery
The pseude	ocode			

Input: A set P of n points in the plane
Output: Vertices of CH(P) in clockwise order
Sort P according to x-coordinate to generate
 a sequence of points p[1], p[2], ..., p[n];
Insert p[1] and then p[2] in a list L_U;

Introduction	Area	Inclusion	Hull	Art Gallery
The pseudo	ocode			

Input: A set P of n points in the plane
Output: Vertices of CH(P) in clockwise order
Sort P according to x-coordinate to generate
 a sequence of points p[1], p[2], ..., p[n];
Insert p[1] and then p[2] in a list L_U;
for i = 3 to n {

Introduction	Area	Inclusion	Hull	Art Gallery
The pseudo	ocode			

```
Input: A set P of n points in the plane
Output: Vertices of CH(P) in clockwise order
Sort P according to x-coordinate to generate
    a sequence of points p[1], p[2], ..., p[n];
Insert p[1] and then p[2] in a list L_U;
for i = 3 to n {
    Append p[i] to L_U;
```

Introduction	Area	Inclusion	Hull	Art Gallery
The pseud	ocode			

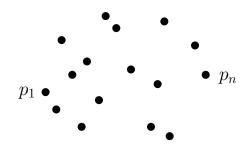
```
Input: A set P of n points in the plane
Output: Vertices of CH(P) in clockwise order
Sort P according to x-coordinate to generate
a sequence of points p[1], p[2], ..., p[n];
Insert p[1] and then p[2] in a list L_U;
for i = 3 to n {
   Append p[i] to L_U;
   while(L_U contains more than two points AND
      the last three points in L_U
      do not make a right turn) {
```

}

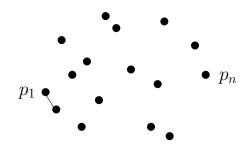
Introduction	Area	Inclusion	Hull	Art Gallery
The pseud	ocode			

```
Input: A set P of n points in the plane
Output: Vertices of CH(P) in clockwise order
Sort P according to x-coordinate to generate
   a sequence of points p[1], p[2], ..., p[n];
Insert p[1] and then p[2] in a list L_U;
for i = 3 to n \in
   Append p[i] to L_U;
   while(L_U contains more than two points AND
      the last three points in L_U
      do not make a right turn) {
         Delete the middle of the last
         three points from L_U;
  }
```

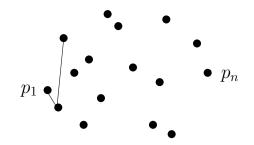
Introduction	Area	Inclusion	Hull	Art Gallery
The Algorith	m in Action			



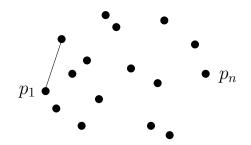
Introduction	Area	Inclusion	Hull	Art Gallery
The Algorith	m in Action			



Introduction	Area	Inclusion	Hull	Art Gallery
The Algorith	m in Action			

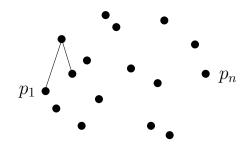


Introduction	Area	Inclusion	Hull	Art Gallery
The Algorith	m in Action			

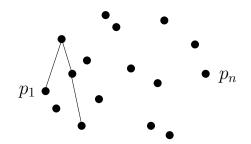


★□> <圖> < E> < E> E のQ@

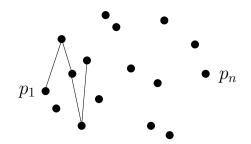
Introduction	Area	Inclusion	Hull	Art Gallery
The Algorith	m in Action			



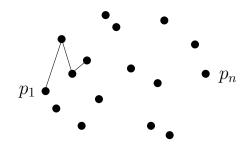
Introduction	Area	Inclusion	Hull	Art Gallery
The Algorith	m in Action			



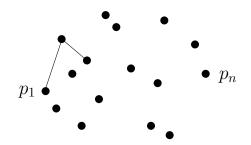
Introduction	Area	Inclusion	Hull	Art Gallery
The Algorith	m in Action			



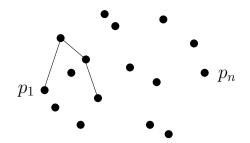
Introduction	Area	Inclusion	Hull	Art Gallery
The Algorith	m in Action			



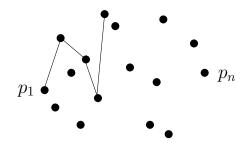
Introduction	Area	Inclusion	Hull	Art Gallery
The Algorith	m in Action			



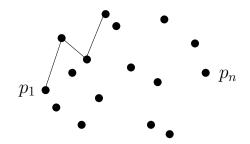
Introduction	Area	Inclusion	Hull	Art Gallery
The Algorith	m in Action			



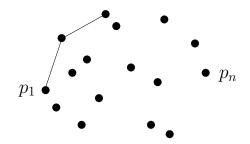
Introduction	Area	Inclusion	Hull	Art Gallery
The Algorith	m in Action			



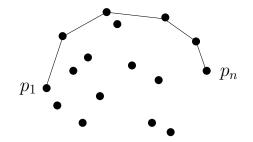
Introduction	Area	Inclusion	Hull	Art Gallery
The Algorith	m in Action			



Introduction	Area	Inclusion	Hull	Art Gallery
The Algorith	m in Action			



Introduction	Area	Inclusion	Hull	Art Gallery
The Algorith	m in Action			



Introduction	Area	Inclusion	Hull	Art Gallery
Analysis				

• Sorting takes time $O(n \log n)$.

Introduction	Area	Inclusion	Hull	Art Gallery
Analysis				

- Sorting takes time $O(n \log n)$.
- The for loop is executed O(n) times.

Introduction	Area	Inclusion	Hull	Art Gallery
Analysis				

- Sorting takes time $O(n \log n)$.
- The for loop is executed O(n) times.
- For each execution of the for loop, the while loop is encountered once.

Introduction	Area	Inclusion	Hull	Art Gallery
Analysis				

- Sorting takes time $O(n \log n)$.
- The for loop is executed O(n) times.
- For each execution of the for loop, the while loop is encountered once.
- For each execution of the while loop body, a point gets deleted.

Introduction	Area	Inclusion	Hull	Art Gallery
Analysis				

- Sorting takes time $O(n \log n)$.
- The for loop is executed O(n) times.
- For each execution of the for loop, the while loop is encountered once.
- For each execution of the while loop body, a point gets deleted.

• A point once deleted, is never deleted again.

Introduction	Area	Inclusion	Hull	Art Gallery
Analysis				

- Sorting takes time $O(n \log n)$.
- The for loop is executed O(n) times.
- For each execution of the for loop, the while loop is encountered once.
- For each execution of the while loop body, a point gets deleted.
- A point once deleted, is never deleted again.
- So, the total number of executions of the while loop body is bounded by O(n).

Introduction	Area	Inclusion	Hull	Art Gallery
Analysis				

- Sorting takes time $O(n \log n)$.
- The for loop is executed O(n) times.
- For each execution of the for loop, the while loop is encountered once.
- For each execution of the while loop body, a point gets deleted.
- A point once deleted, is never deleted again.
- So, the total number of executions of the while loop body is bounded by O(n).
- Hence, the total time complexity is $O(n \log n)$.

Introduction	Area	Inclusion	Hull	Art Gallery
Outline				

Introduction

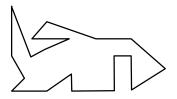
- 2 Area of a Simple Polygon
- 3 Point Inclusion in a Simple Polygon

Onvex Hull: An application of incremental algorithm

5 Art Gallery Problem: A study of combinatorial geometry

Introduction	Area	Inclusion	Hull	Art Gallery
Art Gallery	Problem			

Given a simple polygon \mathcal{P} of *n* vertices, find the minimum number of cameras that can guard \mathcal{P} .



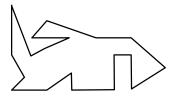
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Introduction	Area	Inclusion	Hull	Art Gallery
Art Gallery	/ Problem			

Given a simple polygon \mathcal{P} of *n* vertices, find the minimum number of cameras that can guard \mathcal{P} .

Hardness

The above problem is NP-Hard.



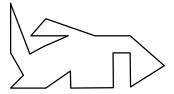
Introduction	Area	Inclusion	Hull	Art Gallery
Art Gallery	/ Problem			

Given a simple polygon \mathcal{P} of *n* vertices, find the minimum number of cameras that can guard \mathcal{P} .

Hardness

The above problem is NP-Hard.

Simplified version



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Introduction	Area	Inclusion	Hull	Art Gallery
Art Gallery	Problem			

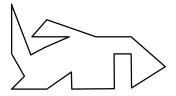
Given a simple polygon \mathcal{P} of *n* vertices, find the minimum number of cameras that can guard \mathcal{P} .

Hardness

The above problem is NP-Hard.

Simplified version

• Can we find, as a function of *n*, the number of cameras that suffices to guard \mathcal{P} ?



Introduction	Area	Inclusion	Hull	Art Gallery
Art Gallery	Problem			

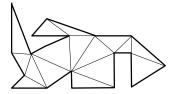
Given a simple polygon \mathcal{P} of *n* vertices, find the minimum number of cameras that can guard \mathcal{P} .

Hardness

The above problem is NP-Hard.

Simplified version

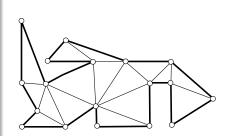
- Can we find, as a function of *n*, the number of cameras that suffices to guard \mathcal{P} ?
- Recall *P* can be triangulated into *n* - 2 triangles. Place a guard in each triangle.



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction	Area	Inclusion	Hull	Art Gallery
Art Gallery	Problem			

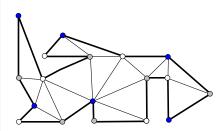
• Place guards at vertices of the triangulation \mathcal{T} of \mathcal{P} .



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

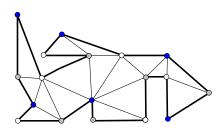
Introduction	Area	Inclusion	Hull	Art Gallery
Art Gallery	Problem			

- Place guards at vertices of the triangulation \mathcal{T} of \mathcal{P} .
- We do a 3-coloring of the vertices of *T*. Each triangle of *T* has a blue, gray and white vertex.



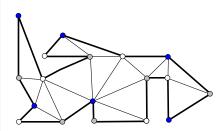
Introduction	Area	Inclusion	Hull	Art Gallery
Art Gallery	/ Problem			

- Place guards at vertices of the triangulation \mathcal{T} of \mathcal{P} .
- We do a 3-coloring of the vertices of *T*. Each triangle of *T* has a blue, gray and white vertex.
- Choose the smallest color class to guard \mathcal{P} .



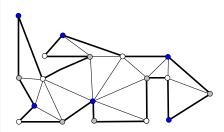
Introduction	Area	Inclusion	Hull	Art Gallery
Art Gallery	Problem			

- Place guards at vertices of the triangulation \mathcal{T} of \mathcal{P} .
- We do a 3-coloring of the vertices of *T*. Each triangle of *T* has a blue, gray and white vertex.
- Choose the smallest color class to guard \mathcal{P} .
- Hence, $\lfloor \frac{n}{3} \rfloor$ guards suffice.



Introduction	Area	Inclusion	Hull	Art Gallery
Art Gallery	Problem			

- Place guards at vertices of the triangulation \mathcal{T} of \mathcal{P} .
- We do a 3-coloring of the vertices of *T*. Each triangle of *T* has a blue, gray and white vertex.
- Choose the smallest color class to guard \mathcal{P} .
- Hence, $\lfloor \frac{n}{3} \rfloor$ guards suffice.
- But, does a 3-coloring always exist?



Introduction	Area	Inclusion	Hull	Art Gallery
Art Gallery	Problem			

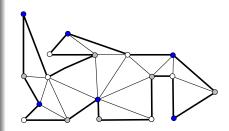
The triangulation graph of a simple polygon P may be 3-colored.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	Area	Inclusion	Hull	Art Gallery
Art Gallery	Problem			

The triangulation graph of a simple polygon P may be 3-colored.

A 3-coloring always exist

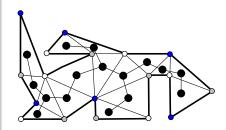


Introduction	Area	Inclusion	Hull	Art Gallery
Art Gallery	Problem			

The triangulation graph of a simple polygon P may be 3-colored.

A 3-coloring always exist

• Consider the dual graph $\mathcal{G}_{\mathcal{T}}$ of \mathcal{T} of \mathcal{P} .



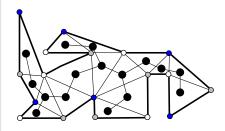
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Introduction	Area	Inclusion	Hull	Art Gallery
Art Gallery	Problem			

The triangulation graph of a simple polygon P may be 3-colored.

A 3-coloring always exist

- Consider the dual graph $\mathcal{G}_{\mathcal{T}}$ of \mathcal{T} of \mathcal{P} .
- $\mathcal{G}_{\mathcal{T}}$ is a tree as \mathcal{P} has no holes.



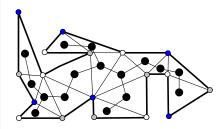
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Introduction	Area	Inclusion	Hull	Art Gallery
Art Gallery	Problem			

The triangulation graph of a simple polygon P may be 3-colored.

A 3-coloring always exist

- Consider the dual graph $\mathcal{G}_{\mathcal{T}}$ of \mathcal{T} of \mathcal{P} .
- $\mathcal{G}_{\mathcal{T}}$ is a tree as $\mathcal P$ has no holes.
- Do a DFS on $\mathcal{G}_\mathcal{T}$ to obtain the coloring.

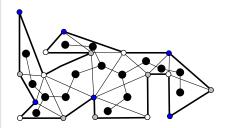


Introduction	Area	Inclusion	Hull	Art Gallery
Art Gallery	Problem			

The triangulation graph of a simple polygon P may be 3-colored.

A 3-coloring always exist

- Consider the dual graph $\mathcal{G}_{\mathcal{T}}$ of \mathcal{T} of \mathcal{P} .
- $\mathcal{G}_{\mathcal{T}}$ is a tree as $\mathcal P$ has no holes.
- Do a DFS on $\mathcal{G}_{\mathcal{T}}$ to obtain the coloring.
- Place guards at those vertices that have color of the minimum color class. Hence, [n/3] guards are sufficient to guard *P*.



Introduction	Area	Inclusion	Hull	Art Gallery
Art Gallery	Problem			

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

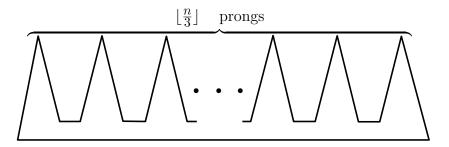
Necessity?

Are $\lfloor \frac{n}{3} \rfloor$ guards sometimes necessary?

Introduction	Area	Inclusion	Hull	Art Gallery
Art Gallery	Problem			

Necessity?

Are $\lfloor \frac{n}{3} \rfloor$ guards sometimes necessary?



Introduction	Area	Inclusion	Hull	Art Gallery
Art Gallery	Theorem			

Final Result

For a simple polygon with *n* vertices, $\lfloor \frac{n}{3} \rfloor$ cameras are always sufficient and occasionally necessary to have every point in the polygon visible from at least one of the cameras.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction	Area	Inclusion	Hull	Art Gallery
References I				

- Mark de Berg, Marc van Kreveld, Mark Overmars and Otfried Schwarzkof, Computational Geometry: Algorithms and Applications, Springer, 1997.
- B. Chazelle, *Triangulating a simple polygon in linear time*, Discrete Comput. Geom., 6:485524, 1991.
- Herbert Edelsbrunner, *Algorithms in Computational Geometry*, Springer, 1987.
- Joseph O'Rourke, *Computational Geometry in C*, Cambridge University Press, 1998.
- Franco P. Preparata and Michael Ian Shamos, *Computational Geometry: An Introduction*, Springer-Verlag, New York, 1985.
- Michael Ian Shamos, *Computational Geometry*, PhD thesis, Yale University, New Haven., 1978.

Introduction	Area	Inclusion	Hull	Art Gallery
References II				

- http://www.algorithmic-solutions.com
- http://www.cgal.org
- http:

//en.wikipedia.org/wiki/Computational_geometry

Introduction	Area	Inclusion	Hull	Art Gallery

Thank you!