Graph Colorings

Niranjan Balachandran

Department of Mathematics Indian Institute of Technology Bombay.

Research Promotion Workshop on Graph and Geometric Algorithms, PDPM IIITDM, Jabalpur.

November 20, 2012

イロン イヨン イヨン イヨン

æ

Suppose G is a graph. Let k be a positive integer. Denote $[k]:=\{1,2,\ldots,k\}.$

・回 と く ヨ と く ヨ と

æ

Suppose G is a graph. Let k be a positive integer. Denote $[k] := \{1, 2, \dots, k\}.$

Definition

 $k\text{-coloring: } A \text{ map } \phi: V(G) \to [k] \text{ such that if } u \leftrightarrow v \text{ in } G \text{ then } \phi(u) \neq \phi(v).$

・回 ・ ・ ヨ ・ ・ ヨ ・ …

```
Suppose G is a graph. Let k be a positive integer. Denote [k]:=\{1,2,\ldots,k\}.
```

Definition

 $k\text{-coloring:} A \text{ map } \phi: V(G) \to [k] \text{ such that if } u \leftrightarrow v \text{ in } G \text{ then } \phi(u) \neq \phi(v).$

Definition

Chromatic number of G: The minimum k such that there is a k-coloring of G.

The Chromatic number is denoted by $\chi(G)$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Example: The Petersen Graph

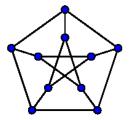


Figure : The Petersen Graph

< □ > < □ > < □ >

æ

Example: The Petersen Graph

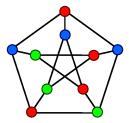


Figure : Petersen Graph with a 3-coloring.

・ 同 ト ・ ヨ ト ・ ヨ ト

æ

Example: The Petersen Graph

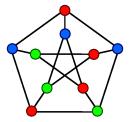


Figure : Petersen Graph with a 3-coloring. χ (Petersen) = 3.

伺い イヨト イヨト

Simplest cases: Graphs with $\chi(G) = 1$ and $\chi(G) = 2$

• If $\chi(G) = 1$ then G has no edges.

▲圖▶ ▲屋▶ ▲屋▶

• If $\chi(G) = 1$ then G has no edges.

▲圖▶ ▲屋▶ ▲屋▶

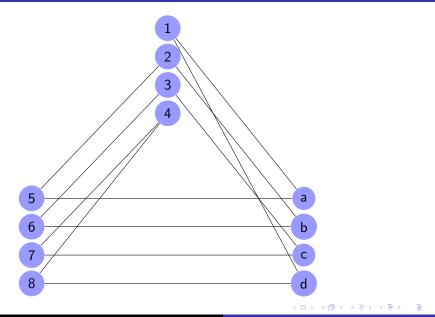
• If $\chi(G) = 1$ then G has no edges.

• If $\chi(G) = 2$ then G is non-trivial *bipartite*.

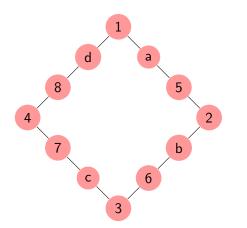
▶ Bad news: No 'nice' characterization for graphs of chromatic number k for any k ≥ 3.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Why no nice characterization?



Why no nice characterization?



 < ≣⇒

Э

Suppose $V(G) = \{v_1, v_2, \dots, v_n\}$. Consider coloring the vertices one at a time...

(本部)) (本語)) (本語)) (語)

Suppose $V(G) = \{v_1, v_2, \dots, v_n\}$. Consider coloring the vertices one at a time...greedily...

・回 と くほ と くほ と

Suppose $V(G) = \{v_1, v_2, \dots, v_n\}$. Consider coloring the vertices one at a time...greedily...

▶ Proposition $\chi(G) \leq \Delta + 1$, where $\Delta = \max_{v \in V} d(v)$.

回 と く ヨ と く ヨ と

Suppose $V(G) = \{v_1, v_2, \dots, v_n\}$. Consider coloring the vertices one at a time...greedily...

• Proposition $\chi(G) \leq \Delta + 1$, where $\Delta = \max_{v \in V} d(v)$.

Theorem

(Brooks): If $G \neq C_{2n+1}, K_n$ and is connected then $\chi(G) \leq \Delta$.

向下 イヨト イヨト

▶ If $H \subset G$ then $\chi(G) \ge \chi(H)$. In particular, $\chi(G) \ge \omega(G)$ where $\omega(G)$ is the size of a maximum clique in G.

・ 同 ト ・ ヨ ト ・ ヨ ト

- If H ⊂ G then χ(G) ≥ χ(H). In particular, χ(G) ≥ ω(G) where ω(G) is the size of a maximum clique in G.
- ▶ $\chi(G) \ge \frac{n}{\alpha(G)}$, where $\alpha(G) =$ Size of a maximum independent set in G.

(日) (日) (日)

Question: Does there exist a graph G with no triangles (no K_3 as a subgraph) and with chromatic number, say 1000?

(日本) (日本) (日本)

Question: Does there exist a graph G with no triangles (no K_3 as a subgraph) and with chromatic number, say 1000?

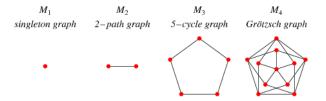


Figure : The Mycielski construction for $\chi(G) = 1, 2, 3, 4$.

向下 イヨト イヨト

э

Theorem

(Blanche Descartés akaTutte) There exists graphs with girth 6 and chromatic number k for any $k \ge 2$.

A B K A B K

Theorem

(Blanche Descartés akaTutte) There exists graphs with girth 6 and chromatic number k for any $k \ge 2$.

Theorem

(Erdős) For any given k, g there exists a graph G with girth greater than g and $\chi(G) \ge k$.

向下 イヨト イヨト

Pick G randomly, i.e., pick each edge independently, and with probability p.

- Pick G randomly, i.e., pick each edge independently, and with probability p.
- ▶ If N = number of cycles of size less than or equal to g, then $\mathbb{E}(N) = \sum_{i=3}^{g} \frac{n(n-1)\cdots(n-i+1)}{2i} p^{i} < \frac{gn^{g\theta}}{6}$ if we have $p = n^{\theta-1}$ (for some $0 < \theta < 1$).

・ 戸 ト ・ ヨ ト ・ ヨ ト

- Pick G randomly, i.e., pick each edge independently, and with probability p.
- If N = number of cycles of size less than or equal to g, then $\mathbb{E}(N) = \sum_{i=3}^{g} \frac{n(n-1)\cdots(n-i+1)}{2i} p^{i} < \frac{gn^{g\theta}}{6} \text{ if we have}$ $p = n^{\theta-1} \text{ (for some } 0 < \theta < 1\text{)}.$
- ▶ In particular, if $\theta < 1/g$ we have $\mathbb{E}(N) = o(n)$, so $\mathbb{P}(N > n/2) < 0.1$, say.

・ 同 ト ・ ヨ ト ・ ヨ ト

$$\mathbb{P}(\alpha(G) \ge x) \le \binom{n}{x} (1-p)^{\binom{x}{2}} < \left(ne^{-(p(x-1)/2)}\right)^x < 0.1,$$

say, if $x = Cn^{1-\theta} \log n$ for a suitable constant C.

同下 イヨト イヨト

æ

$$\mathbb{P}(\alpha(G) \ge x) \le \binom{n}{x} (1-p)^{\binom{x}{2}} < \left(ne^{-(p(x-1)/2)}\right)^x < 0.1,$$

say, if $x = Cn^{1-\theta} \log n$ for a suitable constant C.

Delete from each small cycle an edge to destroy all cycles of size at most g (deleting at most n/2 vertices). The resulting graph G* has α(G*) < Cn^{1-θ} log n and has no cycles of size less than or equal to g. Furthermore, χ(G) ≥ χ(G*) ≥ n/2/Cn^{1-θ} log n.

向下 イヨト イヨト

The Erdős result actually proves that almost all graphs with $e(G)\sim n^{1+\epsilon}$ for suitable $\epsilon>0$ are very 'close' to such desired graphs!

・回 と くほ と くほ と

The Erdős result actually proves that almost all graphs with $e(G)\sim n^{1+\epsilon}$ for suitable $\epsilon>0$ are very 'close' to such desired graphs!

To have witnessed such graphs, for k = 6, g = 6, one would have to consider $n \ge 2^{42}$ (!) This explains why it seemed 'counter-intuitive' that large chromatic number and large girth cannot happen simultaneously.

マロト マヨト マヨト 三日

Question: If we knew the chromatic number of every 'large' subgraph of G, then can we deduce something about $\chi(G)$? Can $\chi(G)$ still be much larger?

・ 同 ト ・ ヨ ト ・ ヨ ト

Question: If we knew the chromatic number of every 'large' subgraph of G, then can we deduce something about $\chi(G)$? Can $\chi(G)$ still be much larger?

YES, IT CAN BE MUCH, MUCH LARGER!

向下 イヨト イヨト

Question: If we knew the chromatic number of every 'large' subgraph of G, then can we deduce something about $\chi(G)$? Can $\chi(G)$ still be much larger?

YES, IT CAN BE MUCH, MUCH LARGER!

Theorem

(Erdős) Given any $k \ge 3$ there exists $\epsilon = \epsilon(k) > 0$ and $n_0 = n_0(\epsilon)$ such that the following holds: For every $n \ge n_0$ there exists a graph G on n vertices satisfying

1. For every subset H of at most ϵn vertices $\chi(H) \leq 3$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Question: If we knew the chromatic number of every 'large' subgraph of G, then can we deduce something about $\chi(G)$? Can $\chi(G)$ still be much larger?

YES, IT CAN BE MUCH, MUCH LARGER!

Theorem

(Erdős) Given any $k \ge 3$ there exists $\epsilon = \epsilon(k) > 0$ and $n_0 = n_0(\epsilon)$ such that the following holds: For every $n \ge n_0$ there exists a graph G on n vertices satisfying

1. For every subset H of at most ϵn vertices $\chi(H) \leq 3$.

2. $\chi(G) \ge k(!)$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Question: If we knew the chromatic number of every 'large' subgraph of G, then can we deduce something about $\chi(G)$? Can $\chi(G)$ still be much larger?

YES, IT CAN BE MUCH, MUCH LARGER!

Theorem

(Erdős) Given any $k \ge 3$ there exists $\epsilon = \epsilon(k) > 0$ and $n_0 = n_0(\epsilon)$ such that the following holds: For every $n \ge n_0$ there exists a graph G on n vertices satisfying

- 1. For every subset H of at most ϵn vertices $\chi(H) \leq 3$.
- $\textbf{2. } \chi(G) \geq k(!).$
 - Proof uses a probabilistic construction.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Question: If we knew the chromatic number of every 'large' subgraph of G, then can we deduce something about $\chi(G)$? Can $\chi(G)$ still be much larger?

YES, IT CAN BE MUCH, MUCH LARGER!

Theorem

(Erdős) Given any $k \ge 3$ there exists $\epsilon = \epsilon(k) > 0$ and $n_0 = n_0(\epsilon)$ such that the following holds: For every $n \ge n_0$ there exists a graph G on n vertices satisfying

- 1. For every subset H of at most ϵn vertices $\chi(H) \leq 3$.
- $\textbf{2. } \chi(G) \geq k(!).$
 - Proof uses a probabilistic construction.
 - ► Almost every graph (in the random graph model) can be altered mildly to obtain such a *G*.

イロト イポト イヨト イヨト

Theorem (Molly,Reed) For $\Delta \gg 0$ and $\omega(G) \leq \Delta - 1$ we have $\chi(G) \leq \Delta - 1$.

伺下 イヨト イヨト

Theorem (Molly,Reed) For $\Delta \gg 0$ and $\omega(G) \leq \Delta - 1$ we have $\chi(G) \leq \Delta - 1$.

Theorem

(J.H. Kim) If G has girth at least 5, then $\chi(G) \leq \frac{\Delta}{\log \Delta} (1 + o(1))$ for $\Delta \gg 0$.

向下 イヨト イヨト

Theorem (Molly,Reed) For $\Delta \gg 0$ and $\omega(G) \leq \Delta - 1$ we have $\chi(G) \leq \Delta - 1$.

Theorem

(J.H. Kim) If G has girth at least 5, then $\chi(G) \leq \frac{\Delta}{\log \Delta} (1 + o(1))$ for $\Delta \gg 0$.

Theorem

(Johansson) If G is triangle free, then $\chi(G) \leq O\left(\frac{\Delta}{\log \Delta}\right)$.

向下 イヨト イヨト

Theorem

(Molly,Reed) For $\Delta \gg 0$ and $\omega(G) \le \Delta - 1$ we have $\chi(G) \le \Delta - 1$.

Theorem

(J.H. Kim) If G has girth at least 5, then $\chi(G) \leq \frac{\Delta}{\log \Delta} (1 + o(1))$ for $\Delta \gg 0$.

Theorem

(Johansson) If G is triangle free, then $\chi(G) \leq O\left(\frac{\Delta}{\log \Delta}\right)$.

Theorem

(Alon, Krivelevich, Sudakov) Suppose G is locally sparse, i.e., for every vertex v, the number of edges in the subgraph induced by v and its neighbors is at most $\frac{\Delta^2}{f}$. Then $\chi(G) \leq O(\frac{\Delta}{\log f})$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem

(Molly,Reed) For $\Delta \gg 0$ and $\omega(G) \le \Delta - 1$ we have $\chi(G) \le \Delta - 1$.

Theorem

(J.H. Kim) If G has girth at least 5, then $\chi(G) \leq \frac{\Delta}{\log \Delta} (1 + o(1))$ for $\Delta \gg 0$.

Theorem

(Johansson) If G is triangle free, then $\chi(G) \leq O\left(\frac{\Delta}{\log \Delta}\right)$.

Theorem

(Alon, Krivelevich, Sudakov) Suppose G is locally sparse, i.e., for every vertex v, the number of edges in the subgraph induced by v and its neighbors is at most $\frac{\Delta^2}{f}$. Then $\chi(G) \leq O(\frac{\Delta}{\log f})$.

All these proofs heavily rely on probabilistic techniques.

1. (Hadwiger's conjecture) Let \mathcal{G} be a class of graphs closed under deletions of vertices/edges, and contractions of edges, and removing any loops that might arise. Then the maximum chromatic number of the graphs in \mathcal{G} equals the number of vertices in a largest clique that occurs in \mathcal{G} .

(4) (3) (4) (3) (4)

- 1. (Hadwiger's conjecture) Let \mathcal{G} be a class of graphs closed under deletions of vertices/edges, and contractions of edges, and removing any loops that might arise. Then the maximum chromatic number of the graphs in \mathcal{G} equals the number of vertices in a largest clique that occurs in \mathcal{G} .
- 2. (B. Reed) $\chi(G) \leq \left\lceil \frac{\Delta + \omega + 1}{2} \right\rceil$, where $\omega = \omega(G)$ is the size of a maximum clique in G.

向下 イヨト イヨト