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Data Sources

Many applications have data sources that send data
continuously and at fast speeds.

1. Network switch data: sequence of records with schema:
(source-IP, dest-IP, port, Packet-Type, DATA).

2. Web-Server: access data
3. Supermarket transaction data, financial markets data,
4. Satellite imagery (or other imagery) data,
5. Sensor network data, etc..



Type of analysis

There are generally two kinds of analyses.

1. Deep Analysis on stored data, typically, data mining
applications.

2. Very fast online analysis, with some probability of error.
Goal is to find outliers of some kind.

We will look at the second class. Applications needing
continuous analysis for detection of anomalies, extremal
scenarios, etc.. Some examples are



Data Stream Application Queries

Queries:
I Is there a denial of service attack in progress? (Network

Monitoring)
I Is any IP-range sending/receiving much more traffic than

usual? (Network Monitoring).
I From images, say quickly if an image is likely to be

“similar” to known cases of problem images. Problem
images can be (a) adverse weather disturbance, (b)
known pathological medical images, etc..



Data Streams: Model

I Analysis has to be continuous and must keep pace with
the data.

I Not enough time to store on secondary storage, and
update secondary indices and then process.

I Analyze on the fly: Keep a summary, called sketch, in
memory/cache.

I Update sketch corresponding to each stream record.
I Answer queries from the sketch on demand in real-time.



Data Streams: Model

I Item domain [n] = {1,2, . . . ,n}, n is large: e.g.,
264 . . . 2256 . . ., IP-addresses, pairs of IP-addresses,
URL’s etc.

I Stream = sequence of updates of the form ( item, change
in frequency ) ≡ (i , v).

(1,1) (4,1) (5,3) (7,1) (5,−1) (5,2) (7,2) (6,1) (1,−1) . . .

I initially f = 0.
I When (i , v) arrives:

fi← fi + v .

Global: fi =
∑

(i,v)∈ stream v .



Data Streaming: Algorithmic Model

I Single pass over stream (Online algorithm).
I Sublinear storage: e.g., o(n), O(

√
n), or, better log n,

log2 n, etc..
I Fast processing per arriving stream record.

I Approximate processing (almost always necessary).
I Randomized computation (almost always necessary).

I Multi-pass computations, e.g., for graph streaming
applications.
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Problem Definition

I The second moment of the frequency vector f is defined
as

F2 =
∑
i∈[n]

|fi |2 = ‖f‖22 .

I We are given accuracy parameter ε.
I Deterministic Solution: Return F̂2 such that

F̂2 ∈ (1± ε)F2. Requires Ω(n) space (later).
I Randomized Solution: F̂2 ∈ (1± ε)F2 with probability

1− δ, δ is failure probability parameter.
I Two solutions: Alon, Matias, Szegedy and `2

dimensionality reduction: Johnson-Lindenstrauss.
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Basic notions of codes

I Weight wt of a binary vector v is defined the number of
positions in v with 1. For e.g.,

wt(1 0 0 1) = 2, wt(1 0 0 0) = 1
I Let y and z be n-dimensional vectors. Then, the

Hamming distance dH(y , z) = number of positions i
where yi 6= zi .

I It is a metric, dH ≥ 0, symmetric and satisfies the triangle
inequality d(x , y) + d(y , z) ≥ d(x , z).



Codes..basics

I A (binary) code is a set of binary vectors. It is sometimes
useful to visualize a code as some subset of {0,1}n.
Each point “codes” or “represents” some input vector in
{0,1}k , where, k ≤ n.



Minimum distance of code

The smallest Hamming distance between any pair of
codewords is called the distance of the code. Radius
=smallest integer less than distance of code /2.



A useful code for us

I Connection: existence of some codes can show
non-existence of some algorithms>

I Consider a code C ⊂ {0,1}2n with vectors of weight n
and radius(C) ≥ n/4.

I Such codes of size |C| = 2Ω(n) exist. Let us see.



Existence of code

I Consider set W of vectors from {0,1}2n of weight n.
I Choose any y ∈W . Remove all vectors from Y that are

in ball of vectors centered at y and radius < dn: Bdn(y).
Choose y1 from remaining set, remove Bdn(y), so on...



Code size calculation

I

|C| =
|W |
|Bn/4|

=

(2n
n

)∑
1≤r≤n/8

(n
r

)2 = 2cn

Bn/4 is size of Hamming ball of radius n/4 centered at
some vector.

I This is a special case of the Gilbert-Varshamov bound in
coding theory.

I For y ∈ C, F2(y) = ‖y‖22 = wt(y) = n.



Deterministic evaluation of F2

Proof idea
We would like to show that for any deterministic algorithm that
estimates F2 correctly to within 1± 0.01 must map distinct
vectors from the code C to distinct memory images.

I Choose x , y two vectors from the code C.
I Suppose there is a deterministic algorithm A that gives

F̂2 ∈ (1± 0.01)F2.
I If x and y are mapped to the same memory image by A,

then, x + x is mapped to the same image as y + x .



Lower bound-II

I Clearly, ‖2x‖2 = 4‖x‖2 = 4n.
I Since dH(x , y) > n/4:
‖x + y‖22 < 4(n − n/8) + n/4 = 4n − n/4.





Two cases

I One case: ‖x + x‖22:

F̂2 ≥ ‖x + y‖22(1− 0.01) ≥ 4n(0.99)

I Other case: ‖x + y‖22:

F̂2 < ‖x + x‖22(1 + 0.1) ≤ (4n − n/4)(1.01)



Lower bound: Inference

I So either ‖2x‖2 is not computed within 1± 0.01 or
‖x + y‖2 is not computed within 1± 0.01.

I Algorithm A makes a mistake for either x or y . So distinct
elements of C must be mapped to distinct images.

I A requires log|Codesize| = log 2cn = Ω(n) bits.



F2: Randomized approximate problem definition

I Modified problem: Given ε and δ, design an algorithm
that returns F̂2 satisfying

|F̂2 − F2| ≤ εF2 with prob. 1− δ .
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Recap: Independence of Random Variables

The random variables X1,X2, . . . ,Xn are said to be
independent if their joint probability distribution function
equals the product of their individual probability distributions.
That is, for any choice of values a1,a2, . . . ,an,

Pr {X1 = a1 ∧ X2 = a2 ∧ . . . ∧ Xn = an}
= Pr {X1 = a1} × Pr {X2 = a2} × . . .× Pr {Xn = an} .



k -wise Limited Independence

{X1,X2, . . . ,Xn} a family of random variables are k -wise
independent if for distinct indices 1 ≤ i1, i2, . . . , ik ≤ n and
a1 ∈ support(Xi1), . . . ,ak ∈ support(Xik ).

Pr
{

Xi1 = a1 ∧ Xi2 = a2 ∧ . . . ∧ Xik = ak
}

= Pr
{

Xi1 = a1
}

Pr
{

Xi2 = a2
}
. . .Pr

{
Xik = ak

}
.



k -wise independence: Implications

I Product of expectation of any k of Xi ’s is the product of
individual expectations.
E
[
Xi1 . . .Xik

]
= E

[
Xi1
]
E
[
Xi2
]
. . .E

[
Xik
]
.

I k -wise independence implies k − 1-wise independence.
I Space and randomness efficient: suffices for most

applications (we will see this now).



k -wise independent hash functions

[Wegman Carter 81]

I H is a finite family of functions mapping [n]→ [b], usually
b � n.

I Pick random member h ∈ H with prob. 1/|H|.
I H is k -wise independent if for any x1, . . . , xk distinct, and

any b1, . . . ,bk ∈ [m] ,

Pr
h∈H
{(h(x1) = b1) ∧ (h(x2) = b2) . . . ∧ (h(xk ) = bk )}

=

Pr
h∈H
{h(x1) = b1} · Pr

h∈H
{h(x2 = b2)} · · · · × Pr

h∈H
{h(xk ) = bk} .



Hash Family: Degree k − 1 polynomials

I F is a finite field of size at least n.
I Hk : all k -tuples (a0, . . . ,ak−1) over F, viewed as a degree

k − 1 polynomial h(x) over F:

h(x) = a0 + a1x + a2x2 + . . .+ ak−1xk−1 .

I The family Hk is k -wise independent. Why?

I |H| = |F |k .
I Count number of solutions to h(xi ) = bi :

a0 = bi − a1xi − a2x2
i − . . .

I so # solutions is |F |k−1. So, Pr {h(xi ) = bi} = 1/|F |.
I Count number of solutions to h(xi ) = bi , i = 1, . . . , k . This

is 1. Joint probability is 1/|F |k .

I Space and randomness: store a0, . . . ,ak−1: O(k log n)
bits.
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Linear Rademacher Sketch

I For i ∈ [n], ξi ∈ {−1,1} randomly with probability 1/2
each: Rademacher random variables.

I Let ξi ’s be 4-wise independent.
I Implementation: Choose h at random from the family of

cubic polynomials over F2r , where, n ≤ 2r < 2n.

ξ(u) =

{
1 if last bit of h(u) = 1
−1 otherwise.

I A sketch is a random counter:

X =
n∑

i=1

fiξ(i) .

I Easily updated corresponding to stream updates (i , v):

X :=X + v · ξ(i) .



Sketches

X =
∑

i fiξ(i). Recall: ξi ∈ {−1,1} with prob. 1/2 each.

E
[
X 2
]

= E

[( n∑
i=1

fiξ(i)
)2
]

= E

 n∑
i=1

f 2
i + 2

∑
1≤i<j≤n

fi fjξ(i)ξ(j)


=

n∑
i=1

f 2
i = F2

using linearity of expectation, pair-wise independence and
symmetry around 0 of ξ(i)’s.



Sketch:Variance

E
[
X 4] = E

[( n∑
i=1

fiξ(i)
)4]

=
n∑

i=1

f 4
i +

∑
i 6=j

4f 3
i fjE

[
(ξ(i))3ξ(j)

]
+

∑
i,j distinct

6f 2
i f 2

j E
[
ξ(i)2ξ(j)2]+

∑
i,j,k distinct

12f 2
i fj fkE

[
ξ(i)2ξ(j)ξ(k)

]
+

∑
i,j,k,l distinct

4!fi fj fk flE
[
ξ(i)ξ(j)ξ(k)ξ(l)

]



Expectation of up to four-wise products of ξ(j)’s is the product
of the corresponding expectations. So,

E
[
X 4
]

=
n∑

i=1

f 4
i +

∑
i<j

6f 2
i f 2

j ≤ 3
( n∑

i=1

f 2
i

)2
= 3F 2

2 .

Var
[
X 2] = E

[
X 4
]
− (E

[
X 2])2 = 3F 2

2 − F 2
2 = 2F 2

2 .



Designing estimator for F2 contd.

I Keep t = 16/ε2 independent sketches X1,X2, . . .Xt .
I Return averages of squares: Y =

(
X 2

1 + . . .+ X 2
t
)
/t .

I So, E [Y ] = E
[
X 2

1
]

= F2.
I X 2

i ’s are independent, so, variance of their sum is the
sum of their variances. So,

Var
[
Y
]

=
1
t2 · tVar

[
X 2

1
]

= 2F 2
2 /t = ε2F 2

2 /8 .



Estimator for F2

I Chebychev’s inequality for any real valued variable Y ,

Pr {|Y − E [Y ]| > α} < Var
[
Y
]
/α2 .

I So, Pr {|Y − F2| > εF2} < Var
[
Y
]
/(ε2F 2

2 ) = 1/8, or,
|Y − F2| < εF2 with probability 7/8.



Boosting confidence using median

I Let A be a randomized algorithm.

I On input I, correct value is Y (I).

I Suppose A on input I returns (random) numeric value Ŷ (I).
and the following guarantee:

Pr
{
|Ŷ (I)− Y (I)| < εY (I)

}
≥ 7

8

I To boost confidence to 1− δ, run A independently on I
s = O(log 1

δ ) times to obtain

Ŷ1(I), . . . , Ŷs(I) .

I Now return
M = med{Ŷ1(I), . . . , Ŷs(I)}



Boosting using Median-II

I Upper bound the probability that median M is “bad”, that is,
|M − Y | > εY .

I Define indicator variable Xi = 0 if the j th run of A gives a “good
answer” and is 1 otherwise.

Xj =

{
0 if |Ŷj (I)− Y (I)| < εY (I)
1 otherwise.

Pr {Xj = 1} ≤ 1
8

I Let X = X1 + X2 + . . .+ Xs: count number of “bad” answers.
I E [X ] ≤ s/8.
I M is “bad” implies there are at least 1/2 of the Xj ’s that are

“bad”, i.e., X ≥ s
2 .



Boosting with median: Analysis

Chernoff’s bound
Let X1, . . . ,Xt be independent random variables taking values
from {0,1} with E [Xi ] = pi . Let X = X1 + X2 + . . .+ Xt and
µ = p1 + . . .+ pt . Then, for 0 < ε < 1,

Pr {X > (1 + ε)µ} < e−µε
2/3

Pr {X < (1− ε)µ} < e−µε
2/2 .

I By Chernoff’s bound, with high probability, X should
concentrate close to E [X ] = s/8.

Pr {X ≥ s/2} ≤ Pr {X ≥ s/4} ≤ e−s/24 .

This is at most δ if s = O(log 1
δ ).



F2 estimation with high confidence

I Maintain s = O(log(1/δ)) groups of t = 16/ε2

independent sketches X r
j , j = 1,2, . . . , t , r = 1,2, . . . , s.

I In each group r , take average

Yr = avgt
j=1(X r

j )2, r = 1,2, . . . s .

I Return median of the averages

F̂2 = meds
r=1Yj .

I Property:

Pr
{
|F̂2 − F2| < εF2

}
≥ 1− δ .



AMS: Resources consumed

Space:
I Let |fi | ≤ m. Each sketch

∑
i fiξ(i) can be stored in

log(mn) bits.
I Space = O( 1

ε2
log(1/δ))× log(mn) bits.

Time to process stream update (i , v):
I Each sketch is updated.
I Requires evaluating degree 3 polynomial over F : O(1)

simple field operations, total O(log(1/δ)/ε2).
Randomness:

I Each sketch requires 4 log n random bits, total
O(log(n)/ε2).
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Heavy Hitters: Illustration
Heavy Hitters are items with large absolute frequencies (Elephants)

stream:(1,10)(2,1)(3,1)(4,2)(1,10) . . .



Applications

I Among the most popular applications of data streaming.

1. Find the IP-addresses that send the most traffic.
2. Find source-IP, dest-IP pairs that send the most traffic to

each other.
3. Find the most visited web sites.

...



Heavy Hitters: Definition

I `p heavy hitters with threshold parameter φ ∈ (0,1):
HHφ

p (f ) =
{

i ∈ [n] : |fi |p > φ
∑n

j=1|fj |p
}
.

I Given φ, can we find the set HHφ
p in low space (close to O( 1

φ )).

I Finding HHφp EXACTLY requires Ω(n) space [KSP02].
Consider HH1/2

1 : i s.t. |fi | > F1/2, Majority problem.
Consider 2n-dimensional binary vectors f with wt = n. Add n
to coordinate i and test for majority. Now, i is majority iff fi was
1 earlier. Vector is recovered. Requires log

(2n
n

)
= Ω(n) bits.



Approximate Heavy Hitters: Definition

I Approximate heavy hitters: ApproxHHφ,φ
′

p . φ is upper
threshold, φ′ < φ < 1 is lower threshold.

I Return (any) set S such that

1. S ⊃ HHφ
p : Do not miss i with |fi |p > φFp.

2. S ⊂ HHφ′

p : Do not include i with |fi |p < φ′Fp.

I Uncertainty allows low space algorithms. Space approx.
Õ(1/(φ− φ′)).



`p Point Query/Estimating Frequencies

I Point query: Estimate frequency of any item i . Cannot be done
exactly in o(n) space. Allow bounded error, for any query point
i , f̂ p

i = f p
i ± φFp, .
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Count-Min Sketch: Basic algorithm

I w hash tables
T1,T2, . . . ,Tw .

I Each table Tj :
1. B buckets.
2. hash fn. hj : [n]→ [B].
3. hj ∈R pair-wise indep.

family.
I hj ’s independent.
I UPDATE(i , v):

Tj [hj(i)] += v ,
j = 1,2, . . . ,w .

I ESTIMATE(i):

All non-negative frequencies General frequencies
f̂i = minw

j=1 Tj [hj(i)] f̂i = medianw
j=1Tj [hj(i)]



Analysis

I

E
[∣∣Tl [hl (i)]− fi

∣∣] = E
[∣∣ ∑

i 6=k
hl (i)=hl (k)

fk
∣∣] ≤∑

i 6=k

|fk |
B

=
F1 − |fi |

B

by pair-wise independence of hash family of hl .

I Markov’s inequality:

Pr {X ≥ a} ≤ E [X ] /a, X non-negative random variable. .

Using Markov’s inequality,

Pr
{∣∣Tl [hl (i)]− fi

∣∣ > 4F1/B
}
≤ 1/4 .

I Taking median from estimates of w = O(log(1/δ)) tables

Pr
{∣∣medianw

l=1Tl [hl (i)]− fi
∣∣ > 4F1/B

}
< δ .

I Space: O(B log(1/δ)) counters. Update time: O(log(1/δ)).
Randomness: 2 log n ×O(log(1/δ)) bits .
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COUNT-MIN-Sketch: `1 Approx. Heavy-Hitters

I Solve HHφ,φ′

1 . Need all i : |fi | > φF1, no i : |fi | < φ′F1.

I Assume F1 is known (otherwise, use F̂1, adjust constants.)
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Group Testing Overview: Bit tester

I General idea: Each heavy-hitter is a majority item in its bucket
with probability 3/4.

I Problem: find majority item in a bucket if there is one.
Following works for non-negative frequencies. If no majority
item, gives a false positive.



Group testing for `2 majority

I `2 majority: |fi |2 > F2/2, strengthen to |fi |2 > F2/4. Use twice
the size of hash table.

I Keep O(1) AMS/Gaussian sketches for each bit position.
Allows estimation of sub-stream mapping to a bucket/bit
position/bit-value to accuracy of 1± 1/8 (say) with constant
probability 7/8 say.

I For majority item, each bit position is correctly found with
constant probability say 3/4.

I So, with very high probability, 2/3rd bits are correctly
recovered (Chernoff’s bound).

I Instead of using bit positions, use an error-correcting code for
i : C(i) that can correct 1/3 fraction of bits [GLPS10].



`2 point query & HH: COUNTSKETCH[CCF-C02]

I COUNTSKETCH structure:
1. w tables T1, . . . ,Tw .
2. hj : [n]→ [B]

corresponding to Tj .
3. hj randomly chosen

from a pair-wise indep.
family.

4. h1, . . . ,hw are
independently chosen.

5. Sketch fn.
ξj : [n]→ {−1,+1}
corresponding to Tj ,
4-wise independent.

6.

Tj [b] =
∑

i:hj (i)=b

fiξj (i)

b = 1, . . . ,B, j = 1,2, . . . ,w .



COUNTSKETCH structure

I UPDATE(i , v):

for j = 1 to w {
Tj [hj(i)] += v · ξj(i)

}

I ESTIMATE(i):

f̂i = medw
j=1Tj [hj(i)] · ξj(i) .



Frequency recovery: Basic idea

I Median of estimates from each table: table l estimate
Tl [hl (i)] · ξl (i).

I Tl [hl (i)] · ξl (i) = fi +
∑

k 6=i,hl (i)=hl (k) fkξl (k)ξl (i).

I E [Estimate from table l] = fi .

I Variance is O(F2 − |fi |2/B). Better analysis: F res
2 (B/8)/B,

conditional on i does not collide with any of the top-B/8 items.
This holds with probability 7/8. F res

2 (k) = F2 of vector except
for the top-k frequencies by absolute value.

I This gives,

|f̂i − fi | ≤ O
((F res

2 (B/8)

B

)1/2)



Which is better?

I We have shown estimators for PtQueryφ1 and PtQueryφ2 as
follows.

PtQuery1 : |̂fi − fi | ≤
F res

1 (k)

k
, space O(k log(1/δ))

PtQuery2 : |̂fi − fi | ≤
(

F res
2 (k)

k

)1/2

, space O(k log(1/δ)) .

I Both are close to being space-optimal.

I Which is more accurate (more than just constant factors)?

I We have, (
F res

2 (2k)

2k

)1/2

≤
F res

1 (k)

2k

So PtQuery2 method implies |̂fi − fi | < O(F res
1 (k)/k).
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A Dimensionality Reduction View

I Keep s = O(log m) tables for Fast-AMS or O(log m)
groups, of 16/ε2 sketches in each group.

I A sketch can be viewed as a map from frequency vectors
to some sketch space: sk : Rn 7→ RO(ε−2 log(m)).

I m streams with frequency vectors f 1, . . . , f m.
I Sketch is linear: therefore,

sk(f i − f j) = sk(f i)− sk(f j) .

I So with probability 7/8, we have

‖f i − f j‖2 ∈ (1± ε)Med(sk(f i)− sk(f j)),∀i , j .
‖f i‖ ∈ (1± ε)Med(sk(f i)), ∀i

I But Med is not an `2 norm in the sketch space.



Dimensionality Reduction: Metric Space view

I A discrete metric space (X ,dX ): X is a finite set of points,
dX (x , y) gives distance between points x and y in X . dX
function satisfies metric properties.

I (X ,dX ) embeds into (Y ,dY ) with distortion D if there
exists f : X → Y and a scaling constant c such that

c ·dX (x , y) ≤ dY (f (x), f (y)) ≤ c ·D ·dX (x , y), ∀x , y ∈ X .



Johnson-Lindenstrauss (J-L) Lemma

I For any 0 < ε < 1 and a set S of m points from Rn, there
exists a mapping f : Rn → Rt where, t = O(ε−2 log m) s.t.

(1− ε)‖x − y‖2 ≤ ‖f (x)− f (y)‖2 ≤ ‖x − y‖2, ∀x , y ∈ S .

I Follows from:
There exists a probabilistic mapping µ : Rn → Rt , for
t = O(ε−2 log(1/δ)) with µ distributed as D, such that for
any unit vector ‖x‖2 = 1,

Pr
µ ∼ D

{
|‖µ(x)‖22 − 1| ≤ ε

}
≥ 1− δ



Usefulness of Embeddability

I ε-distortion implies: nearest neighbors are approximately
preserved.

I k -d trees and other `2-based geometric data structures
can be used in much fewer dimensions.

I Time complexity of most geometric algorithms, including
NN, is exponential in dimension.

I A basic step in reducing this “curse of dimensionality”.
I We now see the basic set up of J-L Lemma.



Normal Distribution

I Gaussian distribution (Normal distribution):
X ∼ N(µ, σ2). E [X ] = µ, Var

[
X
]

= σ2.

I Density function: fX (x) = 1
σ
√

2π
e−

(x−µ)2

2σ2 .

I Standard Normal distribution: N(0,1).
I Stability: Sum of independent normally distributed

variates is normally distributed.
Xi ∼ N(µi , σ

2
i ), i = 1,2, . . . , k , Xi ’s independent. Then,

X1 + . . .+ Xk ∼ N(µ1 + . . .+ µk , σ
2
1 + . . .+ σ2

k ) .



Gamma distribution

I Gamma(k , θ), k = shape parameter, θ = scale factor
(non-negative). Density function:

f (x ; k , θ) =
1

θk Γ(k)
xk−1e−x/θ .

I E [X ] = kθ.
I If X ∼ N(0, σ2), then, X 2 ∼ Gamma(1/2,2σ2).
I Scaling: X ∼ Gamma(k , θ), then,

aX ∼ Gamma(k ,aθ) .

I Sum of indepdendent Gamma variates is Gamma
distributed if scale factors are same.
Let Xi ∼ Gamma(ki , θ) and independent. Then,

X1 + . . .+ Xr ∼ Gamma(k1 + k2 + . . .+ kr , θ) .



Application to estimating F2: Gaussian sketches

I Let ξ(j) ∼ N(0,1) for j ∈ [n].
I ξ(j)’s are (fully) independent. Ignore

randomness/space/time required for now.
I Consider sketch

X =
n∑

i=1

fiξ(i) .

I By stability property of normal distr.

X ∼ N(0,F2) .

I Problem reduces to: Estimate variance of X .



Gaussian sketches

I Let X1,X2, . . . ,Xt be independent Gaussian sketches.
I Y = X 2

1 + . . .+ X 2
t .

I Each X 2
j ∼ Gamma (1/2,2F2). So

Y ∼ Gamma(t/2,2F2) .

I E [Y ] = tF2. Need Tail probability: Pr {Y > (1± ε)tF2}.
I Property: If Y ∼ Gamma(t , θ). Then, for 0 < ε < 1,

Pr {Y ∈ (1± ε)E [Y ]} ≤ 2e−ε
2t/6

ε
√

2π(t − 1)
.

I Let t = O(ε−2 log(m)). Then,

Y
t
∈ (1± ε)F2, with prob. 1− 1

8m2 .
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Another view of mapping: J-L Lemma

I t × n matrix A, entries zi,j drawn from N(0,1) i.i.d.

A =


z1,1 z1,2 . . . z1,n
z2,1 z2,1 . . . z2,n

...
...

zt ,1 zt ,2 . . . zt ,n


I x ∈ Rn, x 7→ Ax , ‖Ax‖2 ∈ (1± ε)‖x‖2 with prob.

1− 1/mO(1).
I By linearity, A(x − y) = Ax − Ay .
I Let t = O(ε−2 log m). For any set S of m points,

‖Ax − Ay‖2 ∈ (1± ε)‖x − y‖2, ∀x , y ∈ S

with probability 1− 1/m2.



J-L matrices

I Let D be a distribution over matrices in such that

Pr
A ∼ D

{
‖Ax‖22 ∈ (1± ε)‖x‖22

}
≥ 1− 1/n2 .

I Examples:
1. Matrices with Rademacher (random ±1) entries and

(slightly sparse) Rademacher [Achlioptas 01]. Matrices
with entries from distributions with sub-Gaussian1

1Sub-gaussian with expectation µ and variance σ2:
Pr {X > λ} ≤ e−Ω(λ2/σ2).



Fast J-L

I Computing Ax requires O(tn) time. Can this be done
faster? [Ailon-Chazelle]

I Write
A = PHnD

I D is n × n diagonal matrix with random ±1 entries.
Assume n = 2r .

I Hn is the n × n Hadamard matrix: Orthonormal and

Hn =
1√
2

[
Hn/2 Hn/2
Hn/2 −Hn/2

]
Due to recursive nature, Hnx can be computed in time
O(n log n).
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Small moments: problem and results

I Fp =
∑n

i=1|fi |p. Restrict attention to p ∈ (0,2).

I F0: number of items with non-zero frequency. “Count-distinct”
queries.

I Deterministic PTAS requires Ω(n) space [AMS96].

I Lower Bounds: (ε−2 log(εM)) [IW03,Wood04,KNW10]



Estimate Fp, 0 < p < 2, p-stable sketches [Indyk00]

I Unit scale p-stable distributions St(p,1).

I Property of p-stability: if si ’s are unit p-stable and independent,
then, (i) asi has distribution St(p, |a|) for scalar a, and, (ii)

X = f1s1 + f2s2 + . . .+ fnsn is distributed as

St
(

p,
(
|f1|p + . . . |fp|p

)1/p
)
.

I X is a p-stable random variable with scale factor F 1/p
p .

I If Z ∼ St(p,1) so X has same distribution as F 1/p
p Z , or |X |p

has the same distribution as Fp|Z |p.

I So, med(|X |p) = Fpmed(|Z |p).



Small Fp: Median

I Median method [Indyk00]: Make t = O(1/ε2) independent
observations X1, . . . ,Xt .

F̂p =
med(|X1|p, . . . , |Xt |p)

med(|Z |p)
.

X is a scaling of Z , |X |p ∼ Fp|Z |p.

I Lifschitz property of density function: there is at least c · ε
probability mass in each of the ranges:

1. ε times the median and right of median:
|Z | ∈ [med(|Z |), (1 + ε)med(|Z |)].

2. ε times median and left of median:
|Z | ∈ [(1− ε)med(|Z |),med(|Z |)].

I Out of t = d/ε2 independent trials, by Chernoff bounds, the
number of Xj ’s such that |X |pj > (1 + ε)med(|X |p) is
exp
{
−t(1/2− cε)(cε)2

}
≥ 15/16, by choosing t = d/ε2

appropriately.

I Similarly, for the left part.
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Geometric Means Estimator [Li 2006]

I Fact: X ∼ St(p,F 1/p
p ) then

E [|X |q] = Cp,q · F q/p
p , −1 < q < p .

I GM Estimator:

F̂ GM
p (r) = C′p,r |X1|p/r |X2|p/r . . . |Xr |p/r , r ≥ 3

I Concentration:
∣∣F̂ GM

p (r)− Fp
∣∣ ≤ εFp with prob. 7/8 for

r = O( 1
ε2

).



Reducing Randomness

I The stable variables are assumed independent.
I Space requirement is O(log(nm))×O

( 1
ε2

)
. Time

R = O(nM).
I Use Nisan’s PRG for fooling bounded space S

computations [Indyk00] requiring time R. O(S log R)
random bits suffices.



KNW 2010: Log Cosine Estimator

I X ∼ S(p,F 1/p
p ).

I E
[
eitX ] = e−|t |

pFp = E [cos(tX )], [Levy1930s].
I Estimator:

Cs(t) =
1
s
(
cos(tX1)) + . . .+ cos(tXr )

)
F̂p =

1
|t |p

log
1

Cs(t)

I Choose t so that
(1 + O(ε))e−1 ≤ Cs(t) ≤ (1−O(ε))e−1/8.

I F̂p concentrates within (1± ε)Fp with high probability.
I O(log(1/ε))-wise independence suffices [KNW10]

(complicated).
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Fp : p > 2, current status

I Problem: Estimate Fp =
∑n

i=1|fi |p, p > 2.
I Randomized space lower bound:

Ω(n1−2/pε−2/p[B − YJKS02] + (1/ε2) log n[Wood04]).
I Current best upper bound: O(n1−2/pε−2 log(nm)),

p = 2 + Ω(1) [IW05, BGKS06, AKS11,..].



IW05: Basic idea

I Level-wise structure, l = 0,1, . . . , log M.
I All items map to level 0, items are sub-sampled with

probability 1/2 to map to level 1, further sub-sampled
with probability 1/2 to also map to level 2, and so on.

I Keep `2 heavy-hitter structure: Hl = HHφ/4,φ/8
2 at each

level l . Any update (i , v) is inserted to levels H0 through
Hl(i) if l(i) is the “highest level” that i is sampled into.

I Let k = O(1/φ). F res
2,l (k) is the sum of squares of

frequencies of items at level l (all but top-k ) of items that
are sampled into level l .

I Note that E
[
F res

2,l (k)
]
≤ F res

2 (k)/2l and

F res
2,l (k) ≤ 2F res

2 (k)/2l with probability 1− δ using
independence of hash function O(log(1/δ)).



Algorithm: Basic idea

I Let F2 ≤ F̂2 ≤ (1 + 1/20)F2 using standard methods.
I Basic Idea: Find heavy-hitters from the HH structure at

each level l and their frequency estimates.
I Divide items into groups:

G0 : |fi |2 ≥ φF̂2,Gl : |fi |2 ∈
[
F̂2/2l , F̂2/2l−1)

I Sampled groups: Ḡ0, . . . , Ḡlog m. Ḡ0 : f̂ 2
i ≥ φF̂2

I Ḡl : φF̂2/2l ≤ f̂ 2
i < φF̂2/2l−1 and i maps to level l .

I Estimator: Collect items into sample groups, estimate
and scale.

F̂p =
∑

levels l

∑
i∈Ḡl

2l f̂ p
i .



High Moments: Algorithm parameters

I When is an estimate reliable? [Simple version] if
f̂i ∈ (1± ε/(10p))fi . Then, |̂fi |p ∈ (1± ε/10)|fi |p.

I Let ε′ = ε/(10p).

I We keep HHφ,φ′

2 at each level. So error at level l is
((φ− φ′)/2)F2,l ≤ ((φ− φ′)/2)F̂2/2l−1 (w.h.p).

I Let φ′ = φ− ε′φ/2. Then, error at level l is ε′φF2/2l+1.



Details

I f̂ l
i = estimate for fi obtained from level l HH.

I i could be discovered as a heavy-hitter at multiple levels.
I Divide Gl range [F̂2/2l , F̂2/2l−1] into 3 regions:

1.

mid(Gl ) : f 2
i ∈

[ F̂2

(2l (1− ε′))
,

F̂2

(2l (1 + ε′))

]
.

Items here are discovered as heavy only at level l (whp).
2.

lmargin(Gl ) : f 2
i ∈

[ F̂2

2l ,
F̂2

(2l (1− ε′))

]
.

Items here may be classified into Ḡl or to Ḡl+1.
3. rmargin(Gl ) : symmetric case for right margin.

I Convention: For each item i , we consider the estimate
returned from the lowest level l ′ where
f̂ l ′
i ≥ φF̂2/(2l ′(1 + ε′)).



Items in "middle"

I Let i ∈ Gl .
I Probability i ∈ Ḡl = probability that i maps to level l

= 1/2l .



Items in margin

I Suppose i ∈ lmargin(Gl).
I If i does not map to level l , then, f̂ l ′

i < F̂2/2l ′ .

I If i maps to level l , f̂ l
i is a reliable estimate for fi .

I In this case, if f̂ l
i ≥ F̂2/2l , then, i is placed in group Ḡl .

I If f̂ l
i < F̂2/2l AND i also maps to level l + 1, then i is

placed in Ḡl+1.



Items in margin

I So, for i ∈ lmargin(Gl), the probability that i is included in
Ḡl+1 is

Pr
{

i ∈ Ḡl+1 | i maps to level l
}

Pr
{

i maps to level l + 1 and f̂ l
i < F̂2/2l | i maps to level l

}
= Pr

{
f̂ l
i < F̂2/2l | i maps to level l

}
×

Pr {i maps to level l + 1 | i maps to level l}

=
(
1− Pr

{
f̂ l
i ≥ F̂2/2l | i maps to level l

})
(1/2)

= 1/2− (1/2)Pr
{

i ∈ Ḡl | i maps to level l
}

or, multiplying by Pr {i maps to level l},

2Pr
{

i ∈ Ḡl+1
}

+ Pr
{

i ∈ Ḡl | i maps to level l
}

= 1/2l

gives a basic equation for analysis. [rest is
straightforward].



Expectation

I

F̂p =
∑

levels l

∑
i∈Ḡl

2l f̂ p
i

∈
∑

i

(
1± ε

10

)
|fi |p

∑
levels l

2lxil

where, xil indicates 1 if i ∈ Ḡl and 0 otherwise. Taking
expectation,

E
[
F̂p

]
=
∑

i

(
1± ε

10

)
|fi |p = (1± ε/10)Fp .

I Variance: calculating directly (and as before),

Var
[
F̂p
]

=
∑
i∈G0

ε2f 2p
i +

∑
i∈Gl ,l≥1

2l |fi |2p



Variance

I Since, |fi |2 ≤ φF̂2/2l ,∑
i∈Gl ,l≥1

2l |fi |2p ≤
∑

i∈Gl ,l≥1

(2F2)φ|fi |2p−2 ≤ 2(φF2)F2p−2

I Some inequalities:

F2p−2 =
∑

i

|fi |2p−2 ≤ (max
i
|fi |)p−2)

∑
i

|fi |p ≤ F 2−2/p
p ,

(F2/n)1/2 ≤ (Fp/n)1/p, or, F2 ≤ n1−2/pF 2/p
p

I Combining: Var
[
F̂p
]
≤ φn1−2/pF 2

p .

I So φ should be ε−2n1−2/p.



Space

I φ = ε−2n1−2/p. Also need accuracy of εφ at each level.
I A calculation shows table sizes at each level is

O(ε−2−4/pn1−2/p). (can be reduced to ε−2n1−2/p).
I Number of levels log m, can be reduced to log n because

higher levels contribute less than ε mass to Fp. Further
reduced to O(1) levels [AKO10]

I Number of tables per level is O(log n).
I Space O(n1−2/pε−2−4/p log(m) log(n)) words.
I Randomness: can be reduced to use O(log n) bits.
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Compressed Sensing: Problem and Motivation

I x is n-dimensional vector, e.g., image.
I We wish to recover a “close” approximation of x , but by

making m� n observations of x .
I Observations are linear: Ax , where A is a measurement

matrix.
I Closeness of approximation: close to the best k -sparse

approximation of x .
I k -sparse vector: has at most k non-zero entries.
I Sparse revovery with `p/`q guarantees. Return x̂ such

that

‖x − x̂‖p ≤ C min
k -sparsex ′

‖x − x ′‖q

where, C is a small constant.
I x∗ achieving mink -sparsex ′‖x − x ′‖q has the top-k values
|xi |.



Overview

I Sparse `1/`2 guarantees such that

‖x − x̂‖2 ≤
C√
k

min
k -sparsex ′

‖x − x ′‖1

and C is a small constant.
I x̂ itself need not be k -sparse (minor point).

I Consider LP:

min‖x∗‖1
s.t. Ax = Ax∗

I This is an LP.

mint1 + t2 + . . .+ tn
s.t .− ti ≤ x∗i ≤ ti

Ax = Ax∗
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Motivation for LP

min‖x∗‖1
s.t. Ax = Ax∗

I Seems mysterious at first.
I Actual goal should have been to minimize ‖x‖0.
I For carefully chosen A, this has (almost) the same effect.
I Choice of ‖x∗‖1 crucial, ‖x∗‖2 doesn’t work.



Statement of theorem

I Theorem [ CRT06, D06] If each entry of Am×n is i.i.d.
N(0,1) and m = Θ(k log(n/k)), then with high probability
(over the randomness of A) the output x ′ of LP satisfies:

‖x − x ′‖2 ≤
C√
k

min
k -sparsex ′′

‖x − x ′′‖1 .

I Remarks:
1. “One sketch for all”: guarantee is deterministic

(construction is probabilistic).
2. N(0,1) not crucial: distributions satisfying J − L also work.
3. `1/`2 mixed guarantee essential: no similar guarantee

possible for `2/`2.



Restricted Isometry Property

I A matrix is (k , δ)-RIP if for every k -sparse x

(1− δ)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δ)‖x‖2

I Property 1: If each entry of Am×n is i.i.d. N(0,1) and
m = O(k log(n/k)), then, A is (k ,1/3)-RIP.

I Property 2: A (4k ,1/3)-RIP matrix A implies: the output
x ′ of LP satisfies:

‖x − x ′‖2 ≤
C√
k

min
k -sparsex ′′

‖x − x ′′‖1 .



Normal i.i.d. matrices are RIP whp

I Suffice to assume that ‖x‖2 = 1.
I We will take the union bound over all k -subsets T of
{1, . . . ,n} such that support(x) = T . There are

(n
k

)
such

sets.
I Consider AT : the columns of A corresponding to

positions in T and x ′ = xT similarly. So x ′ is
k -dimensional and AT is m × k .

I We need to show that with probability 1− 1/(8
(n

k

)
), for

any x ′ on a k -dimensional unit ball B, we have,

2/3 ≤ ‖Ax ′‖2 ≤ 4/3



k -dimensional unit ball preservation

I An ε-net N of a set B is a subset of B such that for any
x ′ ∈ B, there exists x1 ∈ N such that ‖x − x ′‖ < ε. Let
ε = 1/7.

I Fact: there exists an ε-net for unit k -dimensional ball of
size (1/ε)Θ(k).

I By J-L Lemma, for all points in N, we have,

7/8 ≤ ‖Ax‖2 ≤ 8/7, with prob. 1− e−Θ(m) .

I To extend to all x ′ ∈ B, we write ∆ = x ′ − x1. Now,
‖∆‖ < 1/7. Normalize ∆. Recurse.

I So, x ′ = x1 + b2x2 + . . .+ such that
1. all xi ∈ N
2. bi ≤ 1/7i .



k dim unit ball preservation

I So, we get,

‖Ax ′‖2 ≤
∑
i≥0

bi‖Axi‖ ≤
∑
i≥0

(8/7)(1/7)i ≤ (8/7)(7/6) = 4/3

I The other case (lower bound on ‖Ax ′‖2 is similar.
I So, for x ′ in the unit k -dimensional ball, we get

2/3 ≤ ‖Ax ′‖2 ≤ 4/3
I Failure probability using union bound:(

n
k

)
7O(k)e−Θ(m) = (n/k)Θ(k)e−Θ(m)

which is at most 1/8 if m = Θ(k log(n/k).
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